Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168

Abstract

Growth signals, such as extracellular nutrients and growth factors, have substantial effects on genome integrity; however, the direct underlying link remains unclear. Here, we show that the mechanistic target of rapamycin (mTOR)–ribosomal S6 kinase (S6K) pathway, a central regulator of growth signalling, phosphorylates RNF168 at Ser60 to inhibit its E3 ligase activity, accelerate its proteolysis and impair its function in the DNA damage response, leading to accumulated unrepaired DNA and genome instability. Moreover, loss of the tumour suppressor liver kinase B1 (LKB1; also known as STK11) hyperactivates mTOR complex 1 (mTORC1)–S6K signalling and decreases RNF168 expression, resulting in defects in the DNA damage response. Expression of a phospho-deficient RNF168-S60A mutant rescues the DNA damage repair defects and suppresses tumorigenesis caused by Lkb1 loss. These results reveal an important function of mTORC1–S6K signalling in the DNA damage response and suggest a general mechanism that connects cell growth signalling to genome stability control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: mTORC1–S6K signalling suppresses the DDR.
Fig. 2: S6K phosphorylates RNF168 at Ser60.
Fig. 3: Ser60 phosphorylation inhibits RNF168 function and impairs DNA damage repair.
Fig. 4: RNF168 Ser60 phosphorylation promotes its degradation.
Fig. 5: Ser60 phosphorylation destabilizes RNF168 in a TRIP12-dependent manner.
Fig. 6: Inhibition of RNF168 by mTORC1–S6K contributes to DDR defects caused by Lkb1 loss.
Fig. 7: Phospho-deficient RNF168-SA mutant suppresses tumorigenesis in the KrasG12D/Lkb1L/L mice NSCLC model.

Similar content being viewed by others

References

  1. Langie, S. A. et al. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 36, S61–S88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell. 40, 179–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27, 247–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Jackson, S. P. Sensing and repairing DNA double-strand breaks. Carcinogenesis 23, 687–696 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Huen, M. S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901–914 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kolas, N. K. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318, 1637–1640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heydari, A. R., Unnikrishnan, A., Lucente, L. V. & Richardson, A. Caloric restriction and genomic stability. Nucleic Acids Res. 35, 7485–7496 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Szafranski, K. & Mekhail, K. The fine line between lifespan extension and shortening in response to caloric restriction. Nucleus 5, 56–65 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Esteve-Puig, R. et al. A mouse model uncovers LKB1 as an UVB-induced DNA damage sensor mediating CDKN1A (p21WAF1/CIP1) degradation. PLoS. Genet. 10, e1004721 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ui, A. et al. Possible involvement of LKB1–AMPK signaling in non-homologous end joining. Oncogene 33, 1640–1648 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Gupta, R., Liu, A. Y., Glazer, P. M. & Wajapeyee, N. LKB1 preserves genome integrity by stimulating BRCA1 expression. Nucleic Acids Res. 43, 259–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Alexander, A. et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tripathi, D. N. et al. Reactive nitrogen species regulate autophagy through ATM–AMPK–TSC2-mediated suppression of mTORC1. Proc. Natl Acad. Sci. USA 110, E2950–E2957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen, C. et al. Regulation of FANCD2 by the mTOR pathway contributes to the resistance of cancer cells to DNA double-strand breaks. Cancer Res. 73, 3393–3401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen, C. et al. TOR signaling is a determinant of cell survival in response to DNA damage. Mol. Cell. Biol. 27, 7007–7017 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Shimobayashi, M. & Hall, M. N. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell. Biol. 15, 155–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Weinstock, D. M., Nakanishi, K., Helgadottir, H. R. & Jasin, M. Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase. Methods Enzymol. 409, 524–540 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Korsse, S. E., Peppelenbosch, M. P. & van Veelen, W. Targeting LKB1 signaling in cancer. Biochim. Biophys. Acta 1835, 194–210 (2013).

    CAS  PubMed  Google Scholar 

  25. Al-Hakim, A. et al. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair 9, 1229–1240 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Mattiroli, F. et al. RNF168 ubiquitinates K13–15 on H2A/H2AX to drive DNA damage signaling. Cell 150, 1182–1195 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Ferrari, S., Bandi, H. R., Hofsteenge, J., Bussian, B. M. & Thomas, G. Mitogen-activated 70K S6 kinase. Identification of in vitro 40 S ribosomal S6 phosphorylation sites. J. Biol. Chem. 266, 22770–22775 (1991).

    CAS  PubMed  Google Scholar 

  28. Gudjonsson, T. et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 150, 697–709 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Shackelford, D. B. & Shaw, R. J. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alexander, A. & Walker, C. L. The role of LKB1 and AMPK in cellular responses to stress and damage. FEBS Lett. 585, 952–957 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. De Raedt, T. et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for Ras-driven tumors. Cancer Cell. 20, 400–413 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Calles, A. et al. Immunohistochemical loss of LKB1 is a biomarker for more aggressive biology in KRAS-mutant lung adenocarcinoma. Clin. Cancer Res. 21, 2851–2860 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Ji, H. et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Bandhakavi, S. et al. Quantitative nuclear proteomics identifies mTOR regulation of DNA damage response. Mol. Cell. Proteom. 9, 403–414 (2010).

    Article  CAS  Google Scholar 

  35. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Damsky, W. et al. mTORC1 activation blocks Braf V600E-induced growth arrest but is insufficient for melanoma formation. Cancer Cell. 27, 41–56 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cantor, J. R. & Sabatini, D. M. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2, 881–898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez-Outschoorn, U. E., Peiris-Pages, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Wellen, K. E. & Thompson, C. B. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell. 40, 323–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Katajisto, P. et al. The LKB1 tumor suppressor kinase in human disease. Biochim. Biophys. Acta 1775, 63–75 (2007).

    CAS  PubMed  Google Scholar 

  41. Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell. 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Veelen, W., Korsse, S. E., van de Laar, L. & Peppelenbosch, M. P. The long and winding road to rational treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling. Oncogene 30, 2289–2303 (2011).

    Article  PubMed  Google Scholar 

  44. Liu, P. et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat. Cell. Biol. 15, 1340–1350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boehm, J. S., Hession, M. T., Bulmer, S. E. & Hahn, W. C. Transformation of human and murine fibroblasts without viral oncoproteins. Mol. Cell. Biol. 25, 6464–6474 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao, D. et al. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat. Cell. Biol. 11, 397–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao, D. et al. Cdh1 regulates cell cycle through modulating the claspin/Chk1 and the Rb/E2F1 pathways. Mol. Biol. Cell. 20, 3305–3316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J. & van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Pierce, A. J., Johnson, R. D., Thompson, L. H. & Jasin, M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes. Dev. 13, 2633–2638 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tanaka, Y. et al. Expression and purification of recombinant human histones. Methods 33, 3–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Olive, P. L. & Banath, J. P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, C. et al. RNF168 forms a functional complex with RAD6 during the DNA damage response. J. Cell. Sci. 126, 2042–2051 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bohgaki, T. et al. Genomic instability, defective spermatogenesis, immunodeficiency, and cancer in a mouse model of the RIDDLE syndrome. PLoS. Genet. 7, e1001381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Durocher, C. Lucas and L. Penengo for sharing RNF168 constructs, and K.-L. Guan and D. Li for critical reading of the manuscript. This work was supported by the National Key Basic Research Program of China (2015CB964502), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19000000), and grants from the National Science foundation of China to D.G. (81372602 and 81422033) and to Xiaoduo Xie (31401214). P.L. is supported by 1K99CA181342 and 5T32HL007893 from National Institutes of Health (USA).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoduo Xie, H.H., X.T. and L.L. performed most of the experiments with assistance from X.L., M.C., Xia Xie, Y.Z., H.O., M.W., J.H., P.L., W.G., Y.L., A.X., X.K. and G.-W.C. H.Y. performed the villi length assay of mice after IR treatment under the supervision of J.Q. Q.L. and H.Z. performed the mass spectrometry analysis under the supervision of R.Z. D.G., Xiaoduo Xie, H.H.,W.W. and H.J. designed the experiments with input from R.H. F.-L.M., D.G., Xiaoduo Xie and H.H. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Daming Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary Table legends.

Life Sciences Reporting Summary

Supplementary Table 1

Primary antibodies and reagents used in this study.

Supplementary Table 2

Target sequences of shRNAs and siRNAs used in this study.

Supplementary Table 3

Statistics source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Hu, H., Tong, X. et al. The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nat Cell Biol 20, 320–331 (2018). https://doi.org/10.1038/s41556-017-0033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0033-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing