Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis

Abstract

Primary cilia play essential roles in signal transduction and development. The docking of preciliary vesicles at the distal appendages of a mother centriole is an initial/critical step of ciliogenesis, but the mechanisms are unclear. Here, we demonstrate that myosin-Va mediates the transportation of preciliary vesicles to the mother centriole and reveal the underlying mechanism. We also show that the myosin-Va-mediated transportation of preciliary vesicles is the earliest event that defines the onset of ciliogenesis. Depletion of myosin-Va significantly inhibits the attachment of preciliary vesicles to the distal appendages of the mother centriole and decreases cilia assembly. Myosin-Va functions upstream of EHD1- and Rab11-mediated ciliary vesicle formation. Importantly, dynein mediates myosin-Va-associated preciliary vesicle transportation to the pericentrosomal region along microtubules, while myosin-Va mediates preciliary vesicle transportation from the pericentrosomal region to the distal appendages of the mother centriole via the Arp2/3-associated branched actin network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Myo-Va localizes to the preciliary vesicle, ciliary vesicle and ciliary sheath during ciliogenesis.
Fig. 2: Spatial-temporal localization of Myo-Va in RPE1 and IMCD3 cells, which use the intracellular and extracellular pathways, respectively.
Fig. 3: Myo-Va is required for cilia assembly and the trafficking of PCVs to the DA of the M-centriole.
Fig. 4: Myo-Va functions upstream of Rab11- and EHD1-mediated CV formation.
Fig. 5: Transportation of Myo-Va-associated PCVs to the M-centriole occurs via a dynein- and MT-dependent pathway.
Fig. 6: Low dose of cytochalasin D (CytoD) treatment stabilizes the Arp2-associated branched actin network and promotes ciliogenesis.
Fig. 7: Trafficking of Myo-Va-associated PCVs to the M-centriole requires the Arp2-associated branched actin network.

Similar content being viewed by others

References

  1. Gerdes, J. M., Davis, E. E. & Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nigg, E. A. & Raff, J. W. Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663–678 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sung, C. H. & Leroux, M. R. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat. Cell Biol. 15, 1387–1397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanchez, I. & Dynlacht, B. D. Cilium assembly and disassembly. Nat. Cell Biol. 18, 711–717 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230 (1968).

    CAS  PubMed  Google Scholar 

  8. Lu, Q. et al. Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat. Cell Biol. 17, 228–240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshimura, S., Egerer, J., Fuchs, E., Haas, A. K. & Barr, F. A. Functional dissection of Rab GTPases involved in primary cilium formation. J. Cell Biol. 178, 363–369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nachury, M. V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Knodler, A. et al. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc. Natl Acad. Sci. USA 107, 6346–6351 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Westlake, C. J. et al. Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc. Natl Acad. Sci. USA 108, 2759–2764 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng, S. et al. A Rab8 guanine nucleotide exchange factor–effector interaction network regulates primary ciliogenesis. J. Biol. Chem. 287, 15602–15609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chiba, S., Amagai, Y., Homma, Y., Fukuda, M. & Mizuno, K. NDR2-mediated Rabin8 phosphorylation is crucial for ciliogenesis by switching binding specificity from phosphatidylserine to Sec15. EMBO J. 32, 874–885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spektor, A., Tsang, W. Y., Khoo, D. & Dynlacht, B. D. Cep97 and CP110 suppress a cilia assembly program. Cell 130, 678–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Woolner, S. & Bement, W. M. Unconventional myosins acting unconventionally. Trends Cell Biol. 19, 245–252 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hammer, J. A. III & Sellers, J. R. Walking to work: roles for class V myosins as cargo transporters. Nat. Rev. Mol. Cell Biol. 13, 13–26 (2012).

    Article  CAS  Google Scholar 

  18. Jin, Y. et al. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev. Cell 21, 1156–1170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santiago-Tirado, F. H., Legesse-Miller, A., Schott, D. & Bretscher, A. PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev. Cell 20, 47–59 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donovan, K. W. & Bretscher, A. Myosin-V is activated by binding secretory cargo and released in coordination with Rab/exocyst function. Dev. Cell 23, 769–781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Donovan, K. W. & Bretscher, A. Tracking individual secretory vesicles during exocytosis reveals an ordered and regulated process. J. Cell Biol. 210, 181–189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindsay, A. J. et al. Identification and characterization of multiple novel Rab-myosin Va interactions. Mol. Biol. Cell 24, 3420–3434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ali, M. Y., Lu, H., Bookwalter, C. S., Warshaw, D. M. & Trybus, K. M. Myosin V and kinesin act as tethers to enhance each others’ processivity. Proc. Natl Acad. Sci. USA 105, 4691–4696 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wada, F. et al. Myosin Va and endoplasmic reticulum calcium channel complex regulates membrane export during axon guidance. Cell Rep. 15, 1329–1344 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Assis, L. H. et al. The molecular motor myosin Va interacts with the cilia-centrosomal protein RPGRIP1L. Sci. Rep. 7, 43692 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohli, P. et al. The ciliary membrane-associated proteome reveals actin-binding proteins as key components of cilia. EMBO Rep. 18, 1521–1535 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Hong, H., Kim, J. & Kim, J. Myosin heavy chain 10 (MYH10) is required for centriole migration during the biogenesis of primary cilia. Biochem. Biophys. Res. Commun. 461, 180–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Franco, I. et al. Phosphoinositide 3-kinase-C2α regulates polycystin-2 ciliary entry and protects against kidney cyst formation. J. Am. Soc. Nephrol. 27, 1135–1144 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Franco, I. et al. PI3K class II alpha controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev. Cell 28, 647–658 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sorokin, S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15, 363–377 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghossoub, R., Molla-Herman, A., Bastin, P. & Benmerah, A. The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol. Cell 103, 131–144 (2011).

    Article  PubMed  Google Scholar 

  32. Molla-Herman, A. et al. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J. Cell Sci. 123, 1785–1795 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Graser, S. et al. Cep164, a novel centriole appendage protein required for primary cilium formation. J. Cell Biol. 179, 321–330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmidt, K. N. et al. Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J. Cell Biol. 199, 1083–1101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Joo, K. et al. CCDC41 is required for ciliary vesicle docking to the mother centriole. Proc. Natl Acad. Sci. USA 110, 5987–5992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tanos, B. E. et al. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 27, 163–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsakraklides, V. et al. Subcellular localization of GFP-myosin-V in live mouse melanocytes. J. Cell Sci. 112, 2853–2865 (1999).

    CAS  PubMed  Google Scholar 

  38. Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U. & Sung, C. H. Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Tai, A. W., Chuang, J. Z. & Sung, C. H. Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J. Cell Biol. 153, 1499–1509 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palmer, K. J., Hughes, H. & Stephens, D. J. Specificity of cytoplasmic dynein subunits in discrete membrane-trafficking steps. Mol. Biol. Cell 20, 2885–2899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Firestone, A. J. et al. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484, 125–129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yadav, S., Puthenveedu, M. A. & Linstedt, A. D. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev. Cell 23, 153–165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Quintyne, N. J. & Schroer, T. A. Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J. Cell Biol. 159, 245–254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Farina, F. et al. The centrosome is an actin-organizing centre. Nat. Cell Biol. 18, 65–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Kolega, J., Janson, L. W. & Taylor, D. L. The role of solation–contraction coupling in regulating stress fiber dynamics in nonmuscle cells. J. Cell Biol. 114, 993–1003 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, J. et al. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464, 1048–1051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, J. et al. Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat. Commun. 6, 6781 (2015).

    Article  PubMed  Google Scholar 

  48. Chang, C. W., Hsu, W. B., Tsai, J. J., Tang, C. J. & Tang, T. K. CEP295 interacts with microtubules and is required for centriole elongation. J. Cell Sci. 129, 2501–2513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, H. Y. et al. Human microcephaly protein RTTN interacts with STIL and is required to build full-length centrioles. Nat. Commun. 8, 247 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, W. J. et al. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly. eLife 4, e10586 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Demmerle, J. et al. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc. 12, 988–1010 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Ball, G. et al. SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci. Rep. 5, 15915 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reddick, L. E. & Alto, N. M. Correlative light and electron microscopy (CLEM) as a tool to visualize microinjected molecules and their eukaryoticsub-cellular targets. J. Vis. Exp. 4, e3650 (2012).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the sequencing core facility (IBMS), the confocal imaging core facilities (IBMS, IMB, NPAS) and the EM core facilities (IMB, ICOB) of Academia Sinica. This work was supported by grants from the Ministry of Science and Technology, Taiwan (MOST 105-2321-B001-016) and the Academia Sinica Investigator Award.

Author information

Authors and Affiliations

Authors

Contributions

C.-T.W., a PhD student at the Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, performed most of the experiments, designed the study, interpreted data and wrote the initial draft of the manuscript. H.-Y.C. performed experiments. T.K.T. conceived and designed the study, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Tang K. Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary legends.

Life Sciences Reporting Summary

Supplementary Table 1

List of antibodies and dilutions used in this study.

Supplementary Table 2

List of siRNA sequences used in this study.

Videos

Supplementary Video 1

Related to Supplementary Fig. 2b. RPE1-based inducible cells expressing GFP-Myo-Va-GTD and mCherry-Arl13b were treated with DOX for 24 h and then serum-starved. Live cell images were taken using a LSM780 Carl Zeiss confocal system under controlled CO2 (5%) and temperature (37 °C).

Supplementary Video 2

Related to Supplementary Fig. 2d. NIH3T3-based inducible cells expressing GFP-Myo-Va-GTD and mCherry-Arl13b were treated with DOX for 24 h and then serum-starved. Live cell images were taken using a LSM780 Carl Zeiss confocal system under controlled CO2 (5%) and temperature (37 °C).

Supplementary Video 3

Related to Fig. 2f. IMCD3-based inducible cells expressing GFP-Myo-Va-GTD and mCherry-Arl13b were treated with DOX for 24 h and then serum-starved. Live cell images were taken using a LSM780 Carl Zeiss confocal system under controlled CO2 (5%) and temperature (37 °C).

Supplementary Video 4

Related to Supplementary Fig. 1e. RPE1-based inducible cells expressing GFP-EHD1 and mCherry-Myo-Va-GTD were treated with DOX for 24 h and then serum-starved. Live cell images were taken using a LSM780 Carl Zeiss confocal system under controlled CO2 (5%) and temperature (37 °C).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CT., Chen, HY. & Tang, T.K. Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat Cell Biol 20, 175–185 (2018). https://doi.org/10.1038/s41556-017-0018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-017-0018-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing