Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging

Abstract

Positron emission tomography–computed tomography (PET–CT) is the most sensitive molecular imaging modality, but it does not easily allow for rapid temporal acquisition. Ultrafast ultrasound imaging (UUI)—a recently introduced technology based on ultrasonic holography—leverages frame rates of up to several thousand images per second to quantitatively map, at high resolution, haemodynamic, biomechanical, electrophysiological and structural parameters. Here, we describe a pre-clinical scanner that registers PET–CT and UUI volumes acquired simultaneously and offers multiple combinations for imaging. We demonstrate that PET–CT–UUI allows for simultaneous images of the vasculature and metabolism during tumour growth in mice and rats, as well as for synchronized multi-modal cardiac cine-loops. Combined anatomical, functional and molecular imaging with PET–CT–UUI represents a high-performance and clinically translatable technology for biomedical research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PET–CT–UUI set-up and acquisitions.
Fig. 2: Longitudinal PET–UUI imaging monitors the evolution of metabolism and vascularization during tumour growth in a mouse.
Fig. 3: Phenotyping tumours in mice on the basis of bivariate, FDG–ultrafast-power-Doppler histograms.
Fig. 4: PET–CT–UUI of the beating rat heart in a short-axis view.

Similar content being viewed by others

References

  1. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Beyer, T. et al. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41, 1369–1379 (2000).

    CAS  PubMed  Google Scholar 

  4. Hasegawa, B. H. et al. Dual-modality imaging of cancer with SPECT/CT. Technol. Cancer Res. Treat. 1, 449–458 (2002).

    Article  PubMed  Google Scholar 

  5. Schmand, M. et al. BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J. Nucl. Med. 48, 45P (2007).

    Google Scholar 

  6. Judenhofer, M. S. et al. Simultaneous PET–MRI: a new approach for functional and morphological imaging. Nat. Med. 14, 459–465 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Mace, E. et al. Functional ultrasound imaging of the brain. Nat. Methods 8, 662–664 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499–502 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Sieu, L.-A. et al. EEG and functional ultrasound imaging in mobile rats. Nat. Methods 12, 831–834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Osmanski, B.-F., Pezet, S., Ricobaraza, A., Lenkei, Z. & Tanter, M. Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution. Nat. Commun. 5, 5023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herholz, K. & Ebmeier, K. Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol. 10, 667–670 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Han, S. et al. Subregional pattern of striatal dopamine transporter loss on 18F FP-CIT positron emission tomography in patients with pure akinesia with gait freezing. JAMA Neurol. 73, 1477–1484 (2016).

    Article  PubMed  Google Scholar 

  13. Irkle, A. et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat. Commun. 6, 7495 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Molecular Imaging and Contrast Agent Database (MICAD) (National Center for Biotechnology Information, Bethesda, MD, 2004); https://www.ncbi.nlm.nih.gov/books/NBK5330/

  15. Tanter, M. & Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61, 102–119 (2014).

    Article  PubMed  Google Scholar 

  16. Tanter, M. et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med. Biol. 34, 1373–1386 (2008).

    Article  PubMed  Google Scholar 

  17. Provost, J., Lee, W.-N., Fujikura, K. & Konofagou, E. E. Imaging the electromechanical activity of the heart in vivo. Proc. Natl. Acad. Sci. USA 108, 8565–8570 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Imbault, M. et al. Robust sound speed estimation for ultrasound-based hepatic steatosis assessment. Phys. Med. Biol. 62, 3582–3598 (2017).

    Article  PubMed  Google Scholar 

  19. Fernández-Sánchez, M. E. et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523, 92–95 (2015).

    Article  PubMed  Google Scholar 

  20. Demené, C. et al. 4D microvascular imaging based on ultrafast Doppler tomography. NeuroImage 127, 472–483 (2016).

    Article  PubMed  Google Scholar 

  21. Provost, J. et al. 3D ultrafast ultrasound imaging in vivo. Phys. Med. Biol. 59, L1–L13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Timmers, H. J. L. M. et al. Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J. Clin. Oncol. 25, 2262–2269 (2007).

    Article  PubMed  Google Scholar 

  23. Favier, J. et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS ONE 4, e7094 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Letouzé, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 23, 739–752 (2013).

    Article  PubMed  Google Scholar 

  25. Lussey-Lepoutre, C. et al. In vivo detection of succinate by magnetic resonance spectroscopy as a hallmark of SDHx mutations in paraganglioma. Clin. Cancer Res. 22, 1120–1129 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Pouysségur, J., Franchi, A. & Pagès, G. pHi, aerobic glycolysis and vascular endothelial growth factor in tumour growth. Novartis Found. Symp. 240, 186–196 (2001).

    PubMed  Google Scholar 

  27. Pouysségur, J., Franchi, A., Salomon, J. C. & Silvestre, P. Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: its use to dissect the malignant phenotype. Proc. Natl. Acad. Sci. USA 77, 2698–2701 (1980).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Franchi, A., Silvestre, P. & Pouysségur, J. A genetic approach to the role of energy metabolism in the growth of tumor cells: tumorigenicity of fibroblast mutants deficient either in glycolysis or in respiration. Int. J. Cancer 27, 819–827 (1981).

    Article  CAS  PubMed  Google Scholar 

  29. Osmanski, B.-F. et al. Ultrafast Doppler imaging of blood flow dynamics in the myocardium. IEEE Trans. Med. Imaging 31, 1661–1668 (2012).

    Article  PubMed  Google Scholar 

  30. Pernot, M. et al. Shear wave imaging of passive diastolic myocardial stiffness: stunned versus infarcted myocardium. JACC Cardiovasc. Imaging 9, 1023–1030 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pernot, M. et al. Real-time assessment of myocardial contractility using shear wave imaging. J. Am. Coll. Cardiol. 58, 65–72 (2011).

    Article  PubMed  Google Scholar 

  32. Porter, T. R. & Xie, F. Myocardial perfusion imaging with contrast ultrasound.JACC Cardiovasc. Imaging 3, 176–187 (2010).

    Article  PubMed  Google Scholar 

  33. Papadacci, C., Tanter, M., Pernot, M. & Fink, M. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61, 986–996 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maresca, D. et al. Noninvasive imaging of the coronary vasculature using ultrafast ultrasound. JACC Cardiovasc. Imaging https://doi.org/10.1016/j.jcmg.2017.05.021 (2017).

  35. Piert, M. et al. 18F-choline PET/MRI: the additional value of PET for MRI-guided transrectal prostate biopsies. J. Nucl. Med. 57, 1065–1070 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Porporato, P. E., Dhup, S., Dadhich, R. K., Copetti, T. & Sonveaux, P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front. Pharmacol. 2, 49 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Konofagou, E. E., D’hooge, J. & Ophir, J. Myocardial elastography—a feasibility study in vivo. Ultrasound Med. Biol. 28, 475–482 (2002).

    Article  PubMed  Google Scholar 

  39. Martín, A. et al. Imaging of perfusion, angiogenesis, and tissue elasticity after stroke. J. Cereb. Blood Flow. Metab. 32, 1496–1507 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ostergaard, L. et al. The relationship between tumor blood flow, angiogenesis, tumor hypoxia, and aerobic glycolysis. Cancer Res. 73, 5618–5624 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Schwaab, J. et al. First steps toward ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging. Front. Oncol. 5, 258 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Walker, W. F. & Trahey, G. E.A fundamental limit on the performance of correlation based phase correction and flow estimation techniques. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 41, 644–654 (1994).

    Article  Google Scholar 

  43. Provost, J., Thiébaut, S., Luo, J. & Konofagou, E. E. Single-heartbeat electromechanical wave imaging with optimal strain estimation using temporally-unequispaced acquisition sequences. Phys. Med. Biol. 57, 1095–1112 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hingot, V., Errico, C., Tanter, M. & Couture, O. Subwavelength motion-correction for ultrafast ultrasound localization microscopy. Ultrasonics 77, 17–21 (2017).

    Article  PubMed  Google Scholar 

  45. Luo, J. & Konofagou, E. E.High-frame rate, full-view myocardial elastography with automated contour tracking in murine left ventricles in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 240–248 (2008).

    Article  PubMed  Google Scholar 

  46. Lee, W.-N., Provost, J., Fujikura, K., Wang, J. & Konofagou, E. E. In vivo study of myocardial elastography under graded ischemia conditions. Phys. Med. Biol. 56, 1155–1172 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Denarie, B. et al. Coherent plane wave compounding for very high frame rate ultrasonography of rapidly moving targets. IEEE Trans. Med. Imaging 32, 1265–1276 (2013).

    Article  PubMed  Google Scholar 

  48. Szanda, I. et al. National Electrical Manufacturers Association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner. J. Nucl. Med. 52, 1741–1747 (2011).

    Article  PubMed  Google Scholar 

  49. Styner, M. & Gerig, G. Evaluation of 2D/3D Bias Correction with 1+ 1ES-Optimization (ETH, Zurich, 1997).

  50. Wells, W. M., Viola, P., Atsumi, H., Nakajima, S. & Kikinis, R. Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1, 35–51 (1996).

    Article  PubMed  Google Scholar 

  51. Montaldo, G., Tanter, M., Bercoff, J., Benech, N. & Fink, M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 489–506 (2009).

    Article  PubMed  Google Scholar 

  52. Bercoff, J. et al. Ultrafast compound Doppler imaging: providing full blood flow characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58, 134–147 (2011).

    Article  PubMed  Google Scholar 

  53. Mace, E. et al. Functional ultrasound imaging of the brain: theory and basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60, 492–506 (2013).

    Article  PubMed  Google Scholar 

  54. Demene, C. et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fUltrasound sensitivity. IEEE Trans. Med. Imaging 34, 2271–2285 (2015).

    Article  PubMed  Google Scholar 

  55. Wu, I., Wang, H., Huso, D. & Wahl, R. L. Optimal definition of biological tumor volume using positron emission tomography in an animal model. EJNMMI Res. 5, 58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by France Life Imaging grant ANR-11-INBS-0006. The authors are grateful to O. Clément and A. Tedgui for constant support, and to K. Tzavella, G. Leenders, L. Bao and X. Zhang for help with the image co-registration software. This work was supported in part by LABEX WIFI (Laboratory of Excellence ANR-10-LABX-24) within the French programme 'Investments for the Future' under reference ANR-10-IDEX-0001-02 PSL and by a grant from the Plan Cancer Physicancer programme BIMUPET (C16025KS). In vivo imaging was performed at the Life Imaging Facility of Paris Descartes University (Plateforme Imageries du Vivant), supported by France Life Imaging (grant ANR-11-INBS-0006) and Infrastructures Biologie-Santé. The project also received the support of the Institut National de la Santé et de la Recherche Médicale (Inserm) Technology Research Accelerator in Biomedical Ultrasound.

Author information

Authors and Affiliations

Authors

Contributions

J.Pr., A.G., M.T. and B.T. designed the experiments. J.Pr., A.G., J.S., D.B., B.B., T.V. and M.P.-L. performed the experiments. J.Pr., A.G., J.S., D.B., B.B., T.V., M.P.-L., M.C., M.P. and B.T. analysed the data. C.L.-L., J.F. and J.Po. provided original material to perform the experiments. J.Pr., A.G., M.T. and B.T. wrote the paper.

Corresponding authors

Correspondence to Mickael Tanter or Bertrand Tavitian.

Ethics declarations

Competing interests

M.T. is a co-founder and shareholder of Supersonic Imagine. All other authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Videos

Supplementary Video 1

PET–CT–ultrafast Doppler imaging of a xenografted tumour in a mouse

Supplementary Video 2

Evolution of FDG uptake and vasculature during the growth of a subcutaneous tumour in a mouse

Supplementary Video 3

Co-registered FDG uptake and vasculature in tumours with different metabolic pathways, and their corresponding bivariate histograms

Supplementary Video 4

Overlaid ECG-gated PET–UU B-mode cine-loops in two sections 3 mm apart in a rat heart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Provost, J., Garofalakis, A., Sourdon, J. et al. Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging. Nat Biomed Eng 2, 85–94 (2018). https://doi.org/10.1038/s41551-018-0188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0188-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing