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Multiple-instance learning of somatic 
mutations for the classification of  
tumour type and the prediction of 
microsatellite status

Jordan Anaya    1, John-William Sidhom2,3,4, Faisal Mahmood    5,6,7,8,9 & 
Alexander S. Baras    1,2,4 

Large-scale genomic data are well suited to analysis by deep learning 
algorithms. However, for many genomic datasets, labels are at the level of 
the sample rather than for individual genomic measures. Machine learning 
models leveraging these datasets generate predictions by using statically 
encoded measures that are then aggregated at the sample level. Here we 
show that a single weakly supervised end-to-end multiple-instance-learning 
model with multi-headed attention can be trained to encode and aggregate 
the local sequence context or genomic position of somatic mutations, hence 
allowing for the modelling of the importance of individual measures for 
sample-level classification and thus providing enhanced explainability.  
The model solves synthetic tasks that conventional models fail at, and 
achieves best-in-class performance for the classification of tumour type 
and for predicting microsatellite status. By improving the performance 
of tasks that require aggregate information from genomic datasets, 
multiple-instance deep learning may generate biological insight.

Deep learning has made considerable progress in a range of biological 
tasks1. Yet for genomics data this progress has been limited to predict-
ing features of sequence elements and positions in the genome, such 
as transcription factor binding, DNAse-I sensitivity and histone-based 
modifications, or whether the sequence functions as a promoter2,3. 
Making predictions at a higher level, such as at the level of a collection of 
genomic measures, is complicated by the curse of dimensionality—the 
high dimensional space makes the data sparse and in general promotes 
overfitting4. Current approaches to this problem include manually 

reducing the dimensionality through feature selection, dimension 
reduction techniques such as singular value decomposition, negative 
matrix factorization and various types of autoencoder, or the use of 
sparse networks that attempt to reduce the weights of the model5. 
However, reducing the dimensions of the data or capacity of the model 
may produce suboptimal results.

Regardless of how the features of the individual genomic measures 
are generated, currently a simple aggregation such as a sum or mean is 
performed to get to a sample-level vector (representing a set of genomic 
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and some measures may have uncertain biology. In these cases, we can 
use the fundamental properties of the measure and allow the model 
to show us which features are important through attention to specific 
instances and/or the learned representations of the instances. Some 
fundamental properties of a somatic mutation are its local sequence 
context, which has been previously summarized by looking at the 
neighbouring 5′ and 3′ nucleotides15,16, and its genomic location, which 
has been represented as 1 Mb bins17.

Here we present a tool for performing attention MIL and dem-
onstrate its application to somatic mutation data. We use this model 
to calculate attention for the fundamental properties of mutations, 
either local sequence context or the genomic position. Using simulated 
data we explore various MIL implementations on a range of tasks and 
compare the proposed approach to conventional machine learning 
approaches in this area. We then apply the model to tumour classifi-
cation and learn the salient features of sequence and position while 
exceeding the performance of the current approaches. Finally, we 
compare our model to state-of-the-art techniques at determining 
microsatellite status, and our model performs favourably despite the 
fact that comparable tools use a priori knowledge specific to the task 
while the proposed approach does not.

Results
Aggregation Tool for Genomic Concept
Current applications of machine learning to mutation data are gener-
ally limited to an aggregation of hand-crafted features. Our model 

measures). Then, a model such as a random forest or neural net is applied 
to these sample vectors to perform the sample-level machine learning task 
at hand (Fig. 1). This process essentially weights each genomic measure of 
the set derived from a given sample equally when in fact it may be that some 
specific measure(s) are more salient. A more modern attention strategy 
that dynamically weights genomic measures into sample-level feature 
vectors may identify these specific measures. Moreover, with current 
approaches, all of the learning occurs at the sample level, and ‘end-to-end’ 
training is not possible, which would allow for novel encoding strategies 
of genomic measures driven by the machine learning task (Fig. 1).

This weakly supervised problem, where features are learned for 
individual measures (instances) while supervision occurs at the sample 
level, is the multiple instance learning (MIL) framework6–8. MIL has 
recently revolutionized the field of computational pathology, allow-
ing researchers to identify cancer subtypes or tissues of origin, or 
predict survival9–11. Additional labels in the field of cancer biology may 
include the presence or absence of cancer, or response to therapy, and 
sparse genomic measures may be somatic mutations, circulating DNA 
fragments, neopeptides, RNA/protein modifications, copy number 
alterations or methylation sites.

Somatic mutations are a complex but well-studied genomic meas-
ure, with much of the biology already understood and ample data to 
test new models. When constructing features for somatic mutations 
our current understanding of the biology can easily be brought in, 
such as utilizing information about genes12–14 or pathways5. However, 
for a given task it may not always be clear what known biology applies, 
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Fig. 1 | Approaches for sparse genomics data. Data such as somatic mutations 
must first be encoded and aggregated at the sample level before making 
predictions about a sample (defined as a set of mutations). Currently the process 
of encoding and aggregating is handled separately from making predictions with 

the sample-level vectors. With attention MIL it is possible to encode, aggregate 
and make predictions with a single end-to-end model. This allows the model to 
learn a rich feature space at the instance level while also calculating attention for 
each instance before aggregation, thereby allowing for model explainability.
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differs in that attention is first given to individual instances before 
aggregation, and if desired an end-to-end model is possible allowing 
for instance features to be learned during training (known as repre-
sentation learning). Hand-crafted feature engineering may be most 
efficient when the representation of an instance is well/completely 
understood and aggregation of information over a set of instances 
is done via a static function such as sum and mean. Representation 
learning at the level of the instance can extract features specific to a 
given machine learning task and, in scenarios with a very large possible 
set of genomic measures, can be combined with trainable attention 
mechanisms that can help with model explainability. To allow a model 
to extract its own features, decisions must be made on how the raw 
data will be presented to the model and how the model will encode the 
data. We consider the outcome of this process to be a genomic concept 
and essential to extracting relevant features. Somatic mutations are 
often reported in a Variant Call Format or Mutation Annotation Format 
(MAF), and a genomic concept can be constructed for any measure-
ment in these files. The concept can be as simple as an embedding 
matrix (for example, our position encoder), or it can be as complex as 
convolutional layers for the flanking nucleotide sequences along with 
the reference and alteration in both the forward and reverse directions 
(our sequence encoder; Fig. 1).

To confirm that the encoders we developed were valid, we per-
formed positive controls, using the unique mutation calls from The 
Cancer Genome Atlas (TCGA) multi-centre mutation calling in multiple 
cancer (MC3) public MAF. Our sequence encoder was found to be a 
faithful representation of a variant, learning the 96 contexts and an 
outgroup with near-perfect accuracy, and our embedding strategy 
was able to perform a data compression without any information loss 
(Supplementary Fig. 1). To confirm that our sequence encoder could 
effectively utilize strand information, we asked a more difficult ques-
tion: whether it could classify variants according to their consequence 
as provided by the MC3 MAF, specifically the consequence/variant 
classification of frameshift deletion, frameshift insertion, in-frame 
deletion, in-frame insertion, missense, nonsense, silent, splice site and 
noncoding (5′ untranslated region, 3′ untranslated region, intron). This 
problem requires learning all 64 codons in 6 different reading frames, 
and importantly the strand the variant falls on affects the label. We first 
asked how well the model could do without providing a reading frame, 

and while the model was able to learn insertions and deletions (InDels) 
and splice sites, it was unable to distinguish noncoding mutations from 
the other classes (as would be expected) and did the best it could at 
associating codons with a consequence (Fig. 2a). When provided, the 
reading frame in the form of strand and coding sequence position 
modulo 3 (noncoding variants were represented by a zero vector), 
the sequence concept was now able to correctly classify missense 
versus nonsense versus silent mutations (Fig. 2b), indicating that the 
modelling approach is able to learn which strand a feature was on and 
correctly associate the relevant codons with consequence.

Our implementation of MIL is motivated by ref. 18 (Supplemen-
tary Fig. 2), with some important modifications for the nature of 
somatic mutation data. In image analysis the aggregation function is 
often a weighted average, but whereas the number of tiles is unrelated 
to the label for an image the number of mutations may provide infor-
mation about a tumour sample. Using simulated data, we explored 
various MIL implementations along with traditional machine learning 
approaches and found our attention-based MIL with a weighted sum 
performed well (Supplementary Figs. 3–5). For a weighted sum to be 
meaningful, the instance features must be activated, and this results 
in potentially large values on the graph. To account for this, we per-
form a log of the aggregation on graph. We also developed dropout 
for MIL, wherein a random subset of instances is given to the model 
each gradient update, but then all instances are used during evalua-
tion. This can allow for training with large samples and also helps with 
overfitting as the samples are altered every batch. To improve model 
explainability, we designed the model for multi-headed attention, 
where each attention head can be viewed as class-specific attention 
when the number of attention heads matches the number of classes. 
The model is implemented in TensorFlow with ragged tensors and is 
easily extensible to other data types, and we refer to the resulting tool 
as Aggregation Tool for Genomic Concepts (ATGC).

Cancer type classification
A readily available label in cancer datasets is the cancer type, and this 
task can have practical importance for when the tumour of origin for 
a metastatic cancer cannot be determined19. The types of mutation 
of a cancer are influenced by the mutational processes of its aetiol-
ogy, while the genomic distribution of its mutations is influenced by 
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Fig. 2 | Predicting variant consequence. a,b, Our sequence encoder can learn 
variant consequence as defined by variant effect predictor without (a) and 
clearly better with (b) reading frame information. FSDel, frameshift deletion; 

FSIns, frameshift insertion; IFDel, inframe deletion; IFIns, inframe insertion; Mis, 
missense; Non, nonsense; SS, splice site; NC, noncoding. All four plots show row 
normalized confusion matrices.
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histology of origin, and these features of somatic mutations have been 
shown to be capable of classifying cancers17,20–22. We were interested in 
seeing how a model that calculates attention or learns it owns features 
compared to established approaches. For this task we used the TCGA 
MC3 public mutation calls, which are exome based. To understand the 
baseline performance on this data using current approaches, we used 
two common hand-crafted features: the 96 single base substitutions 
(SBSs) contexts (and a 97th outgroup so that no data were discarded) 
and an approximately 1 Mb binning of the genome. For each manual 
feature, we ran a logistic regression, random forest, neural net and 
our MIL model. We also ran our model with 6 base pair (bp) windows 
of the sequences and explored gene as an input.

Table 1 shows the results of test folds from fivefold cross validation 
for the different models and the different inputs for the TCGA project 
codes (a 24-class problem). For each input our model outperformed 
current approaches, and the novel input of base-pair windows showed 
a significant benefit (~14% increase over the best standard model). 
Notably, our model showed a benefit even when using an identical 
encoding to the other models (96 contexts), suggesting the attention 
alone can improve model performance to some degree. To validate 
these results, we investigated the performance of the 96 contexts in 
whole genome sequencing and again saw a benefit with our model 
(86% accuracy compared to 81%; Supplementary Table 1). For addi-
tional validation we also ran the models classifying the MC3 samples 

Table 1 | Tumour classification performance metrics for exome project codes

Data Encoding Aggregation Model Accuracy Weighted accuracy AUC

96 contexts Onehot Sum Logistic regression 46.9% 47.7% 0.923

Random forest 50.2% 48.8% 0.925

Neural net 50.8% 52.7% 0.936

Weighted sum ATGC 51.9% 54.2% 0.941

6 bp windows Sequence encoder Weighted sum ATGC 58.0% 59.8% 0.952

1 Mb bins Onehot Sum Logistic regression 48.7% 44.3% 0.893

Random forest 44.9% 38.7% 0.879

Neural net 50.4% 48.3% 0.913

Embedding Weighted sum ATGC 53.9% 51.5% 0.923

30 kb bins Onehot Sum Logistic regression 54.1% 49.7% 0.926

Random forest 47.5% 40.9% 0.892

Neural net NA NA NA

Embedding Weighted sum ATGC 56.5% 53.7% 0.929

Gene Onehot Sum Logistic regression 56.9% 52.4% 0.932

Random forest 48.6% 41.8% 0.898

Neural net 55.6% 52.6% 0.929

Embedding Weighted sum ATGC 60.4% 57.5% 0.940

Every model was trained with the same sample weighting and fivefold cross validation. AUC, area under the curve. NA, when using a large input vector such as the 30 kb bins, our procedure for 
optimizing neural nets cannot be used.

BL
C

A

BR
C

A

C
ES

C

C
O

AD

ES
C

A

G
BM

H
N

SC

KI
RC

KI
RP

LA
M

L

LG
G

LI
H

C

LU
AD

LU
SC O

V

PA
AD

PC
PG

PR
AD

SA
RC

SK
C

M

ST
AD

TG
C

T

TH
C

A

U
C

EC

LR

RF

Net
ATGC

(96 contexts) 
ATGC

(6 bp windows)

Precisions

BL
C

A

BR
C

A

C
ES

C

C
O

AD

ES
C

A

G
BM

H
N

SC

KI
RC

KI
RP

LA
M

L

LG
G

LI
H

C

LU
AD

LU
SC O

V

PA
AD

PC
PG

PR
AD

SA
RC

SK
C

M

ST
AD

TG
C

T

TH
C

A

U
C

EC

LR

RF

Net
ATGC

(96 contexts) 
ATGC

(6 bp windows)

Recalls

Precision
58 68 4955 47 47 52 49 44 55 66 90 75 75 67 50 35 31 36 31 98 69 75 66

BL
C

A

BR
C

A

C
ES

C

C
O

AD

ES
C

A

G
BM

H
N

SC

KI
RC

KI
RP

LA
M

L

LG
G

LI
H

C

LU
AD

LU
SC O

V

PA
AD

PC
PG

PR
AD

SA
RC

SK
C

M

ST
AD

TG
C

T

TH
C

A

U
C

EC

BLCA
BRCA
CESC
COAD
ESCA
GBM

HNSC
KIRC
KIRP

LAML
LGG

LIHC
LUAD
LUSC

OV
PAAD
PCPG
PRAD
SARC
SKCM
STAD
TGCT
THCA
UCEC

51

46

53

55

58

47

41

50

54

55

39

41

39

39

47

62

62

67

63

68

26

46

33

35

47

43

41

49

55

52

36

43

42

44

49

40

38

42

41

44

45

52

46

51

55

30

57

39

40

66

49

43

51

51

90

62

58

68

71

75

60

76

74

69

75

62

61

66

66

67

42

42

41

43

50

13

25

17

17

35

21

29

25

23

31

33

32

38

38

36

24

33

25

27

31

90

95

94

97

98

52

60

54

61

69

29

33

30

30

49

69

61

71

73

75

56

64

68

68

66

55

59

62

63

64

22

30

21

16

24

54

43

61

64

61

61

78

70

81

80

41

15

53

52

63

50

61

57

59

65

25

29

20

21

35

40

55

43

52

60

53

48

53

59

54

51

61

65

71

64

52

60

52

52

72

64

69

71

74

76

52

46

52

56

52

56

70

71

69

75

42

41

55

55

58

31

11

34

34

45

40

53

54

56

59

27

41

30

35

58

33

17

35

32

44

87

84

87

87

86

41

43

44

41

50

57

45

62

60

71

62

68

58

60

65

49

46

55

53

54

64 4 9 0 2 0 10 0 0 0 0 1 2 3 1 0 0 1 0 0 0 0 1 0
4 24 7 1 1 2 4 3 1 0 1 0 1 0 11 3 2 18 8 0 1 1 1 4
14 4 61 1 3 1 4 0 0 0 0 0 0 0 1 3 0 1 1 0 1 0 0 4
0 0 1 80 3 2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 7 0 0 4
2 1 3 8 63 0 7 1 0 1 0 1 2 0 1 0 0 1 1 0 7 0 0 2
0 1 1 4 0 65 1 1 0 0 4 0 0 1 5 3 1 7 3 0 1 0 1 3
11 5 11 2 7 2 35 1 0 0 0 3 1 11 1 2 0 3 1 0 2 0 0 1
0 0 0 0 0 0 0 60 21 0 0 4 0 0 2 0 1 5 4 0 0 1 0 0
1 2 0 0 0 0 0 27 54 0 0 1 0 0 1 0 2 5 3 0 0 3 0 0
0 1 0 0 0 0 0 0 0 64 1 1 0 0 1 0 12 8 1 0 0 1 10 0
0 1 0 0 0 14 0 1 0 1 72 0 0 0 0 1 1 7 1 0 0 0 2 0
0 0 0 0 0 1 1 6 3 0 0 76 1 1 3 0 0 3 2 0 0 1 0 0
4 3 1 0 0 1 3 2 1 0 0 3 52 19 2 1 1 5 2 0 0 0 0 0
3 1 0 1 0 0 3 0 0 0 0 2 11 75 1 0 0 0 0 1 0 0 0 0
0 7 0 0 1 2 2 9 0 1 0 1 0 0 58 1 0 3 4 0 1 1 1 3
1 3 1 5 1 7 2 1 1 4 0 0 0 0 2 45 4 14 1 0 1 2 3 5
0 0 0 0 0 0 0 1 1 2 1 0 0 0 0 0 59 10 1 0 0 9 17 0
0 3 0 1 0 4 0 4 1 1 2 0 0 0 2 6 6 58 6 0 0 1 2 3
0 6 0 2 3 3 1 11 2 0 0 3 1 0 4 0 1 11 44 2 1 2 0 1
0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 3 2 86 0 1 1 0
0 1 0 19 5 5 2 1 0 0 0 0 0 0 2 3 1 4 1 0 50 0 0 3
0 2 0 0 0 0 0 2 2 1 0 0 0 0 2 1 9 3 4 0 0 71 2 2
0 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 21 5 0 0 0 4 65 0
2 4 2 7 2 6 2 0 1 0 0 1 0 0 4 4 0 5 3 0 2 0 0 54

Recall

64
24
61
80
63
65
35
60
54
64
72
76
52
75
58
45
59
58
44
86
50
71
65
54

a b

Fig. 3 | Tumour classification metrics. a, Precisions and recalls for the models 
using the 96 contexts and ATGC with the 6 bp windows. b, Confusion matrix 
for ATGC and the 6 bp windows. All numbers are shown as percentages. BLCA, 
bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical 
squamous cell carcinoma and endocervical adenocarcinoma; ESCA, oesophageal 
carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell 
carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary 

cell carcinoma; LAML, acute myeloid leukaemia; LGG, brain lower grade glioma; 
LIHC, liver hepatocellular carcinoma; LUSC, lung squamous cell carcinoma; OV, 
ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, 
pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; 
SARC, sarcoma; STAD, stomach adenocarcinoma; TGCT, testicular germ 
cell tumours; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial 
carcinoma.
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according to their National Cancer Institute thesaurus (NCIt) codes and 
again saw a benefit with our model for every input (a 27-class problem; 
Supplementary Table 2).

To investigate the performance differences, we looked at classi-
fication performance in terms of precision and recall for each model 
stratified by tumour type (Fig. 3a). Our model, which takes 6 bp win-
dows as input, showed significant improvement in oesophageal carci-
noma, lower-grade glioma, pancreatic adenocarcinoma and testicular 
germ cell tumours. The improvement seen in lower-grade glioma is 
almost certainly due to identifying IDH1 mutations via a mapping of 
local sequence context of that specific hotspot. We also investigated 
the predictions of the best performing model (ATGC with 6 bp win-
dows) with a confusion matrix (Fig. 3b) and observed that cancers of 
similar histologic origin were often mistaken for each other. For the 
corresponding analyses with gene as input, see Extended Data Fig. 1.

When investigating how the model is interpreting genomic variant 
data, we can examine both the representation of a variant produced 
by the model and what degree of attention the model is assigning a 
variant. To illustrate these two concepts, we show a heat map of the 
learned variant representation vectors for several cancer types with 
known aetiologies (Fig. 4). Unsupervised K-means clustering was used 
to group the instances within each tumour type, revealing a rich feature 
space for the learned variant representations and clear clusters for each 
cancer type. We next explored how class-specific attention related 
to this instance feature space and observed a spectrum of attention 

levels. In Fig. 4 we see that for skin cutaneous melanoma (SKCM) six 
clusters did for the most part produce clusters which were either high 
or low in attention, while in lung adenocarcinoma (LUAD) and colon 
adenocarcinoma (COAD) we see clusters that contain a bimodal dis-
tribution of attention.

To investigate what sequences were present in each of these clus-
ters, we generated sequence logos. For SKCM the highest attention 
cluster was composed of a specific doublet base substitution charac-
teristic of ultraviolet radiation, with the next highest attention cluster 
comprising a very specific 5′ nucleotide, reference (ref), alternative 
(alt) and 3′ nucleotide also characteristic of ultraviolet radiation16. For 
LUAD the highest attention cluster contained sequences characteristic 
of tobacco smoking, while in COAD the highest attention cluster was a 
specific deletion occurring at a homopolymer, which is characteristic 
of cancers deficient in mismatch repair and is a known signature of 
this cancer type16.

While in Fig. 4 we used clustering to identify groups of mutations 
within a cancer type which may be of interest, we instead could have 
simply sorted all instances by attention. To explore this possibility, we 
took the highest attention instances (top 5%) of each attention head 
for SBSs and InDels and looked at the bits of information contained 
in the logos (Supplementary Fig. 6). For SBS mutations most of the 
information gain occurs at the alteration and flanking nucleotides; 
however, for most heads there is still information two, three or more 
nucleotides away from the alteration. Given that a head of attention 
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may identify several distinct motifs as important, the high attention 
instances for each head may not be homogeneous, and as a result these 
bits represent a lower bound of the information gain. For InDels there is 
significant information three or four nucleotides away from the altera-
tion, and these sequences are often mononucleotide repeats. When 
performing a similar analysis for our gene encoder, we noticed that a 
small number of genes appear to be given high attention in each head, 
and clear groupings were present in the embedding matrix, with a small 
cluster enriched in cancer-associated genes (Supplementary Fig. 7).

Through the attention mechanism we also investigated what our 
model learned about genomic location. When looking at the attention 
values for the 1 Mb bins, the different heads of attention appeared to 
be giving attention to the same bins, so we calculated the z-scores 
for each head and averaged across heads. We also noticed the values 
appeared consistent across folds of the data, so we also averaged over 

the five data folds. Figure 5a shows the averaged attention values for 
the bins across the genome along with an embedding matrix from 
one of data folds. Specific bins are clearly being either upweighted or 
downweighted. Investigation of bins with low attention scores revealed 
that they contained very little data, which caused us to wonder whether 
attention simply correlated with amount of data in each bin. There is 
initially a strong correlation between attention and number of muta-
tions in a bin (Fig. 5b), but once bins contain a certain amount of data 
the relationship disappears. Given that this is exomic data, we sus-
pected the bins with the highest attention contained genes important 
for cancer classification, so we calculated average gene attention 
z-scores with our model that used gene as input and matched genes with 
their corresponding bin (averaging when a gene was split across bins). 
There is nearly an order of magnitude more genes than bins, so most 
bins contain multiple genes, and the same attention will be assigned 
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to all genes in the bin. For the genes with the highest attention there is 
a corresponding bin also being given high attention (Fig. 5c, top right 
corner), but there are also many genes that are passengers in those 
bins and mistakenly being given attention (Fig. 5c, top left corner). 
This likely explains why using genes as input outperformed models 
using position bins as input.

Microsatellite instability
Characterized by deficiencies in the mismatch repair proteins (MLH1, 
MSH2, MSH6, PMS2), microsatellite unstable tumours accumulate 
InDels at microsatellites due to polymerase slippage. As with tumour 
classification, current bioinformatic approaches to predicting micro-
satellite instability (MSI) status rely on manually featurizing variants. 
For example, the Microsatellite Analysis for Normal Tumor InStability 
(MANTIS) tool uses a binary alignment map file to calculate the average 
difference between lengths of the reference and alternative alleles at 
predefined loci known a priori to be important23. Similarly, the MSIpred 
tool calculates a 22-feature vector using information from a MAF file 
and loci again known to be important, specifically simple repeat 
sequences24. Both of these approaches are valid and produce accu-
rate predictions, but they rely on knowing the nature of the problem.

Because mutations characteristic of MSI occur at many different 
repeat sites, and because the repeats have a distinctive sequence, we 
chose to use our sequence concept for this problem. For the data we 
opted to use the controlled TCGA MC3 MAF rather than the public MAF 
as the public MAF excludes most variants in non-exonic regions and 
most simple repeats fall in these regions. The TCGA has ground truth 
labels as defined by PCR assay for some tumour types, and we were able 
to obtain labels for uterine corpus endometrial carcinoma (494), stom-
ach adenocarcinoma (437), COAD (365), rectum adenocarcinoma (126), 
oesophageal carcinoma (87) and uterine carcinosarcoma (56) tumour 
samples. For the sequence concept we went out to 20 nucleotides for 
each component (5′, 3′, ref and alt) to allow the model to potentially 
capture long repetitive sequences.

Although we did not provide the model information about cancer 
type or perform any sample weighting, our model showed similar 
performance across cancer types (Extended Data Fig. 2a). We believe 
MANTIS and MSIpred are considered state of the art when it comes to 
MSI classification performance, and as can be seen in Fig. 6a our model 
slightly outperforms them despite not being given information about 
simple repeats. When comparing our predictions to MANTIS, both 
models were often similarly confident in their predictions (Extended 
Data Fig. 2b); however, there are cases where MANTIS predicts the cor-
rect label but our model does not, or our model predicts the correct 
label but MANTIS does not, suggesting that the best MSI predictor may 
be one that incorporates predictions from multiple models. There are 
a few cases where the sample is labelled MSI high by the PCR, but both 
MANTIS and our model are confident the sample is MSI low, perhaps 
indicating the PCR label may not be 100% specific (or alternatively indi-
cates an issue with the binary alignment map files for these samples).

To classify whether a variant falls in a repeat region or not, MSIpred 
relies on a table generated by the University of California, Santa Cruz 
(UCSC, http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/
simpleRepeat.txt.gz). Using this file, we labelled variants according to 
whether they fell in these regions, and as seen in Fig. 6b variants which 
occurred in a simple repeat region were much more likely to receive 
high attention than variants that did not. When clustering the instances 
of these samples, we observed two clear clusters that are receiving 
high attention: a smaller cluster characterized by SBS mutations in 
almost exclusively intergenic regions with almost 33% labelled as a 
simple repeat and a larger cluster characterized by deletions in genic 
but noncoding regions. The sequence logo of the intergenic cluster did 
not reveal a specific sequence, while the logo for the deletion cluster 
revealed that the model is giving attention to deletions at a mononu-
cleotide T repeat.

Discussion
Many genomic technologies generate data that can be considered ‘large 
p (features), small n (samples)’, wherein the number of possible meas-
ures/features per sample greatly exceeds the number of samples. For 
example, somatic mutations can occur anywhere in the genome, thus 
creating an enumerable number of possible unique features per sample. 
Similar considerations apply to circulating DNA fragments, CHIP-SEQ 
peaks, methylation sites or RNA/protein modifications. Attention MIL 
is a natural solution to these problems because it essentially transposes 
the problem—the large amount of instance data is a benefit instead of 
a hindrance when extracting relevant features.

When performing cancer classification, application of our model 
led to improvement regardless of the input, and when classifying sam-
ples according to their MSI status our model slightly outperformed the 
current state-of-the-art methods despite the other methods containing 
information specific to the task. Importantly, whereas other models 
require post hoc analyses to understand how they are making decisions, 
our tool directly reveals which instances it views as important. This is 
essential because as these measurements begin to be used in the clinic 
and researchers turn to deep learning for their analysis, it will likely be 
necessary for the models to explain their decisions given a patient’s 
right to understanding treatment decisions25.

Research into how to best implement attention MIL is an active 
field, with recent activity in its application to computational pathol-
ogy26. We consider our approach to attention MIL fairly standard18, with 
our goal being to simply demonstrate its value in the context of genom-
ics data. As such, it is unlikely our results represent the full potential of 
applying MIL to these data. For example, in computational pathology 
there have been recent suggestions to include a clustering step at the 
instance level9,27,28. And by design we limited our instance featurization 
to the factors that uniquely define a mutation: chromosome, position 
and reference/alternative alleles. We can easily imagine incorporating 
outside knowledge into the variant encoding process, such as variant 
consequence, biological pathway(s) involved and so on. We hope that 
the success we achieved with our proof-of-concept application of MIL 
inspires additional work in this area.

Methods
Model
We used a combination of TensorFlow version 2.7.0 and tf.keras for 
implementing ATGC. Keras, similar to many deep learning libraries, 
requires the first dimension of the inputs to match the first dimension 
of the outputs. Many implementations of MIL work around this con-
straint by performing stochastic gradient descent, where one sample 
is shown to the model at a time. This precludes the ability to easily 
perform sample weighting. To perform minibatch gradient descent 
as we would with any other model, we developed our model around 
ragged tensors.

Our model is modular in the sense that the top aggregation model 
which calculates attention and generates predictions takes as input 
encoder models. These encoders perform operations on ragged data for 
instance data and normal vectors for sample data (the dataset functions 
automatically infer whether a ragged tensor needs to be made). This 
framework allows for any number of instance or sample inputs, any num-
ber of outputs and any number of attention heads (as graphics process-
ing unit (GPU) memory permits). Ragged tensors are fully supported by 
TensorFlow, so it is possible to use our model with default loss functions 
and dataset batching. However, because we like additional control over 
the sample weighting and want the ability to perform stratified batching 
and data augmentation (data dropout), we prefer to use our own loss 
and metric classes even when the loss and/or metric already exists in 
TensorFlow, and we created dataset utilities built around generators.

Our attention strategy was inspired by that proposed in ref. 18. One 
issue with the proposed attention in MIL is that its value is a function 
of not only an instance’s importance but also its rarity. If two instances 
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are equally important, but one is present at a much lower fraction (low 
witness rate), then the rarer instance will be given a higher attention, 
and if a key instance is very frequent it may be given very little attention 
if any. In addition, it is possible for the model to find a solution that is 
characterized by the absence rather than presence of key instances, 
which results in key instances being given a lower attention. To correct 
for this issue and make the attention clearer, we added L1 regulariza-
tion on the output of the attention layer. The more regularization 
added, the clearer the separation between key instances and negative 
instances but at the risk of decreased model performance. Another 
potential issue with attention is that it is independent of the bag. It may 
be the case that a key instance is only a key instance when it occurs in 
a certain bag environment, but the model will not make this distinc-
tion at the level of the attention layer. If desired, the attention can be 
made dynamic29 by sending information about the samples back to 
the instances (Supplementary Fig. 2c), which may provide additional 
information about how the model is making decisions. We developed 
our own version of dynamic attention which calculates a weighted 
mean with standard MIL attention, then sends that sample vector back 
to the instances, calculates a second round of attention and performs 
a second aggregation.

We provide users several options for the aggregation function 
(mean, sum, dynamic). When using an aggregation function that 
includes a sum, the instance features should be activated, and this 
can result in potentially large sums. To counteract this, we log the 
aggregations on the graph when a sum is performed. Depending on 
the data there may be too many mutations to fit onto the graph, so 
we developed dropout for attention MIL where a random fraction of 
instances per batch are sent into the model during training, but then all 
the instances are used for evaluation. This has the additional benefit of 
helping with overfitting, as the samples are constantly changing during 
training, and is essentially a form of data augmentation.

Custom activation functions
Functions can be tested at: https://www.desmos.com/calculator/
jvwuzpadvd

Adaptive square root. 

ASR (x,α) = √eα + x2

The adaptive square root (ASR) will be used as a core element in 
the activation functions below.

Adaptive rectifying unit. 

ARU (x,α) = 0.5 × (x + ASR (x,α))

Note that a bias term could be added and applied to x before this 
activation function (as is the convention) and α can be a trainable 
parameter that modulates the curvature of this ‘rectifier’. The adap-
tive rectifying unit (ARU) can approach the shape of the commonly 
used rectified linear unit (ReLU) as α approaches negative infinity, but 
ARU is fully differentiable across all x, which does not hold for ReLU. 
We have tuned default initial conditions for α to match the commonly 
used softplus function, particularly near x = 0, as initial conditions for 
this adaptive rectifier.

Adaptive sigmoid unit. 

ASU (x,αlower,αupper) =
x + ASR(x,αlower)

ASR(x,αlower) + ASR(x,αupper)

Again, a bias term could be added and applied to x before this acti-
vation function (as is the convention). By design, the function adaptive 

sigmoid unit (ASU) is bounded by 0 and 1, at negative and positive infin-
ity (respectively), as is the case with the generic sigmoid function. The 
lower and upper α parameters control the curvature of this function 
as it approaches the lower and upper bounds. We have tuned default 
values to match the generic sigmoid function, particularly near x = 0, 
as initial conditions for this adaptive sigmoid function.

The above were motivated by the previously described inverse 
square root unit30. It is important to note that all input x is at most 
squared in this formulation and there is no application of input x as an 
exponent ex which greatly helps to avoid numerical overflow that can 
occur in the context of aggregation over samples in a MIL framework.

MAF processing
For the MC3 public MAF, variants that had a ‘FILTER’ value of either 
‘PASS’, ‘wga’ or ‘native_wga_mix’ and fell within the coordinates of the 
corresponding coverage WIGs were retained. For the MC3 controlled 
MAF, variants that had a ‘FILTER’ value of ‘PASS’, ‘NonExonic’, ‘wga’, 
‘bitgt’, ‘broad_PoN_v2’, ‘native_wga_mix’ or combination thereof and 
were called by more than one mutation caller were retained. The MC3 
working group was inconsistent in its merging of consecutive SBSs, so 
these were merged into a single mutation if the maximum difference 
between the average alternative or reference counts and any single 
alternative or reference count was less than 5 or the maximum percent-
age difference was less than 5%, or the maximum variant allele fraction 
deviation was less than 5%.

Tumour classification analyses
We performed tumour classification with both the original project 
codes and an NCIt ontology for exomic data and with histology codes 
for whole genome data. For the project codes, we required each class 
to have 125 samples, resulting in 24 classes and 10,012 samples. For 
the NCIt classification, tumours were mapped to their NCIt code by 
A. Baras, a board-certified pathologist, using the available histology 
description. We required at least 100 samples per NCIt code, result-
ing in 27 classes and 8,910 samples. For the Pan-Cancer Analysis of 
Whole Genomes (PCAWG) data only white-listed samples were used, 
and a donor was only allowed to have a single sample in the dataset. 
When a donor had more than one sample, the following preference 
order of specimen type was used for selection of the sample: primary 
tumour—solid tissue, primary tumour—other, primary tumour—lymph 
node, primary tumour—blood derived (peripheral blood), metastatic 
tumour—metastasis local to lymph node, metastatic tumour—lymph 
node, metastatic tumour—metastasis to distant location, primary 
tumour—blood derived (bone marrow). To prevent potential issues with 
GPU memory, we only used samples with less than 200,000 mutations. 
Any histology with at least 33 samples was used for analysis, resulting in 
24 histologies and 2,374 samples. All models were weighted by tumour 
type, and the K-folds were stratified by tumour type.

Logistic regressions. ‘LogisticRegression’ from ‘sklearn.linear_model’ 
(version 1.0.2) was used with default parameters.

Random forests. We used ‘RandomForestClassifier’ from ‘sklearn.
ensemble’ (version 1.0.2), and we explored how the different param-
eters affected performance with ‘gp_minimize’ from ‘scikit-optimize’ 
(version 0.9.0). We found most parameters to have limited effect; 
however, we did find the default number of estimators was far from 
optimal, and set ‘n_estimators’ to 900 and ‘min_samples_split’ to 10.

Neural nets. The process from the PCAWG consortium was used for 
constructing the neural nets17. Essentially for each fold of the data, 
200 different sets of hyperparameters are searched through. As we 
performed weighted training, we selected the best performing hyper-
parameters based on weighted cross entropy instead of accuracy. When 
using gene as input, the default search space caused some issues with 
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GPU memory and as a result were adjusted, but otherwise the search 
space was copied exactly.

MIL models. Details for each individual MIL model that was run can be 
found in the accompanying GitHub repository.

MSI analyses
The PCR labels were merged and when the 5-marker call and 7-marker 
call were in disagreement, the 7-marker call was given preference. Both 
microsatellite stable and microsatellite instability low MSI-L were con-
sidered to be MSI low. The source code for MSIpred was altered to allow 
it to run on Python 3, and the model was changed to output probabili-
ties but otherwise was run as recommended. Models were not weighted 
by tumour type, but tumour type was used for K-fold stratification. For 
our MIL model, because there were only two classes, we considered it 
a binary classification task and used a single head of attention. A data 
dropout of 0.4 was used, and the sequence components were given 8 
independent kernels with ARU activation and fused to a dimension of 
128 with a ReLU activation and 0.01 L2 kernel regularization; a drop-
out of 0.5 was performed, then attention was calculated with a single 
layer and ASU activation and 0.05 L1 activity regularization to force 
the positive class to receive higher attention. Following aggregation, 
a layer of 256 and ReLU activation was used followed by 0.5 dropout, a 
layer of 128 and ReLU activation followed by 0.5 dropout, to the final 
prediction and no activation.

Sequence logos
Logomaker31 (version 0.8) was used for the sequence logos. The prob-
abilities were calculated separately for SBSs, doublet base substitutions 
and InDels.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used in this publication are publicly available. The MC3 
MAFs are from ref. 32, and the MSI PCR labels are available from 
the cBioPortal, TCGAbiolinks or individual publications33–36. The 
UCSC simpleRepeat.txt was downloaded from http://hgdownload.
cse.ucsc.edu/goldenPath/hg19/database/simpleRepeat.txt.gz.  
The Broad coverage WIGs are available at https://www.synapse.
org/#!Synapse:syn21785741. MANTIS values are from ref. 37. The 
MAF for the ICGC PCAWG samples was obtained from https://dcc.
icgc.org/releases/PCAWG/consensus_snv_indel, and the MAF for the 
TCGA PCAWG samples was obtained from https://icgc.bionimbus.org/
files/0e8a845d-a4f4-40bc-890b-5472702d087c.

Code availability
All code for processing data, running models and generating the 
figures is available from GitHub at https://github.com/BarasLab/
ATGC/tree/method_paper and has also been archived at Zenodo 
(https://doi.org/10.5281/zenodo.8083498). Code is written in 
Python 3 and TensorFlow 2. All intersections were performed with 
PyRanges38. We leveraged NVIDIA V100s with 32 GB of RAM for 
much of the computation; however, most of the computations here 
could be reasonably performed on CPU as well, within the same 
coding framework.
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Extended Data Fig. 1 | Tumour classification metrics. a, Precisions and recalls for the models using gene as input. b, Confusion matrix for ATGC. All numbers are 
displayed as percents.
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Extended Data Fig. 2 | MSI predictions across cancer types and between 
models. a, Per cancer precisions and recalls for the 3 different models for the 
3 most abundant cancer types. b, MANTIS scores plotted against ATGC output 

probability showing high concordance of ATGC model output to MANTIS scores. 
Samples are colour coded by the PCR-based MSI status label, and the size of each 
sample corresponds to its total mutational burden (in thousands).
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