Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals

Abstract

Phase control plays an important role in the precise synthesis of inorganic materials, as the phase structure has a profound influence on properties such as conductivity and chemical stability. Phase-controlled preparation has been challenging for the metallic-phase group-VI transition metal dichalcogenides (the transition metals are Mo and W, and the chalcogens are S, Se and Te), which show better performance in electrocatalysis than their semiconducting counterparts. Here, we report the large-scale preparation of micrometre-sized metallic-phase 1T-MoX2 (X = S, Se)-layered bulk crystals in high purity. We reveal that 1T′-MoS2 crystals feature a distorted octahedral coordination structure and are convertible to 2H-MoS2 following thermal annealing or laser irradiation. Electrochemical measurements show that the basal plane of 1T′-MoS2 is much more active than that of 2H-MoS2 for the electrocatalytic hydrogen evolution reaction in an acidic medium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures of MoS2.
Fig. 2: Characterizations of 1T′- and 2H-MoS2.
Fig. 3: Laser-induced phase transformation from 1T′-MoS2 to 2H-MoS2.
Fig. 4: Phase-dependent HER measurements in electrochemical microcells.

Similar content being viewed by others

References

  1. Sun, S. C., Murray, B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000).

    Article  CAS  Google Scholar 

  2. Thelander, C., Caroff, P., Plissard, S., Dey, A. W. & Dick, K. A. Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett. 11, 2424–2429 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Park, C. H., Cheong, B.-H., Lee, K.-H. & Chang, K. J. Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys. Rev. B 49, 4485–4493 (1994).

    Article  CAS  Google Scholar 

  4. Kim, J., Lee, Y. & Sun, S. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132, 4996–4997 (2010).

    Article  CAS  Google Scholar 

  5. Fan, Z. et al. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 138, 1414–1419 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  PubMed  Google Scholar 

  8. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotech. 10, 313–318 (2015).

    Article  CAS  Google Scholar 

  11. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    Article  CAS  Google Scholar 

  12. Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983).

    Article  CAS  Google Scholar 

  13. Wypych, F. & Schollhorn, R. 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc. Chem. Commun. 1386–1388 (1992).

  14. Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    Article  CAS  Google Scholar 

  15. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotech. 9, 391–396 (2014).

    Article  CAS  Google Scholar 

  16. Kang, Y. M. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Mahler, B., Hoepfner, V., Liao, K. & Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14121–14127 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Geng, X. et al. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 7, 10672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chou, S. S. et al. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 6, 8311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yin, Y. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 7965–7972 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Chung, D. Y. et al. Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 6, 2131–2136 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).

    Article  CAS  Google Scholar 

  24. Yang, D., Sandoval, S. J., Divigalpitiya, W. M. R., Irwin, J. C. & Frindt, R. F. Structure of single-molecular-layer MoS2. Phys. Rev. B 43, 12053–12056 (1991).

    Article  CAS  Google Scholar 

  25. Calandra, M. Chemically exfoliated single-layer MoS2: stability, lattice dynamics, and catalytic adsorption from first principles. Phys. Rev. B 88, 245428 (2013).

    Article  CAS  Google Scholar 

  26. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Castellanos-Gomez, A. et al. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012).

    Article  PubMed  Google Scholar 

  28. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–54 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by MOE under AcRF Tier 2 (ARC 19/15, nos. MOE2014-T2-2-093, MOE2015-T2-2-057 and MOE2016-T2-2-103) and AcRF Tier 1 (2016-T1-001-147 and 2016-T1-002-051), and NTU under a Start-Up Grant (M4081296.070.500000) in Singapore. It was also supported by the Joint Research Fund for Overseas Chinese, Hong Kong and Macao Scholars (grant no. 51528201). Q.X. acknowledges support from the Singapore National Research Foundation via an NRF Investigatorship Award (NRF-NRFI2015-03), Singapore MOE AcRF Tier2 grant (MOE2015-T2-1-047) and Tier1 grant (RG 113/16). Z.L. acknowledges support from the Singapore National Research Foundation under NRF RF award no. NRF-RF2013-08. The authors acknowledge the Facility for Analysis, Characterization, Testing and Simulation at Nanyang Technological University, Singapore, for use of their electron microscope (and/or X-ray) facilities.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. proposed the research direction and guided the project. Y.Y., G.-H.N., Q.H. and X.-J.W. conceived the idea, designed the experiments and drafted the manuscript with H.Z., synthesized the materials, fabricated the devices, and analysed the data. K.Z. and Q.Z. helped with Raman and photoluminescence mapping measurements. X.W. and Q.X. conducted the temperature-dependent electrical property measurements. Z.Y. and L.G. carried out the STEM characterization. J.C., Q.M., M.Z. and Z.L. helped draft the manuscript. B.L. carried out XPS characterization. F.-R.R. and H.L. carried out AFM characterization. Y.D. analysed the XAFS results. Z.L., X.H. and W.H. helped revise the manuscript. All authors read the manuscript and agreed with its content.

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary synthesis, characterization details, electrochemical measurements and analysis; Supplementary Figures 1–17 and Supplementary Tables 1 & 2

Supplementary Video

In situ Raman observation of the phase transformation process from 1T’-MoS2 to 2H-MoS2 under laser irradiation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Nam, GH., He, Q. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chem 10, 638–643 (2018). https://doi.org/10.1038/s41557-018-0035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-018-0035-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing