Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses

Abstract

Radiation therapy for cancer can lead to off-target toxicity and can be ineffective against hypoxic solid tumours and distant metastases. Here, we show that intratumoral injection, in mouse and rabbit xenografts and in patient-derived mouse xenografts, of a sodium alginate formulation containing catalase (Cat) labelled with the therapeutic 131I radioisotope enables long-term relief of tumour hypoxia and complete tumour elimination at low radioactivity doses. On injection, the soluble polysaccharide rapidly transforms into a hydrogel in the presence of endogenous Ca2+, fixing 131I-Cat within the tumours. We also show that local radiotherapy with a formulation that includes the immunostimulatory CpG oligonucleotide combined with systemic checkpoint-blockade therapy using an anti-CTLA-4 antibody leads to metastasis inhibition and protection against tumour rechallenge. The local therapy, which uses only biocompatible components, might enable new strategies for local tumour treatments that can be combined with systemic therapeutic responses, for the inhibition of tumour metastasis and the prevention of tumour recurrence in patients with advanced-stage cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gelation behaviour of the hybrid system.
Fig. 2: In vivo gelation inside the tumour.
Fig. 3: RIT treatment of local tumours by 131I-Cat/ALG.
Fig. 4: Tumour metastasis inhibition with RIT immunotherapy.
Fig. 5: Immune memory effect.

Similar content being viewed by others

References

  1. Kjellberg, R. N. Radiation therapy. Science 176, 1071 (1972).

    Article  PubMed  CAS  Google Scholar 

  2. Delaney, G., Jacob, S., Featherstone, C. & Barton, M. The role of radiotherapy in cancer treatment. Cancer 104, 1129–1137 (2005).

    Article  PubMed  Google Scholar 

  3. Baskar, R., Lee, K. A., Yeo, R. & Yeoh, K.-W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9, 193–199 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bristow, R. G. & Hill, R. P. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer 8, 180–192 (2008).

    Article  PubMed  CAS  Google Scholar 

  5. Barker, H. E., Paget, J. T. E., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kim, J. & Jung, Y. Radiation-induced liver disease: current understanding and future perspectives. Exp. Mol. Med. 49, e359 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dietrich, G. Radiation injuries caused by radium and radioisotope therapy. Strahlentherapie 114, 128–134 (1961).

    PubMed  CAS  Google Scholar 

  8. Hilaris, B. S., Henschke, U. K. & Holt, J. G. Clinical experience with long half-life and low-energy encapsulated radioactive sources in cancer radiation therapy. Radiology 91, 1163–1167 (1968).

    Article  PubMed  CAS  Google Scholar 

  9. Zhu, H.-D. et al. Conventional stents versus stents loaded with 125iodine seeds for the treatment of unresectable oesophageal cancer: a multicentre, randomised phase 3 trial. Lancet Oncol. 15, 612–619 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. D’Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. J. Am. Med. Assoc. 280, 969–974 (1998).

    Article  Google Scholar 

  11. Nath, R. et al. Dosimetry of interstitial brachytherapy sources—recommendations of the AAPM Radiation-Therapy Committee Task Group No 43. Med. Phys. 22, 209–234 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. 58, 862–870 (2004).

    Article  Google Scholar 

  13. Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti–CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11, 728–734 (2005).

    PubMed  CAS  Google Scholar 

  15. Peppas, N. A., Bures, P., Leobandung, W. & Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Nucl. Med. Mol. 50, 27–46 (2000).

    CAS  Google Scholar 

  16. Gisby, P. E. & Hall, D. O. Biophotolytic H2 production using alginate-immobilized chloroplasts, enzymes and synthetic catalysts. Nature 287, 251–253 (1980).

    Article  CAS  Google Scholar 

  17. Hayashi, K., Sakamoto, W. & Yogo, T. Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy. Adv. Funct. Mater. 26, 1708–1718 (2016).

    Article  CAS  Google Scholar 

  18. Song, G. et al. Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy. Adv. Mater. 28, 7143–7148 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Gungor, B. et al. CpG ODN nanorings induce IFNα from plasmacytoid dendritic cells and demonstrate potent vaccine adjuvant activity. Sci. Transl. Med. 6, 235ra261 (2014).

    Article  CAS  Google Scholar 

  20. Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. Berson, S. A. & Yalow, R. S. Iodoinsulin used to determine specific activity of iodine-131. Science 152, 205–207 (1966).

    Article  PubMed  CAS  Google Scholar 

  22. Larson, S. M., Carrasquillo, J. A., Cheung, N.-K. V. & Press, O. W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer 15, 347–360 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chen, Q. et al. Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. J. Control. Release 263, 79–89 (2017).

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, Y., Hong, H. & Cai, W. Photoacoustic imaging. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.top065508 (2011).

  25. Julien, S. et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin. Cancer Res. 18, 5314–5328 (2012).

    Article  PubMed  CAS  Google Scholar 

  26. Inoue, T., Terada, N., Kobayashi, T. & Ogawa, O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat. Rev. Urol. 14, 267–283 (2017).

    Article  PubMed  Google Scholar 

  27. Zhong, H. et al. Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases. Cancer Res. 59, 5830–5835 (1999).

    PubMed  CAS  Google Scholar 

  28. Herskovic, A. et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N. Engl. J. Med. 326, 1593–1598 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tang, C. et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol. Res. 2, 831–838 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rodriguez-Ruiz, M. E. et al. Brachytherapy attains abscopal effects when combined with immunostimulatory monoclonal antibodies. Brachytherapy 16, 1246–1251 (2017).

    Article  PubMed  Google Scholar 

  33. Wang, C. et al. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 26, 8154–8162 (2014).

    Article  PubMed  CAS  Google Scholar 

  34. Chen, Q. et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Krieg, A. M. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5, 471–484 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. Pavet, V., Portal, M. M., Moulin, J. C., Herbrecht, R. & Gronemeyer, H. Towards novel paradigms for cancer therapy. Oncogene 30, 1–20 (2011).

    Article  PubMed  CAS  Google Scholar 

  37. Keu, K. V. et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci. Transl. Med. 9, aag2196 (2017).

    Article  CAS  Google Scholar 

  38. Quezada, S. A., Peggs, K. S., Curran, M. A. & Allison, J. P. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest. 116, 1935–1945 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zaidi, M. R. & Merlino, G. The two faces of interferon-γ in cancer. Clin. Cancer Res. 17, 6118–6124 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. Nag, S., Beyer, D., Friedland, J., Grimm, P. & Nath, R. American Brachytherapy Society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer. Int. J. Radiat. Oncol. 44, 789–799 (1999).

    Article  CAS  Google Scholar 

  42. Heemskerk, B., Kvistborg, P. & Schumacher, T. N. M. The cancer antigenome. EMBO J. 32, 194–203 (2013).

    Article  PubMed  CAS  Google Scholar 

  43. Xing, R. et al. An injectable self-assembling collagen–gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater. 28, 3669–3676 (2016).

    Article  PubMed  CAS  Google Scholar 

  44. Hussain, A. A., Jona, J. A., Yamada, A. & Dittert, L. W. Chloramine-T in radiolabeling techniques. 2. A nondestructive method for radiolabeling biomolecules by halogenation. Anal. Biochem. 224, 221–226 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. Tian, L. et al. Radionuclide I-131 labeled albumin-paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer. Theranostics 7, 614–623 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Goth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 196, 143–151 (1991).

    Article  PubMed  CAS  Google Scholar 

  47. Chao, Y. et al. Dataset for ‘Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses’. figshare https://doi.org/10.6084/m9.figshare.6292136 (2018).

Download references

Acknowledgements

This work was partially supported by the National Basic Research Programs of China (973 Program) (2016YFA0201200), the National Natural Science Foundation of China (51525203, 51761145041, 81471716 and 31400861), the Collaborative Innovation Center of Suzhou Nano Science and Technology, a ‘111’ program from the Ministry of Education of China, and a Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

Y.C., K.Y. and Z.L. designed the project. Y.C., L.X., C.L., L.F., J.X., Z.D., L.T. and X.Y. performed the experiments. Y.C., K.Y. and Z.L. analysed and interpreted the data. Z.L. supervised the overall research. Y.C. and Z.L. wrote the manuscript.

Corresponding authors

Correspondence to Kai Yang or Zhuang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, Y., Xu, L., Liang, C. et al. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat Biomed Eng 2, 611–621 (2018). https://doi.org/10.1038/s41551-018-0262-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0262-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research