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Editorial

Guarding against the uncertain perils of AI

The development of 
machine-learning systems for safer, 
robust and fairer outcomes should 
leverage fine-tuning, generalization, 
explainability and metrics of 
uncertainty.

G
enerative machine-learning sys-
tems — such as the chatbot Chat-
GPT and the image generator 
Stable Diffusion — have evoked 
feelings of amazement and dread 

about the opportunities and risks of their 
wider use. Opportunities are aplenty for these 
systems to widely increase productivity and 
efficiency1. Large language models (LLMs) can 
be fine-tuned to provide specific knowledge 
(LLMs providing medical2 and financial3 infor-
mation have surfaced in the past few months), 
and open-sourced LLMs may soon be cheaply 
fine-tuned to capture an individual’s or organi-
zation’s know-how, preferences or style, to 
serve as sounding boards, knowledge special-
ists or all-round assistants.

But recent public discourse has been dom-
inated by fear of the unknown future capa-
bilities of these AI systems, and whether they 
will threaten human well-being while mind-
lessly pursuing a goal (as illustrated by the 
paperclip-maximizer thought experiment). 
Although anxiety about potential existential 
threats is an evolutionary feature (in fact, the 
invention of the printing press and the advent 
of computers also raised existential concerns 
from the loss of control of the dissemination 
of information and from fears of widespread 
job automation), such fearfulness looks like 
a bug in the context of what today’s systems 
can do: generate information, typically in the 
form of text, code, sound, imagery or video, 
and make predictions on the basis of learned 
patterns and contextual information4. Also, 
assessing the likelihood of existential threats 
requires lots of guesswork. But the intersec-
tion of AI with human weaknesses and with 
societal incentives and ills does offer more 
room for actual peril.

Indeed, we can all be fooled by the often 
confident-know-it-all nature of the output of 
today’s LLMs. They cannot be dismissed as 
purely ‘stochastic parrots’; as with the emer-
gent pattern formation of many physical, 

chemical and biological systems — from 
self-assembling crystals to protein folding to 
tissue morphogenesis — internal represen-
tations4,5 of concepts, text fragments, image 
features, and all sorts of relationships across 
types of information emerge from the train-
ing of machine-learning models; and, as with 
complex natural systems, it may be hard or 
impossible to comprehend in detail how such 
emergence arises. Yet, despite ‘understand-
ing’ language (in fact, LLMs can pass many 
high-level qualifying exams without being 
explicitly trained on them6, yet currently fail 
at complex compositional tasks7), LLMs can 
internalize spurious correlations, particu-
larly when trained with low-quality datasets, 
and can generate plausible lies. And, differ-
ently from a know-it-all of the human kind, 
LLMs can be consistently accurate and useful 
for most tasks, readily available, and kinder 
and nuanced (pictured) when fine-tuned via 
reinforcement learning to instil into them 

guardrails aligned with human values and 
preferences. Hence, it is humanly natural 
to drop one’s guard and take the output of 
machine-learning systems at face value. Still, 
we should learn to discriminate low-stakes 
tasks and most-likely-accurate outcomes from 
higher-stakes situations and from uses requir-
ing information at the frontier of knowledge or 
involving nuanced reasoning. Yet disassociat-
ing truthfulness from human-like empathic 
communication may be increasingly hard, as 
exemplified by a cross-sectional study that 
compared the responses of physicians and 
ChatGPT to patient questions: the responses 
from the chatbot were more empathic and of 
higher quality8.

Moreover, as generating content becomes 
cheap, the large-scale production of content 
that plausibly distorts truth or that surfaces or 
amplifies online harms for malicious purposes 
is unfortunately inevitable. Bad actors may 
also fine-tune or train open-sourced models 
for nefarious means. At the very least, this is a 
threat to healthy public debate. More research 
on the safety assessment of machine-learning 
systems, the creation of safety standards, 
and putting in place governance and regula-
tory frameworks will hopefully incentivize 
the thoughtful adoption and implementa-
tion of machine learning, and avoid expertly 
curated content being drowned by believable 
misinformation.

Still, even in a hypothetical future with 
widely reliable machine-learning systems and 
internationally agreed regulatory standards 
and policing, how do we ensure that the sys-
tems are robust and promote fairness?

The robustness of pretrained LLMs against 
unexpected inputs, in particular from adver-
sarial attacks and from ‘out-of-distribution’ 
inputs — that is, from data belonging to a dif-
ferent distribution or domain to that of the 
training data — can be refined through con-
tinuous training and via prompt engineer-
ing9. More generally, the robustness of the 
performance of machine-learning models to 
out-of-distribution settings can be improved 
via domain generalization learning, where 
the model learns representations that cap-
ture invariant concepts and patterns shared 
among domains; and via causal representa-
tion learning, where rather than merely cap-
turing correlations, the model learns causal 
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Prompting OpenAI’s ChatGPT for a prompt 
that requires a nuanced response.
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relationships between variables. Another 
strategy, implemented by Shekoofeh Azizi, 
Alan Karthikesalingam, Vivek Natarajan and 
colleagues in an Article included in this issue 
of Nature Biomedical Engineering, combines 
pretraining via supervised transfer learning 
(from natural images to medical images) with 
domain-specific contrastive self-supervised 
learning (a type of unsupervised learning that 
leverages similarities and dissimilarities in 
the data) and task-specific fine-tuning. The 
researchers show the beneficial performance 
of the approach across multiple domains, 
tasks and datasets in diagnostic imaging (for 
dermatology, ophthalmology, digital pathol-
ogy, chest radiography and mammography).

Fairness spans the domains of justice, 
morality and ethics. In medicine and health-
care, it involves the minimization of health 
disparities, and when it pertains to the fair-
ness of algorithms for uses in diagnostics it can 
be quantified via differences in performance 
metrics, such as the rates of false positives and 
false negatives. In a Perspective article also 
included in this journal issue, Faisal Mahmood 
and colleagues overview healthcare dispari-
ties and inequities, and discuss how biases in 
machine-learning models for medicine and 

healthcare (which can arise from the acquisi-
tion of training data, from variabilities in their 
labelling or from unintended dataset shifts, as 
well as from health correlates such as genetic 
ancestry and socioeconomic status) can be 
mitigated through federated learning (decen-
tralized machine learning that preserves data 
privacy and security), representation learning 
and model explainability.

Unfair and unsafe consequences of pre-
diction failure by machine-learning mod-
els can be mitigated by implementing 
prediction-uncertainty metrics, as argued 
by Synho Do and colleagues in a Perspective 
published in this issue. Prediction uncertainty 
typically arises from lack of generalizability to 
out-of-distribution settings, or from training 
data that is of poor quality or noisy (because of 
difficulties or deficiencies in their labelling or 
annotation). Suitable metrics depend on the 
architecture of the model and its application; 
for example, in diagnostic tasks, a negative 
predictive value of 1 may be required to reach 
zero tolerance for false negatives. A research 
Article, authored by Dani Kiyasseh, Andrew 
Hung and colleagues and also included in 
this issue, provides another example: when 
developing a vision transformer for decoding 

surgeon activity from surgical videos, the 
researchers estimated the uncertainty of 
the classification of surgeon gestures via the 
entropy of the probabilistic output of differ-
ent trained models. And for current LLMs, 
exploring how they answer known-unknowns 
may suggest ways to measure the model’s 
accuracy in expressing uncertainty10. As for 
unknown-unknowns, however, any perils are 
truly uncertain.
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