Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

STEM CELLS

Engineering human knock-in organoids

The lack of endogenous reporter lines is a bottleneck in the study of subcellular dynamics in human adult stem cell (ASC)-derived organoids. An approach using CRISPR–Cas9-mediated homology-independent organoid transgenesis (CRISPR–HOT) in ASC-derived organoids now narrows the gap between basic research and translational studies in human organoids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow and cellular applications of CRISPR–HOT in ASC-derived organoids.

References

  1. Lancaster, M. A. & Huch, M. Dis. Model. Mech. 12, dmm039347 (2019).

    Article  CAS  Google Scholar 

  2. McCauley, H. A. & Wells, J. M. Development 144, 958–962 (2017).

    Article  CAS  Google Scholar 

  3. Liu, C., Oikonomopoulos, A., Sayed, N. & Wu, J. C. Development 145, dev156166 (2018).

    Article  Google Scholar 

  4. Fiorotto, R. et al. Biochim. Biophys. Acta. Mol. Basis Dis. 1865, 920–928 (2019).

    Article  CAS  Google Scholar 

  5. Wang, M., Zhang, L. & Gage, F. H. Protein Cell 11, 45–59 (2020).

    Article  Google Scholar 

  6. Nie, J. & Hashino, E. EMBO Rep. 18, 367–376 (2017).

    Article  CAS  Google Scholar 

  7. Sugimoto, S. et al. Cell Stem Cell 22, 171–176.e5 (2018).

    Article  CAS  Google Scholar 

  8. Artegiani, B. et al. Nat. Cell. Biol. https://doi.org/10.1038/s41556-020-0472-5 (2020).

  9. Cortina, C. et al. EMBO Mol. Med. 9, 869–879 (2017).

    Article  CAS  Google Scholar 

  10. Beumer, J. et al. Nat. Cell Biol. 20, 909–916 (2018).

    Article  CAS  Google Scholar 

  11. Serra, D. et al. Nature 569, 66–72 (2019).

    Article  CAS  Google Scholar 

  12. Verissimo, C. S. et al. eLife 5, e18489 (2016).

    Article  Google Scholar 

  13. Sakaue-Sawano, A. et al. Cell 132, 487–498 (2008).

    Article  CAS  Google Scholar 

  14. Dutta, D., Heo, I. & O’Connor, R. J. Vis. Exp. 14, 151 (2019).

    Google Scholar 

  15. Bar-Ephraim, Y.E., Kretzschmar, K. & Clevers, H. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-019-0248-y (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prisca Liberali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Oost, K.C. & Liberali, P. Engineering human knock-in organoids. Nat Cell Biol 22, 261–263 (2020). https://doi.org/10.1038/s41556-020-0478-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-020-0478-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing