Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in multiple mouse models

Abstract

Antibody-mediated tumour targeting and nanoparticle-mediated encapsulation can reduce the toxicity of antitumour drugs and improve their efficacy. Here, we describe the performance of a nanotherapeutic encapsulating a hydrolytically sensitive docetaxel prodrug and conjugated to an antibody specific for EphA2—a receptor overexpressed in many tumours. Administration of the nanotherapeutic in mice led to slow and sustained release of the prodrug, reduced exposure of active docetaxel in the circulation (compared with administration of the free drug) and maintenance of optimal exposure of the drug in tumour tissue. We also show that administration of the nanotherapeutic in rats and dogs resulted in minimal haematological toxicity, as well as the absence of neutropenia and improved overall tolerability in multiple rodent models. Targeting of the nanotherapeutic to EphA2 improved tumour penetration and resulted in markedly enhanced antitumour activity (compared with administration of free docetaxel and non-targeted nanotherapeutic controls) in multiple tumour-xenografted mice. This nanomedicine could become a potent and safe therapeutic alternative for cancer patients undergoing chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structure and formulation of EphA2-ILs-DTXp.
Fig. 2: Plasma and tumour pharmacokinetics of EphA2-ILs-DTXp.
Fig. 3: Animal toxicity of EphA2-ILs-DTXp.
Fig. 4: The in vivo activity of EPhA2-ILs-DTXp is superior to free DTX at equitoxic dosing in six xenograft models of cancer.
Fig. 5: In vivo activity of EphA2-ILs-DTXp versus NT-Ls-DTXp in four xenograft mouse models.
Fig. 6: In vivo mechanisms of EphA2 targeting.
Fig. 7: Ratiometric imaging of EphA2-targeted liposomes in normal and tumour tissues.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the study, and source data for the figures, are available in Figshare at https://doi.org/10.6084/m9.figshare.7786205.

References

  1. Moek, K. L., de Groot, D. J. A., de Vries, E. G. E. & Fehrmann, R. S. N. The antibody–drug conjugate target landscape across a broad range of tumour types. Ann. Oncol. 28, 3083–3091 (2017).

    Article  CAS  Google Scholar 

  2. Lee, H. et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res. 23, 4190–4202 (2017).

    Article  CAS  Google Scholar 

  3. Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 91, 3–6 (2015).

    Article  CAS  Google Scholar 

  4. Ramanathan, R. K. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin. Cancer Res. 23, 3638–3648 (2017).

    Article  CAS  Google Scholar 

  5. Coulthard, M. G. et al. The role of the Eph–ephrin signalling system in the regulation of developmental patterning. Int. J. Dev. Biol. 46, 375–384 (2002).

    CAS  PubMed  Google Scholar 

  6. Oates, A. C. et al. An early developmental role for Eph–ephrin interaction during vertebrate gastrulation. Mech. Dev. 83, 77–94 (1999).

    Article  CAS  Google Scholar 

  7. Yang, N. Y. et al. Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells. Cell. Signal. 23, 201–212 (2011).

    Article  CAS  Google Scholar 

  8. Tandon, M., Vemula, S. V. & Mittal, S. K. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin. Ther. Targets 15, 31–51 (2011).

    Article  CAS  Google Scholar 

  9. Brannan, J. M. et al. Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non-small cell lung cancer. Clin. Cancer Res. 15, 4423–4430 (2009).

    Article  CAS  Google Scholar 

  10. Brantley-Sieders, D. M. et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J. Clin. Invest. 118, 64–78 (2008).

    Article  CAS  Google Scholar 

  11. Gokmen-Polar, Y. et al. Dual targeting of EphA2 and ER restores tamoxifen sensitivity in ER/EphA2-positive breast cancer. Breast Cancer Res. Treat. 127, 375–384 (2011).

    Article  Google Scholar 

  12. Yuan, W. J. et al. Over-expression of EphA2 and EphrinA-1 in human gastric adenocarcinoma and its prognostic value for postoperative patients. Dig. Dis. Sci. 54, 2410–2417 (2009).

    Article  CAS  Google Scholar 

  13. Miyazaki, T., Kato, H., Fukuchi, M., Nakajima, M. & Kuwano, H. EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int. J. Cancer 103, 657–663 (2003).

    Article  CAS  Google Scholar 

  14. Mudali, S. V. et al. Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clin. Exp. Metastasis 23, 357–365 (2006).

    Article  CAS  Google Scholar 

  15. Dunne, P. D. et al. EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer. Clin. Cancer Res. 22, 230–242 (2016).

    Article  CAS  Google Scholar 

  16. Zeng, G. et al. High-level expression of EphA2 receptor tyrosine kinase in prostatic intraepithelial neoplasia. Am. J. Pathol. 163, 2271–2276 (2003).

    Article  CAS  Google Scholar 

  17. Abraham, S. et al. Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder. Clin. Cancer Res. 12, 353–360 (2006).

    Article  CAS  Google Scholar 

  18. Liu, Y. et al. Clinical significance of EphA2 expression in squamous-cell carcinoma of the head and neck. J. Cancer Res. Clin. Oncol. 137, 761–769 (2011).

    Article  CAS  Google Scholar 

  19. Wang, L. F. et al. Increased expression of EphA2 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients. Oncol. Rep. 19, 151–156 (2008).

    PubMed  Google Scholar 

  20. Holm, R., de Putte, G. V., Suo, Z., Lie, A. K. & Kristensen, G. B. Expressions of EphA2 and EphrinA-1 in early squamous cell cervical carcinomas and their relation to prognosis. Int. J. Med. Sci. 5, 121–126 (2008).

    Article  CAS  Google Scholar 

  21. Merritt, W. M. et al. Clinical and biological impact of EphA2 overexpression and angiogenesis in endometrial cancer. Cancer Biol. Ther. 10, 1306–1314 (2010).

    Article  CAS  Google Scholar 

  22. Thaker, P. H. et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin. Cancer Res. 10, 5145–5150 (2004).

    Article  CAS  Google Scholar 

  23. Brantley-Sieders, D. M. et al. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS ONE 6, e24426 (2011).

    Article  CAS  Google Scholar 

  24. Cui, X. D. et al. EFNA1 ligand and its receptor EphA2: potential biomarkers for hepatocellular carcinoma. Int. J. Cancer 126, 940–949 (2010).

    CAS  PubMed  Google Scholar 

  25. Ishikawa, M. et al. Higher expression of EphA2 and ephrin-A1 is related to favorable clinicopathological features in pathological stage I non-small cell lung carcinoma. Lung Cancer 76, 431–438 (2012).

    Article  Google Scholar 

  26. Kinch, M. S., Moore, M. B. & Harpole, D. H. Jr. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin. Cancer Res. 9, 613–618 (2003).

    CAS  PubMed  Google Scholar 

  27. Annunziata, C. M. et al. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest New Drugs 31, 77–84 (2013).

    Article  CAS  Google Scholar 

  28. Cai, W. et al. Quantitative radioimmunoPET imaging of EphA2 in tumor-bearing mice. Eur. J. Nucl. Med. Mol. Imaging 34, 2024–2036 (2007).

    Article  CAS  Google Scholar 

  29. Jackson, D. et al. A human antibody–drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res. 68, 9367–9374 (2008).

    Article  CAS  Google Scholar 

  30. Barile, E. et al. Design, synthesis and bioevaluation of an EphA2 receptor-based targeted delivery system. ChemMedChem 9, 1403–1412 (2014).

    Article  CAS  Google Scholar 

  31. Wang, F. et al. The interaction of 4-thiazolidinone derivatives containing indolin-2-one moiety with P-glycoprotein studied using K562 cell lines. Eur. J. Med. Chem. 101, 126–132 (2015).

    Article  CAS  Google Scholar 

  32. Wu, B. et al. Design and characterization of novel EphA2 agonists for targeted delivery of chemotherapy to cancer cells. Chem. Biol. 22, 876–887 (2015).

    Article  CAS  Google Scholar 

  33. Wykosky, J., Gibo, D. M. & Debinski, W. A novel, potent, and specific ephrinA1-based cytotoxin against EphA2 receptor expressing tumor cells. Mol. Cancer Ther. 6, 3208–3218 (2007).

    Article  CAS  Google Scholar 

  34. Patel, A. R., Chougule, M. & Singh, M. EphA2 targeting PEGylated nanocarrier drug delivery system for treatment of lung cancer. Pharm. Res. 31, 2796–2809 (2014).

    Article  CAS  Google Scholar 

  35. Patel, K., Doddapaneni, R., Sekar, V., Chowdhury, N. & Singh, M. Combination approach of YSA peptide anchored docetaxel stealth liposomes with oral antifibrotic agent for the treatment of lung cancer. Mol. Pharm. 13, 2049–2058 (2016).

    Article  CAS  Google Scholar 

  36. Geddie, M. L. et al. Improving the developability of an anti-EphA2 single-chain variable fragment for nanoparticle targeting. MAbs 9, 58–67 (2017).

    Article  CAS  Google Scholar 

  37. Rhoden, J. J., Dyas, G. L. & Wroblewski, V. J. A modeling and experimental investigation of the effects of antigen density, binding affinity, and antigen expression ratio on bispecific antibody binding to cell surface targets. J. Biol. Chem. 291, 11337–11347 (2016).

    Article  CAS  Google Scholar 

  38. Zhou, Y. et al. Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells. J. Mol. Biol. 371, 934–947 (2007).

    Article  CAS  Google Scholar 

  39. Li, Z. & Gorfe, A. A. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations. Nanoscale 7, 814–824 (2015).

    Article  CAS  Google Scholar 

  40. Kirpotin, D. et al. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36, 66–75 (1997).

    Article  CAS  Google Scholar 

  41. Drummond, D. C. et al. Improved pharmacokinetics and efficacy of a highly stable nanoliposomal vinorelbine. J. Pharmacol. Exp. Ther. 328, 321–330 (2009).

    Article  CAS  Google Scholar 

  42. Drummond, D. C. et al. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res. 66, 3271–3277 (2006).

    Article  CAS  Google Scholar 

  43. Drummond, D. C., Noble, C. O., Hayes, M. E., Park, J. W. & Kirpotin, D. B. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J. Pharm. Sci. 97, 4696–4740 (2008).

    Article  CAS  Google Scholar 

  44. Bittman, R. & Verbicky, C. A. Methanolysis of sphingomyelin. Toward an epimerization-free methodology for the preparation of d-erythro-sphingosylphosphocholine. J. Lipid Res. 41, 2089–2093 (2000).

    CAS  PubMed  Google Scholar 

  45. Jain, R. K., Tong, R. T. & Munn, L. L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 67, 2729–2735 (2007).

    Article  CAS  Google Scholar 

  46. Maurer-Spurej, E., Wong, K. F., Maurer, N., Fenske, D. B. & Cullis, P. R. Factors influencing uptake and retention of amino-containing drugs in large unilamellar vesicles exhibiting transmembrane pH gradients. Biochim. Biophys. Acta 1416, 1–10 (1999).

    Article  CAS  Google Scholar 

  47. Zucker, D., Marcus, D., Barenholz, Y. & Goldblum, A. Liposome drugs’ loading efficiency: a working model based on loading conditions and drug’s physicochemical properties. J. Control. Release 139, 73–80 (2009).

    Article  CAS  Google Scholar 

  48. Goldstein, D. et al. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J. Natl Cancer Inst. 107, dju413 (2015).

    Article  Google Scholar 

  49. Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

    Article  CAS  Google Scholar 

  50. Ho, M. Y. & Mackey, J. R. Presentation and management of docetaxel-related adverse effects in patients with breast cancer. Cancer Manag. Res. 6, 253–259 (2014).

    Article  Google Scholar 

  51. Huang, T. C. & Campbell, T. C. Comparison of weekly versus every 3 weeks paclitaxel in the treatment of advanced solid tumors: a meta-analysis. Cancer Treat. Rev. 38, 613–617 (2012).

    Article  CAS  Google Scholar 

  52. Mauri, D. et al. Overall survival benefit for weekly vs. three-weekly taxanes regimens in advanced breast cancer: a meta-analysis. Cancer Treat. Rev. 36, 69–74 (2010).

    Article  CAS  Google Scholar 

  53. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004).

    Article  CAS  Google Scholar 

  54. Munzone, E. & Colleoni, M. Clinical overview of metronomic chemotherapy in breast cancer. Nat. Rev. Clin. Oncol. 12, 631–644 (2015).

    Article  CAS  Google Scholar 

  55. Kareva, I., Waxman, D. J. & Lakka Klement, G. Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance. Cancer Lett. 358, 100–106 (2015).

    Article  CAS  Google Scholar 

  56. Starobova, H. & Vetter, I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front. Mol. Neurosci. 10, 174 (2017).

    Article  Google Scholar 

  57. Mathew, A. E., Mejillano, M. R., Nath, J. P., Himes, R. H. & Stella, V. J. Synthesis and evaluation of some water-soluble prodrugs and derivatives of taxol with antitumor activity. J. Med. Chem. 35, 145–151 (1992).

    Article  CAS  Google Scholar 

  58. Zhigaltsev, I. V. et al. Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles. J. Control. Release 144, 332–340 (2010).

    Article  CAS  Google Scholar 

  59. Blair, H. A. & Deeks, E. D. Albumin-bound paclitaxel: a review in non-small cell lung cancer. Drugs 75, 2017–2024 (2015).

    Article  CAS  Google Scholar 

  60. Hrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4, 128ra139 (2012).

    Article  Google Scholar 

  61. Chipman, S. D., Oldham, F. B., Pezzoni, G. & Singer, J. W. Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer–drug conjugate. Int. J. Nanomed. 1, 375–383 (2006).

    Article  CAS  Google Scholar 

  62. Sparreboom, A. et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin. Cancer Res. 11, 4136–4143 (2005).

    Article  CAS  Google Scholar 

  63. Gradishar, W. J. et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794–7803 (2005).

    Article  CAS  Google Scholar 

  64. Gradishar, W. J. et al. Significantly longer progression-free survival with nab-paclitaxel compared with docetaxel as first-line therapy for metastatic breast cancer. J. Clin. Oncol. 27, 3611–3619 (2009).

    Article  CAS  Google Scholar 

  65. Coffman, K. T. et al. Differential EphA2 epitope display on normal versus malignant cells. Cancer Res. 63, 7907–7912 (2003).

    CAS  PubMed  Google Scholar 

  66. Safavy, A. et al. Synthesis and biological evaluation of paclitaxel-C225 conjugate as a model for targeted drug delivery. Bioconjug. Chem. 14, 302–310 (2003).

    Article  CAS  Google Scholar 

  67. Polakis, P. Antibody drug conjugates for cancer therapy. Pharmacol. Rev. 68, 3–19 (2016).

    Article  CAS  Google Scholar 

  68. Beck, A., Goetsch, L., Dumontet, C. & Corvaia, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  CAS  Google Scholar 

  69. Nielsen, U. B. et al. Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta 1591, 109–118 (2002).

    Article  CAS  Google Scholar 

  70. Zhou, Y., Zou, H., Zhang, S. & Marks, J. D. Internalizing cancer antibodies from phage libraries selected on tumor cells and yeast-displayed tumor antigens. J. Mol. Biol. 404, 88–99 (2010).

    Article  CAS  Google Scholar 

  71. Nellis, D. F. et al. Preclinical manufacture of anti-HER2 liposome-inserting, scFv-PEG-lipid conjugate. 2. Conjugate micelle identity, purity, stability, and potency analysis. Biotechnol. Prog. 21, 221–232 (2005).

    Article  CAS  Google Scholar 

  72. Nellis, D. F. et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol. Prog. 21, 205–220 (2005).

    Article  CAS  Google Scholar 

  73. Horie, R. & Watanabe, T. CD30: expression and function in health and disease. Semin. Immunol. 10, 457–470 (1998).

    Article  CAS  Google Scholar 

  74. Pool, G. L., French, M. E., Edwards, R. A., Huang, L. & Lumb, R. H. Use of radiolabeled hexadecyl cholesteryl ether as a liposome marker. Lipids 17, 448–452 (1982).

    Article  CAS  Google Scholar 

  75. Kalra, A. V. et al. Preclinical activity of nanoliposomal irinotecan is governed by tumor deposition and intratumor prodrug conversion. Cancer Res. 74, 7003–7013 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Department of Defense (grant number OC150083 to C.P.R.). This work was also partially supported by National Cancer Institute grant P30CA016056, involving the use of Roswell Park’s Bioanalytics, Metabolomics and Pharmacokinetics Shared Resource (J.H.W. and S.A.S.). We also acknowledge L. Zalutskaya for support with both preparation and submission of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

W.S.K., D.B.K., Z.R.H., S.K.T., L.L., K.O., G.K., A.A.L., C.P.R., V.A. and D.C.D. designed the studies. D.B.K., Z.R.H., S.K.T., C.O.N., M.E.H., M.L.G., J.D.M. and D.C.D. designed the molecule. W.S.K., D.B.K., Z.R.H., S.K.T., C.O.N., M.E.H., L.L., A.K., T.K., S.O., C.P., N.D., S.A.S., J.H.W., M.L.G., J.S., S.G., N.K., R.B., Y.Z. and A.J.S. collected the data. W.S.K., D.B.K., Z.R.H., S.K.T., C.O.N., M.E.H., L.L., A.K., J.K., K.O., T.K., S.O., G.K., S.A.S., J.H.W., C.P.R., R.B., Y.Z., A.J.S. and D.C.D. analysed the data. W.S.K., V.A. and D.C.D. wrote the manuscript.

Corresponding author

Correspondence to Daryl C. Drummond.

Ethics declarations

Competing interests

All of the authors affiliated with Merrimack Pharmaceuticals were employees of Merrimack Pharmaceuticals at the time of the study, with D.C.D., A.K., J.D.M., Z.R.H., A.J.S., L.L. and G.K. currently owning stock or stock options in Merrimack Pharmaceuticals.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, results, figures and tables.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamoun, W.S., Kirpotin, D.B., Huang, Z.R. et al. Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in multiple mouse models. Nat Biomed Eng 3, 264–280 (2019). https://doi.org/10.1038/s41551-019-0385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0385-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer