Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiplexed imaging for diagnosis and therapy

Abstract

Complex molecular and metabolic phenotypes depict cancers as a constellation of different diseases with common themes. Precision imaging of such phenotypes requires flexible and tunable modalities capable of identifying phenotypic fingerprints by using a restricted number of parameters while ensuring sensitivity to dynamic biological regulation. Common phenotypes can be detected by in vivo imaging technologies, and effectively define the emerging standards for disease classification and patient stratification in radiology. However, for the imaging data to accurately represent a complex fingerprint, the individual imaging parameters need to be measured and analysed in relation to their wider spatial and molecular context. In this respect, targeted palettes of molecular imaging probes facilitate the detection of heterogeneity in oncogene-driven alterations and their response to treatment, and lead to the expansion of rational-design elements for the combination of imaging experiments. In this Review, we evaluate criteria for conducting multiplexed imaging, and discuss its opportunities for improving patient diagnosis and the monitoring of therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. NIH Research: A Q&A with Harold Varmus, M.D., Director, National Cancer Institute. MedlinePlus7, 2–3 (Winter 2013); https://medlineplus.gov/magazine/issues/winter13/articles/winter13pg2-3.html

  2. Biankin, A. V., Piantadosi, S. & Hollingsworth, S. J. Patient-centric trials for therapeutic development in precision oncology. Nature526, 361–370 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature483, 570–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alam, I. S., Arshad, M. A., Nguyen, Q. D. & Aboagye, E. O. Radiopharmaceuticals as probes to characterize tumour tissue. Eur. J. Nucl. Med. Mol. Imaging42, 537–561 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Del Monte, U. Does the cell number 10(9) still really fit one gram of tumor tissue? Cell Cycle8, 505–506 (2009).

    Article  PubMed  Google Scholar 

  6. Contractor, K. et al. Use of [11C]choline PET-CT as a noninvasive method for detecting pelvic lymph node status from prostate cancer and relationship with choline kinase expression. Clin. Cancer Res.17, 7673–7683 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Freitag, M. T. et al. Comparison of hybrid 68Ga-PSMA PET/MRI and 68Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging43, 70–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Workman, P. et al. Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J. Natl Cancer Inst.98, 580–598 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. O’Connor, J. P. B. et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol.14, 169–186 (2017).

    Article  PubMed  CAS  Google Scholar 

  10. Aerts, H. J. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol.2, 1636–1642 (2016).

    Article  PubMed  Google Scholar 

  11. Memon, A. A. et al. Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: a micro-PET study on mice with lung tumor xenografts. Cancer Res.69, 873–878 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Dart, D. A., Waxman, J., Aboagye, E. O. & Bevan, C. L. Visualising androgen receptor activity in male and female mice. PLoS ONE8, e71694 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dehdashti, F. et al. Assessment of cellular proliferation in tumors by PET using 18F-ISO-1. J. Nucl. Med.54, 350–357 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Holland, J. P. et al. Annotating MYC status with 89Zr-transferrin imaging. Nat. Med.18, 1586–1591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pourghiasian, M. et al. 18F-AmBF3-MJ9: a novel radiofluorinated bombesin derivative for prostate cancer imaging. Bioorg. Med. Chem.23, 1500–1506 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, X. et al. Automated synthesis of [18F](2S, 4R)-4-fluoroglutamine on a GE TRACERlabTM FX-N Pro module. Appl. Radiat. Isot.112, 110–114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, W. et al. [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity. Proc. Natl Acad. Sci. USA113, 4027–4032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Namavari, M. et al. Synthesis of 2′-deoxy-2′-[18F]fluoro-9-β-d-arabinofuranosylguanine: a novel agent for imaging T-cell activation with PET. Mol. Imaging Biol.13, 812–818 (2011).

    Article  PubMed  Google Scholar 

  19. Witney, T. H. et al. A novel radiotracer to image glycogen metabolism in tumors by positron emission tomography. Cancer Res.74, 1319–1328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Witney, T. H. et al. Preclinical evaluation of 3-18F-fluoro-2,2-dimethylpropionic acid as an imaging agent for tumor detection. J. Nucl. Med.55, 1506–1512 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Hara, T. 11C-choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol. Imaging Biol.4, 267–273 (2002).

    Article  PubMed  Google Scholar 

  22. Smith, G. et al. Radiosynthesis and pre-clinical evaluation of [18F]fluoro-[1,2-2H4]choline. Nucl. Med. Biol.38, 39–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Heiss, P. et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-l-tyrosine in vitro and in vivo. J. Nucl. Med.40, 1367–1373 (1999).

    CAS  PubMed  Google Scholar 

  24. Moses, W. W. Fundamental limits of spatial resolution in PET. Nucl. Instrum. Methods Phys. Res. A648(Suppl. 1), S236–S240 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Gessner, R. & Dayton P. A. Advances in molecular imaging with ultrasound. Mol. Imaging.9, 117–127 (2010).

  26. Paltauf, G., Viator, J. A., Prahl, S. A. & Jacques, S. L. Iterative reconstruction algorithm for optoacoustic imaging. J. Acoust. Soc. Am.112, 1536–1544 (2002).

  27. McCollough, C. H., Leng, S., Yu, L. & Fletcher, J. G. Dual- and multi-energy computed tomography: principles, technical approaches, and clinical applications. Radiology276, 637–653 (2015).

  28. Iriarte, A., Marabini, R., Matej, S., Sorzano, C. O. & Lewitt, R. M. System models for PET statistical iterative reconstruction: a review. Comput. Med. Imaging Graph.48, 30–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Manjon, J. V. et al. MRI denoising using non-local means. Med. Image Anal.12, 514–523 (2008).

    Article  PubMed  Google Scholar 

  30. Lutzweiler, C. & Razansky, D. Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors (Basel)13, 7345–7384 (2013).

    Article  Google Scholar 

  31. Eklund, A., Dufort, P., Forsberg, D. & LaConte, S. M. Medical image processing on the GPU—past, present and future. Med. Image Anal.17, 1073–1094 (2013).

    Article  PubMed  Google Scholar 

  32. Kobayashi, H., Longmire, M. R., Ogawa, M. & Choyke, P. L. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem. Soc. Rev.40, 4626–4648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kobayashi, H., Longmire, M. R., Ogawa, M., Choyke, P. L. & Kawamoto, S. Multiplexed imaging in cancer diagnosis: applications and future advances. Lancet Oncol.11, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Townsend, D. W. Multimodality imaging of structure and function. Phys. Med. Biol.53, R1–R39 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Louie, A. Multimodality imaging probes: design and challenges. Chem. Rev.110, 3146–3195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Behnam Azad, B. & Nimmagadda, S. The new frontiers of multimodality and multi-isotope imaging. Proc. SPIE9083, 908326–908333 (2014).

  37. Chen, D., Dougherty, C. A., Yang, D., Wu, H. & Hong, H. Radioactive nanomaterials for multimodality imaging. Tomography2, 3–16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jennings, L. E. & Long, N. J. ‘Two is better than one’—probes for dual-modality molecular imaging. Chem. Commun. 3511–3524 (2009).

  39. Li, X., Zhang, X. N., Li, X. D. & Chang, J. Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biol. Med.13, 339–348 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Melendez-Alafort, L., Muzzio, P. C. & Rosato, A. Optical and multimodal peptide-based probes for in vivo molecular imaging. Anticancer Agents Med. Chem.12, 476–499 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. James, M. L. & Gambhir, S. S. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev.92, 897–965 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, S. et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin. Cancer Res. 23, 4259–4269 (2017).

    Article  PubMed  Google Scholar 

  43. Aerts, H. J. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun.5, 4006 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Willaime, J. M., Turkheimer, F. E., Kenny, L. M. & Aboagye, E. O. Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys. Med. Biol.58, 187–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Coroller, T. P. et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol.114, 345–350 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yip, S. S. et al. Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer. J. Nucl. Med.58, 569–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Drzezga, A. et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J. Nucl. Med.53, 845–855 (2012).

    Article  PubMed  Google Scholar 

  48. Rosenbaum, S. J., Lind, T., Antoch, G. & Bockisch, A. False-positive FDG PET uptake—the role of PET/CT. Eur. Radiol.16, 1054–1065 (2006).

    Article  PubMed  Google Scholar 

  49. Keidar, Z. et al. PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J. Nucl. Med.45, 1640–1646 (2004).

    PubMed  Google Scholar 

  50. Bluemel, C. et al. Investigating the chemokine receptor 4 as potential theranostic target in adrenocortical cancer patients. Clin. Nucl. Med.42, e29–e34 (2017).

    Article  PubMed  Google Scholar 

  51. Demoin, D. W. et al. PET imaging of extracellular pH in tumors with 64Cu- and 18F-labeled pHLIP peptides: a structure–activity optimization study. Bioconjug. Chem.27, 2014–2023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Geyer, L. L. et al. State of the art: iterative CT reconstruction techniques. Radiology276, 339–357 (2015).

    Article  PubMed  Google Scholar 

  53. Lin, H. H., Chuang, K. S., Chen, S. Y. & Jan, M. L. Recovering the triple coincidence of non-pure positron emitters in preclinical PET. Phys. Med. Biol.61, 1904–1931 (2016).

    Article  PubMed  Google Scholar 

  54. Karp, J. S., Surti, S., Daube-Witherspoon, M. E. & Muehllehner, G. The benefit of time-of-flight in PET imaging: experimental and clinical results. J. Nucl. Med.49, 462–470 (2008).

    Article  PubMed  Google Scholar 

  55. Gonzalez, E., Olcott, P. & Levin, C. Multiplexed molecular imaging with PET: methods to greatly enhance the sensitivity of simultaneous imaging of multiple positron emitting isotopes. J. Nucl. Med.52, 1948 (2011).

    Google Scholar 

  56. Berg, E., Roncali, E., Kapusta, M., Du, J. & Cherry, S. R. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography. Med. Phys.43, 939–950 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Muzic, R. F. & DiFilippo, F. P. PET/MRI—technical review. Semin. Roentgenol.49, 242–254 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Partovi, S. et al. Clinical oncologic applications of PET/MRI: a new horizon. Am. J. Nucl. Med. Mol. Imaging4, 202–212 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Vandenberghe, S. & Marsden, P. K. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys. Med. Biol.60, R115–R154 (2015).

    Article  PubMed  Google Scholar 

  60. Balyasnikova, S. et al. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. Am. J. Nucl. Med. Mol. Imaging2, 458–474 (2012).

    PubMed  PubMed Central  Google Scholar 

  61. Chowdhury, F. U. & Scarsbrook, A. F. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clin. Radiol.63, 241–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Feng, G. et al. A pilot study on the feasibility of real-time calculation of three-dimensional dose distribution for 153Sm-EDTMP radionuclide therapy based on the voxel S-values. Cancer Biother. Radiopharm.25, 345–352 (2010).

    Article  PubMed  CAS  Google Scholar 

  63. Conway, J. R. W., Warren, S. C. & Timpson, P. Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors. Methods http://doi.org/10.1016/j.ymeth.2017.04.014 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Zhu, B., Tan, I.-C., Rasmussen, J. C. & Sevick-Muraca, E. M. Validating the sensitivity and performance of near-infrared fluorescence imaging and tomography devices using a novel solid phantom and measurement approach. Technol. Cancer Res. Treat.11, 95–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Sun, M. et al. An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells. Talanta162, 180–186 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Makhal, K. & Goswami, D. pH effect on two-photon cross section of highly fluorescent dyes using femtosecond two-photon induced fluorescence. J. Fluoresc.27, 339–356 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Karabadzhak, A. G. et al. pHLIP-FIRE, a cell insertion-triggered fluorescent probe for imaging tumors demonstrates targeted cargo delivery in vivo. ACS Chem. Biol.9, 2545–2553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carney, B. et al. Non-invasive PET imaging of PARP1 expression in glioblastoma models. Mol. Imaging Biol.18, 386–392 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Irwin, C. P. et al. PARPi-FL—a fluorescent PARP1 inhibitor for glioblastoma imaging. Neoplasia16, 432–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carlucci, G. et al. Dual-modality optical/PET imaging of PARP1 in glioblastoma. Mol. Imaging Biol.17, 848–855 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stammes, M. A. et al. Pre-clinical evaluation of a cyanine-based SPECT probe for multimodal tumor necrosis imaging. Mol. Imaging Biol.18, 905–915 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stammes, M. A. et al. The necrosis-avid small molecule HQ4-DTPA as a multimodal imaging agent for monitoring radiation therapy-induced tumor cell death. Front. Oncol.6, 221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kimura, R. H., Miao, Z., Cheng, Z., Gambhir, S. S. & Cochran, J. R. A dual-labeled knottin peptide for PET and near-infrared fluorescence imaging of integrin expression in living subjects. Bioconjugate Chem.21, 436–444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Paudyal, P. et al. Dual functional molecular imaging probe targeting CD20 with PET and optical imaging. Oncol. Rep.22, 115–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Sampath, L. et al. Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J. Nucl. Med.48, 1501–1510 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Guo, W. et al. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable cerenkov luminescence. ACS Nano9, 488–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Nahrendorf, M. et al. Hybrid PET-optical imaging using targeted probes. Proc. Natl Acad. Sci. USA107, 7910–7915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Carpenter, C. M. et al. Cerenkov luminescence endoscopy: improved molecular sensitivity with β-emitting radiotracers. J. Nucl. Med.55, 1905–1909 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Das, S., Thorek, D. L. J. & Grimm, J. Cerenkov imaging. Adv. Cancer Res.124, 213–234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Robertson, R. et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol.54, N355–N365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Holland, J. P., Normand, G., Ruggiero, A., Lewis, J. S. & Grimm, J. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol. Imaging10, 177–186 (2011).

    Article  PubMed  Google Scholar 

  82. Spinelli, A. E. et al. First human Cerenkography. J. Biomed. Opt.18, 020502 (2013).

    Article  CAS  Google Scholar 

  83. Thorek, D. L., Riedl, C. C. & Grimm, J. Clinical Cerenkov luminescence imaging of 18F-FDG. J. Nucl. Med.55, 95–98 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Kotagiri, N., Sudlow, G. P., Akers, W. J. & Achilefu, S. Breaking the depth dependency of phototherapy with Cerenkov radiation and low radiance responsive nanophotosensitizers. Nat. Nanotech.10, 370–379 (2015).

    Article  CAS  Google Scholar 

  85. Li, J. et al. Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. Phys. Med. Biol.60, 727–739 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Thorek, D. L. J., Ogirala, A., Beattie, B. J. & Grimm, J. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med.19, 1345–1350 (2013).

  87. Perlman, O., Weitz, I. S. & Azhari, H. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys. Med. Biol.60, 5767–5783 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Wu, J. et al. Efficacy of contrast-enhanced US and magnetic microbubbles targeted to vascular cell adhesion molecule–1 for molecular imaging of atherosclerosis. Radiology260, 463–471 (2011).

    Article  PubMed  Google Scholar 

  89. Kiessling, F. et al. Targeted ultrasound imaging of cancer: an emerging technology on its way to clinics. Curr. Pharm. Design18, 2184–2199 (2012).

    Article  CAS  Google Scholar 

  90. Kogan, P., Gessner, R. C. & Dayton, P. A. Microbubbles in imaging: applications beyond ultrasound. Bubble Sci. Eng. Technol.2, 3–8 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sciallero, C., Balbi, L., Paradossi, G. & Trucco, A. Magnetic resonance and ultrasound contrast imaging of polymer-shelled microbubbles loaded with iron oxide nanoparticles. R. Soc. Open Sci. 3, 160063 (2016).

  92. Dasgupta, A. et al. Ultrasound-mediated drug delivery to the brain: principles, progress and prospects. Drug Discov. Today Technol.20, 41–48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Napoli, A. et al. MR-guided high-intensity focused ultrasound: current status of an emerging technology. Cardiovasc. Intervent. Radiol.36, 1190–1203 (2013).

    Article  PubMed  Google Scholar 

  94. Wang, S., Lin, J., Wang, T., Chen, X. & Huang, P. Recent advances in photoacoustic imaging for deep-tissue biomedical applications. Theranostics6, 2394–2413 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Beard, P. Biomedical photoacoustic imaging. Interface Focus1, 602 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gerling, M. et al. Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound. Theranostics4, 604–613 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Laufer, J. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt.17, 056016 (2012).

    Article  PubMed  CAS  Google Scholar 

  98. Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods13, 639–650 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Li, W. & Chen, X. Gold nanoparticles for photoacoustic imaging. Nanomedicine10, 299–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Gao, F. et al. Rationally encapsulated gold nanorods improving both linear and nonlinear photoacoustic imaging contrast in vivo. Nanoscale9, 79–86 (2016).

    Article  PubMed  CAS  Google Scholar 

  101. Copland, J. A. et al. Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol. Imaging Biol.6, 341–349 (2004).

    Article  PubMed  Google Scholar 

  102. Zhou, M. et al. Photoacoustic- and magnetic resonance-guided photothermal therapy and tumor vasculature visualization using theranostic magnetic gold nanoshells. J. Biomed. Nanotechnol.11, 1442–1450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. An, H. W. et al. Self-assembled NIR nanovesicles for long-term photoacoustic imaging in vivo. Chem. Commun.51, 13488–13491 (2015).

    Article  CAS  Google Scholar 

  104. Baac, H. W., Ok, J. G., Lee, T. & Guo, L. J. Nano-structural characteristics of carbon nanotube–polymer composite films for high-amplitude optoacoustic generation. Nanoscale7, 14460–14468 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Pu, K. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotech.9, 233–239 (2014).

    Article  CAS  Google Scholar 

  106. Liu, Z., Chen, W., Li, Y. & Xu, Q. Integrin αvβ3-targeted C-dot nanocomposites as multifunctional agents for cell targeting and photoacoustic imaging of superficial malignant tumors. Anal. Chem.88, 11955–11962 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Knieling, F. et al. multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N. Engl. J. Med.376, 1292–1294 (2017).

    Article  PubMed  Google Scholar 

  108. Kijanka, M. M. et al. Optical imaging of pre-invasive breast cancer with a combination of VHHs targeting CAIX and HER2 increases contrast and facilitates tumour characterization. EJNMMI Res.6, 14 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sano, K., Mitsunaga, M., Nakajima, T., Choyke, P. L. & Kobayashi, H. In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores. Breast Cancer Res.14, R61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods10, 751–754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sato, K. et al. Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates. Mol. Biosyst.12, 3046–3056 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tichauer, K. M., Wang, Y., Pogue, B. W. & Liu, J. T. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging. Phys. Med. Biol.60, R239–R269 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gunn, R. N. et al. A general method to correct PET data for tissue metabolites using a dual-scan approach. J. Nucl. Med.41, 706–711 (2000).

    CAS  PubMed  Google Scholar 

  114. Moradi, F. & Iagaru, A. Dual-tracer imaging of malignant bone involvement using PET. Clin. Transl. Imaging3, 123–131 (2015).

    Article  Google Scholar 

  115. Anderson, H. et al. Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br. J. Cancer89, 262–267 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Palmowski, M. et al. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol. Cancer Ther.7, 101–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Ma, D. et al. Magnetic resonance fingerprinting. Nature495, 187–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yu, A. C. et al. Development of a combined MR fingerprinting and diffusion examination for prostate cancer. Radiology283, 729–738 (2017).

    Article  PubMed  Google Scholar 

  119. Brandmaier, P. et al. Simultaneous [18F]FDG-PET/MRI: correlation of apparent diffusion coefficient (ADC) and standardized uptake value (SUV) in primary and recurrent cervical cancer. PLoS ONE10, e0141684 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schwenzer, N. F. et al. Measurement of apparent diffusion coefficient with simultaneous MR/positron emission tomography in patients with peritoneal carcinomatosis: comparison with 18F-FDG-PET. J. Magn. Reson. Imaging40, 1121–1128 (2014).

    Article  PubMed  Google Scholar 

  121. Bitencourt, A. G. et al. Multiparametric evaluation of breast lesions using PET-MRI: initial results and future perspectives. Medicine93, e115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Schmidt, H. et al. Correlation of simultaneously acquired diffusion-weighted imaging and 2-deoxy-[18F] fluoro-2-D-glucose positron emission tomography of pulmonary lesions in a dedicated whole-body magnetic resonance/positron emission tomography system. Invest. Radiol.48, 247–255 (2013).

    Article  PubMed  Google Scholar 

  123. Shields, A. F. et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med.4, 1334–1336 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Kiesewetter, D. O. et al. Preparation of four fluorine- 18-labeled estrogens and their selective uptakes in target tissues of immature rats. J. Nucl. Med.25, 1212–1221 (1984).

    CAS  PubMed  Google Scholar 

  125. Kurihara, H., Honda, N., Kono, Y. & Arai, Y. Radiolabelled agents for PET imaging of tumor hypoxia. Curr. Med. Chem.19, 3282–3289 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Farwell, M. D., Pryma, D. A. & Mankoff, D. A. PET/CT imaging in cancer: current applications and future directions. Cancer120, 3433–3445 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Doran, M. G. et al. Annotating STEAP1 regulation in prostate cancer with 89Zr immuno-PET. J. Nucl. Med.55, 2045–2049 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Arbit, E. et al. Quantitative studies of monoclonal antibody targeting to disialoganglioside GD2 in human brain tumors. Eur. J. Nucl. Med.22, 419–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. Warnders, F. J. et al. Biodistribution and PET Imaging of labeled bispecific T cell-engaging antibody targeting EpCAM. J. Nucl. Med.57, 812–817 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Benezra, M. et al. Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model. Neoplasia14, 1132–1143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dunphy, M. P. et al. Dosimetry of 18F-labeled tyrosine kinase inhibitor SKI-249380, a dasatinib-tracer for PET imaging. Mol. Imaging Biol.14, 25–31 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Taldone, T. et al. Radiosynthesis of the iodine-124 labeled Hsp90 inhibitor PU-H71. J. Labelled Comp. Radiopharm.59, 129–132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Arulappu, A. et al. c-Met PET imaging detects early-stage locoregional recurrence of basal-like breast cancer. J. Nucl. Med.57, 765–770 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Zeglis, B. M. & Lewis, J. S. A practical guide to the construction of radiometallated bioconjugates for positron emission tomography. Dalton Trans.40, 6168–6195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tanaka, M. et al. Increased levels of IgG antibodies against peptides of the prostate stem cell antigen in the plasma of pancreatic cancer patients. Oncol. Rep.18, 161–166 (2007).

    CAS  PubMed  Google Scholar 

  136. England, C. G. et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J. Nucl. Med.58, 162–168 (2016).

    Article  PubMed  CAS  Google Scholar 

  137. Tavare, R. et al. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc. Natl Acad. Sci. USA111, 1108–1113 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Heskamp, S. et al. Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti-PD-L1 antibodies. Cancer Res.75, 2928–2936 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Benezra, M. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest.121, 2768–2780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gaedicke, S. et al. Noninvasive positron emission tomography and fluorescence imaging of CD133+ tumor stem cells. Proc. Natl Acad. Sci. USA111, E692–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nagengast, W. B. et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J. Nucl. Med.48, 1313–1319 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Higashikawa, K. et al. 64Cu-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS ONE9, e109866 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Larimer, B. M., Wehrenberg-Klee, E., Caraballo, A. & Mahmood, U. Quantitative CD3 PET imaging predicts tumor growth response to anti-CTLA-4 therapy. J. Nucl. Med.57, 1607–1611 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Harvey, J. D. et al. A carbon nanotube reporter of microRNA hybridization events in vivo. Nat. Biomed. Eng.1, 0041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Knight, J. C. & Cornelissen, B. Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) imaging and therapy. Am. J. Nucl. Med. Mol. Imaging4, 96–113 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Adumeau, P. et al. A pretargeted approach for the multimodal PET/NIRF imaging of colorectal cancer. Theranostics6, 2267–2277 (2014).

  147. Cook, B. E. et al. Pretargeted PET imaging using a site-specifically labeled immunoconjugate. Bioconjugate Chem.27, 1789–1795 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Houghton, J. L. et al. Establishment of the in vivo efficacy of pretargeted radioimmunotherapy utilizing inverse electron demand diels-alder click chemistry. Mol. Cancer Ther.16, 124–133 (2016).

  149. Stoffels, I. et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl. Med.7, 317ra199 (2015).

    Article  PubMed  CAS  Google Scholar 

  150. Taruttis, A. et al. Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology281, 256–263 (2016).

    Article  PubMed  Google Scholar 

  151. Aguirre, J. et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng.1, 0068 (2017).

    Article  Google Scholar 

  152. Valluru, K. S. & Willmann, J. K. Clinical photoacoustic imaging of cancer. Ultrasonography35, 267–280 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Lin, F. I. et al. Prospective comparison of combined 18F-FDG and 18F-NaF PET/CT vs. 18F-FDG PET/CT imaging for detection of malignancy. Eur. J. Nucl. Med. Mol. Imaging39, 262–270 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Even-Sapir, E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J. Nucl. Med.46, 1356–1367 (2005).

    PubMed  Google Scholar 

  155. Ho, C. L., Chen, S., Yeung, D. W. & Cheng, T. K. Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J. Nucl. Med.48, 902–909 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Cheson, B. D. et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J. Clin. Oncol.32, 3059–3068 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Rauscher, I. et al. Value of 68Ga-PSMA HBED-CC PET for the assessment of lymph node metastases in prostate cancer patients with biochemical recurrence: comparison with histopathology after salvage lymphadenectomy. J. Nucl. Med.57, 1713–1719 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. von Below, C. et al. Validation of 3 T MRI including diffusion-weighted imaging for nodal staging of newly diagnosed intermediate- and high-risk prostate cancer. Clin. Radiol.71, 328–334 (2016).

    Article  Google Scholar 

  159. Asenbaum, U. et al. Evaluation of [18F]-FDG-based hybrid imaging combinations for assessment of bone marrow involvement in lymphoma at initial staging. PLoS ONE11, e0164118 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Nelson, S. J. et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci. Transl. Med.5, 198ra108 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med.7, 302ra133 (2015).

    Article  PubMed  Google Scholar 

  162. Johnson, P. et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N. Engl. J. Med.374, 2419–2429 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Linden, H. M. et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J. Clin. Oncol.24, 2793–2799 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Kurland, B. F. et al. Estrogen receptor binding (18F-FES PET) and glycolytic activity (18F-FDG PET) predict progression-free survival on endocrine therapy in patients with ER+ breast cancer. Clin. Cancer Res. 23, 407–415 (2017).

  165. Ulaner, G. A. et al. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-trastuzumab PET/CT. J. Nucl. Med.57, 1523–1528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Takeuchi, W. et al. Simultaneous Tc-99m and I-123 dual-radionuclide imaging with a solid-state detector-based brain-SPECT system and energy-based scatter correction. EJNMMI Phys.3, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Bailliez, A. et al. Left ventricular function assessment using 2 different cadmium-zinc-telluride cameras compared with a gamma-camera with cardiofocal collimators: dynamic cardiac phantom study and clinical validation. J. Nuclear Med.57, 1370–1375 (2016).

    Article  CAS  Google Scholar 

  168. Guo, Z. et al. Simultaneous SPECT imaging of multi-targets to assist in identifying hepatic lesions. Sci. Rep.6, 28812 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rakvongthai, Y., El Fakhri, G., Lim, R., Bonab, A. A. & Ouyang, J. Simultaneous 99mTc-MDP/123I-MIBG tumor imaging using SPECT-CT: phantom and constructed patient studies. Med. Phys.40, 102506 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Palmowski, M. et al. Simultaneous dual-isotope SPECT/CT with 99mTc- and 111In-labelled albumin microspheres in treatment planning for SIRT. Eur. Radiol.23, 3062–3070 (2013).

    Article  PubMed  Google Scholar 

  171. Kadrmas, D. J., Frey, E. C. & Tsui, B. M. Simultaneous technetium-99m/thallium-201 SPECT imaging with model-based compensation for cross-contaminating effects. Phys. Med. Biol.44, 1843–1860 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bieniosek, M. F., Cates, J. W. & Levin, C. S. A multiplexed TOF and DOI capable PET detector using a binary position sensitive network. Phys. Med. Biol.61, 7639–7651 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kadrmas, D. J., Rust, T. C. & Hoffman, J. M. Single-scan dual-tracer FLT+FDG PET tumor characterization. Phys. Med. Biol.58, 429–449 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Saleem, A. et al. Metabolic activation of temozolomide measured in vivo using positron emission tomography. Cancer Res.63, 2409–2415 (2003).

    CAS  PubMed  Google Scholar 

  175. Dimitrakopoulou-Strauss, A. et al. Intravenous and intra-arterial oxygen-15-labeled water and fluorine-18-labeled fluorouracil in patients with liver metastases from colorectal carcinoma. J. Nucl. Med.39, 465–473 (1998).

    CAS  PubMed  Google Scholar 

  176. Mankoff, D. A. et al. Kinetic analysis of 2-[11C]thymidine PET imaging studies: validation studies. J. Nucl. Med.40, 614–624 (1999).

    CAS  PubMed  Google Scholar 

  177. Aboagye, E. O., Saleem, A., Cunningham, V. J., Osman, S. & Price, P. M. Extraction of 5-fluorouracil by tumor and liver: a noninvasive positron emission tomography study of patients with gastrointestinal cancer. Cancer Res.61, 4937–4941 (2001).

    CAS  PubMed  Google Scholar 

  178. Saleem, A. et al. Modulation of fluorouracil tissue pharmacokinetics by eniluracil: in-vivo imaging of drug action. Lancet355, 2125–2131 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. Gupta, N. et al. Carbogen and nicotinamide increase blood flow and 5-fluorouracil delivery but not 5-fluorouracil retention in colorectal cancer metastases in patients. Clin. Cancer Res.12, 3115–3123 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Rosso, L. et al. A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients. Cancer Res.69, 120–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Gutte, H. et al. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG PET (HyperPET) in 10 dogs with cancer. J. Nucl. Med.56, 1786–1792 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Gutte, H. et al. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner. Am. J. Nucl. Med. Mol. Imaging5, 38–45 (2015).

    CAS  PubMed  Google Scholar 

  183. Zhang, X., Lin, Y. & Gillies, R. J. Tumor pH and its measurement. J. Nucl. Med.51, 1167–1170 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Peeters, S. G. et al. [18F]VM4–037 microPET imaging and biodistribution of two in vivo CAIX-expressing tumor models. Mol. Imaging Biol.17, 615–619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cheal, S. M. et al. Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging41, 985–994 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Minn, I. et al. [64Cu]XYIMSR-06: a dual-motif CAIX ligand for PET imaging of clear cell renal cell carcinoma. Oncotarget7, 56471–56479 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Warren, D. R. & Partridge, M. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study. Phys. Med. Biol.61, 8596–8624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zornhagen, K. W. et al. Micro regional heterogeneity of 64Cu-ATSM and 18F-FDG uptake in canine soft tissue sarcomas: relation to cell proliferation, hypoxia and glycolysis. PLoS ONE10, e0141379 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Zavaleta, C. L. et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc. Natl Acad. Sci. USA110, E2288–E2297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gallo, J. et al. CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew. Chem. Int. Ed.53, 9550–9554 (2014).

    Article  CAS  Google Scholar 

  191. Thakor, A. S. et al. Clinically approved nanoparticle imaging agents. J. Nucl. Med.57, 1833–1837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med.6, 260ra149 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Lyoo, C.H. et al. Image-derived input function derived from a supervised clustering algorithm: methodology and validation in a clinical protocol using [11C](R)-rolipram. PLoS ONE9, e89101 (2014).

    Article  PubMed  Google Scholar 

  194. Liang, D. & Schulder, M. The role of intraoperative magnetic resonance imaging in glioma surgery. Surg. Neurol. Int.3, S320–S327 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Selverstone, B., Sweet, W. H. & Robinson, C. V. The clinical use of radioactive phosphorus in the surgery of brain tumors. Ann. Surg.130, 643–651 (1949).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Povoski, S. P. et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J. Surg. Oncol.7, 11 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Bertsch, D. J., Burak, W. E., Young, D. C., Arnold, M. W. & Martin, E. W. Radioimmunoguided surgery for colorectal cancer. Ann. Surg. Oncol.3, 310–316 (1996).

    Article  CAS  PubMed  Google Scholar 

  198. Camillocci, E. S. et al. A novel radioguided surgery technique exploiting β decays. Sci. Rep.4, 4401 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Mariani, G. et al. Radioguided sentinel lymph node biopsy in breast cancer surgery. J. Nucl. Med.42, 1198–1215 (2001).

    CAS  PubMed  Google Scholar 

  200. Fukui, A. et al. Volumetric analysis using low-field intraoperative magnetic resonance imaging for 168 newly diagnosed supratentorial glioblastomas: effects of extent of resection and residual tumor volume on survival and recurrence. World Neurosurg.98, 73–80 (2017).

    Article  PubMed  Google Scholar 

  201. Giordano, M. et al. Intraoperative magnetic resonance imaging in pediatric neurosurgery: safety and utility. J. Neurosurg. Pediatr.19, 77–84 (2017).

    Article  PubMed  Google Scholar 

  202. Li, P., Qian, R., Niu, C. & Fu, X. Impact of intraoperative MRI-guided resection on resection and survival in patient with gliomas: a meta-analysis. Curr. Med. Res. Opin.33, 621–630 (2017).

    Article  PubMed  Google Scholar 

  203. Senft, C. et al. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol.12, 997–1003 (2011).

    Article  PubMed  Google Scholar 

  204. Siddiqui, M. et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA313, 390–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Belykh, E. et al. Intraoperative fluorescence imaging for personalized brain tumor resection: current state and future directions. Front. Surg.3, 55 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Yi, X., Wang, F., Qin, W., Yang, X. & Yuan, J. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int. J. Nanomed.9, 1347–1365 (2014).

    Article  Google Scholar 

  207. Zou, L. et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics6, 762–772 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Couper, G. W. et al. Detection of response to chemotherapy using positron emission tomography in patients with oesophageal and gastric cancer. Br. J. Surg.85, 1403–1406 (1998).

    Article  CAS  PubMed  Google Scholar 

  209. Avril, S. et al. 18F-FDG PET/CT for monitoring of treatment response in breast cancer. J. Nucl. Med.57, 34S–39S (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Soydal, C. et al. prognostic importance of bone marrow uptake on baseline 18F-FDG positron emission tomography in diffuse large B cell lymphoma. Cancer Biother. Radiopharm.31, 361–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Baxevanis, C. N., Perez, S. A. & Papamichail, M. Cancer immunotherapy. Crit. Rev. Clin. Lab. Sci.46, 167–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer4, 11–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  213. Chen, Z.-Y., Liang, K. & Qiu, R.-X. Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis. J. Exp. Clin. Cancer Res.29, 152 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Shah, K., Jacobs, A., Breakefield, X. O. & Weissleder, R. Molecular imaging of gene therapy for cancer. Gene Ther.11, 1175–1187 (2004).

    Article  CAS  PubMed  Google Scholar 

  215. Zhang, Y. & Lovell, J. F. Porphyrins as theranostic agents from prehistoric to modern times. Theranostics2, 905–915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Weerakkody, D. et al. Novel pH-sensitive cyclic peptides. Sci. Rep.6, 31322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Mekuria, S. L., Debele, T. A., Chou, H. Y. & Tsai, H. C. IL-6 antibody and RGD peptide conjugated poly(amidoamine) dendrimer for targeted drug delivery of HeLa cells. J. Phys. Chem. B120, 123–130 (2016).

    Article  CAS  PubMed  Google Scholar 

  218. Guo, J. et al. 18F-alfatide II and 18F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy. J. Nucl. Med.55, 154–160 (2014).

    Article  CAS  PubMed  Google Scholar 

  219. Shields, A. F. et al. Carbon-11-thymidine and FDG to measure therapy response. J. Nucl. Med.39, 1757–1762 (1998).

    CAS  PubMed  Google Scholar 

  220. Yang, M. et al. Multiplexed PET probes for imaging breast cancer early response to VEGF121/rGel treatment. Mol. Pharm.8, 621–628 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Deppen, S. A. et al. Safety and efficacy of 68Ga-DOTATATE PET/CT for diagnosis, staging, and treatment management of neuroendocrine tumors. J. Nucl. Med.57, 708–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Sun, L. C. & Coy, D. H. Somatostatin receptor-targeted anti-cancer therapy. Curr. Drug Deliv.8, 2–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  223. Wang, L. et al. Somatostatin receptor-based molecular imaging and therapy for neuroendocrine tumors. Biomed. Res. Int.2013, 102819 (2013).

    PubMed  PubMed Central  Google Scholar 

  224. Wang, Z. et al. Imaging and therapy of hSSTR2-transfected tumors using radiolabeled somatostatin analogs. Tumour Biol.34, 2451–2457 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Dubash, S. R. et al. Clinical translation of a click-labeled 18F-octreotate radioligand for imaging neuroendocrine tumors. J. Nucl. Med.57, 1207–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Cai, X., Yang, F. & Gu, N. Applications of magnetic microbubbles for theranostics. Theranostics2, 103–112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Jolesz, F. A. MRI-guided focused ultrasound surgery. Annu. Rev. Med.60, 417–430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Niu, C. et al. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials34, 2307–2317 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. Shirato, H. et al. Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.48, 1187–1195 (2000).

    Article  CAS  PubMed  Google Scholar 

  230. Houweling, A. C. et al. Performance of a cylindrical diode array for use in a 1.5 T MR-linac. Phys. Med. Biol.61, N80–N89 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Kerkmeijer, L. G. et al. The MRI-linear accelerator consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front. Oncol.6, 215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Liney, G. P. et al. Technical note: experimental results from a prototype high-field inline MRI-linac. Med. Phys.43, 5188–5194 (2016).

    Article  CAS  PubMed  Google Scholar 

  233. van Zijp, H. M. et al. Minimizing the magnetic field effect in MR-linac specific QA-tests: the use of electron dense materials. Phys. Med. Biol.61, N50–N59 (2016).

    Article  PubMed  CAS  Google Scholar 

  234. Ishikawa, M. et al. Conceptual design of PET-linac system for molecular-guided radiotherapy. Int. J. Radiat. Oncol. Biol. Phys.78, S674 (2010).

    Article  Google Scholar 

  235. Nayak, T. K., Garmestani, K., Baidoo, K. E., Milenic, D. E. & Brechbiel, M. W. PET imaging of tumor angiogenesis in mice with VEGF-A targeted 86Y-CHX-A″-DTPA-bevacizumab. Int. J. Cancer128, 920–926 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Miederer, M., Scheinberg, D. A. & McDevitt, M. R. Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev.60, 1371–1382 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wadas, T. J., Pandya, D. N., Solingapuram Sai, K. K. & Mintz, A. Molecular targeted α-particle therapy for oncologic applications. Am. J. Roentgenol.203, 253–260 (2014).

    Article  Google Scholar 

  238. McLaughlin, M. F. et al. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS ONE8, e54531 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Borchardt, P. E., Yuan, R. R., Miederer, M., McDevitt, M. R. & Scheinberg, D. A. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res.63, 5084–5090 (2003).

    CAS  PubMed  Google Scholar 

  240. Kratochwil, C. et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging41, 2106–2119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Pandya, D. N. et al. Preliminary therapy evaluation of 225Ac-DOTA-c(RGDyK) demonstrates that Cerenkov radiation derived from 225Ac daughter decay can be detected by optical imaging for in vivo tumor visualization. Theranostics6, 698–709 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kueffer, P. J. et al. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc. Natl Acad. Sci. USA110, 6512–6517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wittig, A. et al. Boron analysis and boron imaging in biological materials for boron neutron capture therapy (BNCT). Crit. Rev. Oncol. Hematol.68, 66–90 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors at Imperial College would like to acknowledge programmatic funding from Cancer Research UK and UK Medical Research Council. The authors at Memorial Sloan Kettering Cancer Center would like to acknowledge the National Institutes of Health for financial support, the generous support of The Mr. William H. and Mrs. Alice Goodwin, and the Commonwealth Foundation for Cancer Research as well as The Center for Experimental Therapeutics of Memorial Sloan Kettering Cancer Center. The authors are grateful to S. Poty for reading the manuscript and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric O. Aboagye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary table and references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinzmann, K., Carter, L.M., Lewis, J.S. et al. Multiplexed imaging for diagnosis and therapy. Nat Biomed Eng 1, 697–713 (2017). https://doi.org/10.1038/s41551-017-0131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0131-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer