Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The MTM1–UBQLN2–HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle

Abstract

The ubiquitin proteasome system and autophagy are major protein turnover mechanisms in muscle cells, which ensure stemness and muscle fibre maintenance. Muscle cells contain a high proportion of cytoskeletal proteins, which are prone to misfolding and aggregation; pathological processes that are observed in several neuromuscular diseases called proteinopathies. Despite advances in deciphering the mechanisms underlying misfolding and aggregation, little is known about how muscle cells manage cytoskeletal degradation. Here, we describe a process by which muscle cells degrade the misfolded intermediate filament proteins desmin and vimentin by the proteasome. This relies on the MTM1–UBQLN2 complex to recognize and guide these misfolded proteins to the proteasome and occurs prior to aggregate formation. Thus, our data highlight a safeguarding function of the MTM1–UBQLN2 complex that ensures cytoskeletal integrity to avoid proteotoxic aggregate formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MTM1 and UBQLN2 regulate proteotoxic stress in muscle cells.
Fig. 2: MTM1 and UBQLN2 are required for the degradation of intermediate filaments in muscle cells.
Fig. 3: MTM1 or UBQLN2 depletion in vivo affects intermediate filament dynamics in skeletal muscle.
Fig. 4: The absence of MTM1 impaired intermediate filament degradation and UBQLN2 localization in human samples.
Fig. 5: Mapping the UBQLN2 binding site on MTM1 and the effect of mutations found in XLCNM on degradation of intermediate filaments.
Fig. 6: MTM1–UBQLN2 binding is required to maintain muscle mass in vivo.
Fig. 7: Impaired MTM1–UBQLN2-mediated degradation promotes endoplasmic reticulum stress and induces maladaptive UPR.
Fig. 8: MTM1 affected UBQLN2 ERAD function in muscle cells.

Similar content being viewed by others

References

  1. Lu, K., Psakhye, I. & Jentsch, S. Autophagic clearance of polyQ proteins mediated by ubiquitin–Atg8 adaptors of the conserved CUET protein family. Cell 158, 549–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Hjerpe, R. et al. UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell 166, 935–949 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Menzies, F. M., Moreau, K. & Rubinsztein, D. C. Protein misfolding disorders and macroautophagy. Curr. Opin. Cell. Biol. 23, 190–197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng, Y., He, D., Yao, Z. & Klionsky, D. J. The machinery of macroautophagy. Cell. Res. 24, 24–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, M. H., Ploegh, H. L. & Weissman, J. S. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086–1090 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Araki, K. & Nagata, K. Protein folding and quality control in the ER. Cold Spring Harb. Perspect. Biol. 4, a015438 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang, M. & Kaufman, R. J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529, 326–335 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell. Biol. 13, 89–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Gardner, B. M., Pincus, D., Gotthardt, K., Gallagher, C. M. & Walter, P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 5, a013169 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Balchin, D., Hayer-Hartl, M. & Hartl, F. U. In vivo aspects of protein folding and quality control. Science 353, aac4354 (2016).

    Article  PubMed  Google Scholar 

  11. Wang, Z. V. & Hill, J. A. Protein quality control and metabolism: bidirectional control in the heart. Cell. Metab. 21, 215–226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hnia, K., Ramspacher, C., Vermot, J. & Laporte, J. Desmin in muscle and associated diseases: beyond the structural function. Cell. Tissue Res. 360, 591–608 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Sandri, M., Coletto, L., Grumati, P. & Bonaldo, P. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J. Cell. Sci. 126, 5325–5333 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Nowak, K. J., Ravenscroft, G. & Laing, N. G. Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms. Acta Neuropathol. 125, 19–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Kley, R. A., Olive, M. & Schröder, R. New aspects of myofibrillar myopathies. Curr. Opin. Neurol. 29, 628–634 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Capetanaki, Y., Papathanasiou, S., Diokmetzidou, A., Vatsellas, G. & Tsikitis, M. Desmin related disease: a matter of cell survival failure. Curr. Opin. Cell. Biol. 32, 113–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Goldfarb, L. G. & Dalakas, M. C. Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease. J. Clin. Invest. 119, 1806–1813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Herrmann, H. & Aebi, U. Intermediate filaments: structure and assembly. Cold Spring Harb. Perspect. Biol. 8, a018242 (2016).

    Article  PubMed  Google Scholar 

  19. Laporte, J. et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. 13, 175–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Goebel, H. H. & Blaschek, A. Protein aggregation in congenital myopathies. Semin. Pediatr. Neurol. 18, 272–276 (2011).

    Article  PubMed  Google Scholar 

  21. Wang, X. et al. Expression of R120G–αB-crystallin causes aberrant desmin and αB-crystallin aggregation and cardiomyopathy in mice. Circ. Res. 89, 84–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Johnson, A. E., Shu, H., Hauswirth, A. G., Tong, A. & Davis, G. W. VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo. eLife 4, e07366 (2015).

    PubMed Central  Google Scholar 

  23. Hnia, K., Vaccari, I., Bolino, A. & Laporte, J. Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology. Trends Mol. Med. 18, 317–327 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Lim, P. J. et al. Ubiquilin and p97/VCP bind erasin, forming a complex involved in ERAD. J. Cell. Biol. 187, 201–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng, H. X. et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bargagna-Mohan, P. et al. The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem. Biol. 14, 623–634 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blokhuis, A. M. et al. Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathol. 132, 175–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bar, H., Strelkov, S. V., Sjoberg, G., Aebi, U. & Herrmann, H. The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? J. Struct. Biol. 148, 137–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, J., Tang, M., Mestril, R. & Wang, X. Aberrant protein aggregation is essential for a mutant desmin to impair the proteolytic function of the ubiquitin–proteasome system in cardiomyocytes. J. Mol. Cell. Cardiol. 40, 451–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Bornheim, R. et al. A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin–proteasome system, and causes posterior cataracts in transgenic mice. J. Cell. Sci. 121, 3737–3746 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Christianson, J. C. et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell. Biol. 14, 93–105 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eggers, D. K., Welch, W. J. & Hansen, W. J. Complexes between nascent polypeptides and their molecular chaperones in the cytosol of mammalian cells. Mol. Biol. Cell. 8, 1559–1573 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sandri, M. & Robbins, J. Proteotoxicity: an underappreciated pathology in cardiac disease. J. Mol. Cell. Cardiol. 71, 3–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Mahammad, S. et al. Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J. Clin. Invest. 123, 1964–1975 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lowery, J. et al. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts. Mol. Biol. Cell. 27, 608–616 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Furukawa, M., He, Y. J., Borchers, C. & Xiong, Y. Targeting of protein ubiquitination by BTB–cullin 3–Roc1 ubiquitin ligases. Nat. Cell. Biol. 5, 1001–1007 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Pintard, L., Willems, A. & Peter, M. Cullin-based ubiquitin ligases: Cul3–BTB complexes join the family. Embo J. 23, 1681–1687 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cohen, S., Zhai, B., Gygi, S. P. & Goldberg, A. L. Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J. Cell. Biol. 198, 575–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong, E. S. et al. Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Hum. Mol. Genet. 17, 2570–2582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhuiyan, M. S. et al. Enhanced autophagy ameliorates cardiac proteinopathy. J. Clin. Invest. 123, 5284–5297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Winter, L. et al. Chemical chaperone ameliorates pathological protein aggregation in plectin-deficient muscle. J. Clin. Invest. 124, 1144–1157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, X. et al. αB-crystallin modulates protein aggregation of abnormal desmin. Circ. Res. 93, 998–1005 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Selcen, D. et al. Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann. Neurol. 65, 83–89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ganassi, M. et al. A surveillance function of the HSPB8–BAG3–HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol. Cell. 63, 796–810 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Arndt, V. et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 20, 143–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, Y. et al. Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity. Mol. Cell. Proteom. 12, 2804–2819 (2013).

    Article  CAS  Google Scholar 

  47. Falcone, S. et al. N-WASP is required for amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Mol. Med. 6, 1455–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hnia, K. et al. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J. Clin. Invest. 121, 70–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Barry, S. C. et al. Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum. Gene Ther. 12, 1103–1108 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, H., Sadygov, R. G. & Yates, J. R. III A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193–4201 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Colinge, J., Chiappe, D., Lagache, S., Moniatte, M. & Bougueleret, L. Differential proteomics via probabilistic peptide identification scores. Anal. Chem. 77, 596–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Herrmann, H. & Aebi, U. Structure, assembly, and dynamics of intermediate filaments. Subcell. Biochem. 31, 319–362 (1998).

    CAS  PubMed  Google Scholar 

  54. Hofmann, I., Herrmann, H. & Franke, W. W. Assembly and structure of calcium-induced thick vimentin filaments. Eur. J. Cell. Biol. 56, 328–341 (1991).

    CAS  PubMed  Google Scholar 

  55. Wanker, E. E. et al. Membrane filter assay for detection of amyloid-like polyglutamine-containing protein aggregates. Methods Enzymol. 309, 375–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Kisselev, A. F. & Goldberg, A. L. Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol. 398, 364–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Buj-Bello, A. et al. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc. Natl Acad. Sci. USA 99, 15060–15065 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the IGBMC technical platforms (animal facility, electron and confocal microscopy) and C. Kretz for their technical assistance, C. Sellier, N. Dali-Youssef, F. Alpy and H. E. Magliarelli for sharing antibodies and other materials, L. Beilscmidt for technical assistance, M. Mendoza Parra and F. Colin for their help with modelling, F. Gaits-Iacovoni, A. Lewis for manuscript editing and B. Payrastre for his support. We acknowledge funding from INSERM (K.H.), the Scientific Council of the University of Strasbourg (K.H.), the AFM (Association Française contre la Myopathy) (AFM-20879 to K.H., AFM-15352 to J.L.) and grant ANR-10-LABX-0030-INRT, awarded as part of the Investissements d’Avenir ANR-10-IDEX-0002-02 framework.

Author information

Authors and Affiliations

Authors

Contributions

C.G. and L.L. performed experiments, analysed data, interpreted results and edited the manuscript. N.M. performed TEM experiments and interpreted the results. J.L. conceived the Y2H experiment, provided material, discussed the data and edited the manuscript. J.V., R.S. and I.S. provided materials, discussed the data and edited the manuscript. K.H. conceived the project, designed and performed experiments, interpreted results, wrote and edited the manuscript.

Corresponding author

Correspondence to Karim Hnia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9 and Supplementary Table legends

Life Sciences Reporting Summary

Supplementary Table 1

MTM1 interactors in skeletal muscle.

Supplementary Table 2

List of antibodies used in this study.

Supplementary Table 3

List of primers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavriilidis, C., Laredj, L., Solinhac, R. et al. The MTM1–UBQLN2–HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle. Nat Cell Biol 20, 198–210 (2018). https://doi.org/10.1038/s41556-017-0024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0024-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing