Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maps of in vivo oxygen pressure with submillimetre resolution and nanomolar sensitivity enabled by Cherenkov-excited luminescence scanned imaging

Abstract

Low signal-to-noise ratios and limited imaging depths restrict the ability of optical-imaging modalities to detect and accurately quantify molecular emissions from tissue. Here, by using a scanning external X-ray beam from a clinical linear accelerator to induce Cherenkov excitation of luminescence in tissue, we demonstrate in vivo mapping of the oxygenation of tumours at depths of several millimetres, with submillimetre resolution and nanomolar sensitivity. This was achieved by scanning thin sheets of the X-ray beam orthogonally to the emission-detection plane, and by detecting the signal via a time-gated CCD camera synchronized to the radiation pulse. We also show with experiments using phantoms and with simulations that the performance of Cherenkov-excited luminescence scanned imaging (CELSI) is limited by beam size, scan geometry, probe concentration, radiation dose and tissue depth. CELSI might provide the highest sensitivity and resolution in the optical imaging of molecular tracers in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Excitation fluence decrease with depth into tissue for normal fluorescence imaging versus CELSI; the temporal sequence and molecular probe characteristics.
Fig. 2: Radiation beam shape configuration and region of the tissue where Cherenkov light is generated affects contrast to noise measured.
Fig. 3: The geometry of the imaging camera relative to the X-ray beam entrance position affects image contrast.
Fig. 4: Contrast-to-background ratio is affected by the concentration and depth of the object, and the radiation dose used in scanning.
Fig. 5: Source and detector placement affects the reconstructed CELSI images.
Fig. 6: The spatial resolution of CELSI is below 1 mm down to depths in tissue of 25 mm.
Fig. 7: Animal phantom tomography and in vivo validation of the luminescence yield.
Fig. 8: In vivo imaging of \({\boldsymbol{p}}_{{\mathbf{O}}_{\mathbf{2}}}\) in subcutaneous breast adenocarcinomas.

Similar content being viewed by others

References

  1. Hoebe, R. A. et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat. Biotechnol. 25, 249–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Brismar, H. & Ulfhake, B. Fluorescence lifetime measurements in confocal microscopy of neurons labeled with multiple fluorophores. Nat. Biotechnol. 15, 373–377 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Nie, S., Chiu, D. T. & Zare, R. N. Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018–1021 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA 100, 7075–7080 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bjorn, S., Ntziachristos, V. & Schulz, R. Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media. Opt. Express 18, 8422–8429 (2010).

    Article  PubMed  Google Scholar 

  6. Georgakoudi, I. et al. Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus. Gastroenterology 120, 1620–1629 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Mittapalli, R. K., Manda, V. K., Bohn, K. A., Adkins, C. E. & Lockman, P. R. Quantitative fluorescence microscopy provides high resolution imaging of passive diffusion and P-gp mediated efflux at the in vivo blood-brain barrier. J. Neurosci. Methods 219, 188–195 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leblond, F., Davis, S. C., Valdes, P. A. & Pogue, B. W. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J. Photochem. Photobiol. B 98, 77–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Pogue, B. W. Optics in the molecular imaging race. Opt. Photon. News 9, 25–31 (2015).

    Google Scholar 

  10. Zhang, R. et al. Cherenkov-excited luminescence scanned imaging. Opt. Lett. 40, 827–830 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Bruza, P. et al. Light sheet luminescence imaging with Cherenkov excitation in thick scattering media. Opt. Lett. 41, 2986–2989 (2016).

    Article  PubMed  Google Scholar 

  12. Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, R. et al. Oxygen tomography by Cerenkov-excited phosphorescence during external beam irradiation. J. Biomed. Opt. 18, 50503 (2013).

    Article  PubMed  Google Scholar 

  15. Dothager, R. S., Goiffon, R. J., Jackson, E., Harpstrite, S. & Piwnica-Worms, D. Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems. PLoS ONE 5, e13300 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thorek, D. L., Ogirala, A., Beattie, B. J. & Grimm, J. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med. 19, 1345–1350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Axelsson, J., Glaser, A. K., Gladstone, D. J. & Pogue, B. W. Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment. Opt. Express 20, 5133–5142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jarvis, L. A. et al. Cherenkov video imaging allows for the first visualization of radiation therapy in real time. Int J. Radiat. Oncol. Biol. Phys. 89, 615–622 (2014).

    Article  PubMed  Google Scholar 

  19. Axelsson, J., Davis, S., Gladstone, D. & Pogue, B. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence. Med. Phys. 38, 4127–4132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Demers, J. L., Davis, S. C., Zhang, R., Gladstone, D. J. & Pogue, B. W. Cerenkov excited fluorescence tomography using external beam radiation. Opt. Lett. 38, 1364–1366 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Keereweer, S. et al. Image-guided surgery in head and neck cancer: current practice and future directions of optical imaging. Head Neck 34, 120–126 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Mitchell, G. S., Gill, R. K., Boucher, D. L., Li, C. & Cherry, S. R. In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Phil. Trans. A Math. Phys. Eng. Sci. 369, 4605–4619 (2011).

    Article  CAS  Google Scholar 

  24. Das, S., Thorek, D. L. & Grimm, J. Cerenkov imaging. Adv. Cancer Res 124, 213–234 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lin, H. et al. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation. Phys. Med Biol. 61, 3955–3968 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Dsouza, A. et al. Cherenkov-excited multi-fluorophore sensing in tissue-simulating phantoms and in vivo. Radiat. Res. (in the press).

  27. Esipova, T. V. et al. Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging. Anal. Chem. 83, 8756–8765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Czupryna, J. et al. Cerenkov-specific contrast agents for detection of pH in vivo. J. Nucl. Med 56, 483–488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holt, R. W. et al. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies. Phys. Med Biol. 59, 5317–5328 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang, R. et al. Cerenkov radiation emission and excited luminescence (CREL) sensitivity during external beam radiation therapy: Monte Carlo and tissue oxygenation phantom studies. Biomed. Opt. Express 3, 2381–2394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lehmann, S. et al. In vivo fluorescence imaging of the activity of CEA TCB, a novel T-cell bispecific antibody, reveals highly specific tumor targeting and fast induction of T-cell-mediated tumor killing. Clin. Cancer Res. 22, 4417–4427 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Tang, Q. et al. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography. Biomed. Opt. Express 7, 5218–5232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kepshire, D. S. et al. Imaging of glioma tumor with endogenous fluorescence tomography. J. Biomed. Opt. 14, 030501 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dehghani, H. et al. Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction. Commun. Numer. Methods Eng. 25, 711–732 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jermyn, M. et al. Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography. J. Biomed. Opt. 18, 86007 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Congressionally Directed Medical Research Program for Breast Cancer Research Program, US Army USAMRAA contract W81XWH-16-1-0004 and National Institutes of Health research grants R01 EB024498 and R01 EB018464.

Author information

Authors and Affiliations

Authors

Contributions

B.W.P. conceived the study, supervised all aspects of the work and drafted the manuscript; J.F., H.L., P.B., E.P.L., R.Z. and J.R.S. each completed measurements and data analysis as well as designed the experiments, wrote initial parts of the manuscript, and edited the entire manuscript. H.D. and S.C.D. helped design and analyse the tomography work with J.F., and each edited the manuscript. S.A.V. provided the molecular probe, provided advice on experimental design and data analysis and edited the manuscript. D.J.G. and L.A.J. each contributed advice on radiotherapy design and data interpretation, as well as edited the manuscript.

Corresponding author

Correspondence to Brian W. Pogue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, methods, figures, tables and video captions.

Reporting Summary

Supplementary Video 1

Three-dimensional view of a xenograft tumour imaged by CELSI.

Supplementary Video 2

Real-time scanned acquisition of CELSI data in vivo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogue, B.W., Feng, J., LaRochelle, E.P. et al. Maps of in vivo oxygen pressure with submillimetre resolution and nanomolar sensitivity enabled by Cherenkov-excited luminescence scanned imaging. Nat Biomed Eng 2, 254–264 (2018). https://doi.org/10.1038/s41551-018-0220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0220-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer