Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities

Abstract

The structural perfection and multivalency of dendrimers have made them useful for biodelivery and bioactivity via peripheral functionalization and the modulation of core-forming structures and dendrimer generations. Yet only few dendrimers have shown inherent therapeutic activity arising from their inner repeating units. Here, we report the synthesis and characterization of a polyacylthiourea dendrimer with inherent potent anticancer activity and the absence of cytotoxicity in mice. The poly(ethylene glycol)-functionalized fourth generation of the dendrimer, which can be efficiently synthesized from sequential click reactions of orthogonal monomers, displays low in vivo acute and subacute toxicities yet potently inhibits tumour growth and metastasis. The dendrimer’s in vivo anticancer activity arises from the depletion of bioavailable copper and the subsequent inhibition of angiogenesis and cellular proliferation. When compared with some clinically used cytotoxin drugs, the dendrimer exerts inherent anticancer activity via non-cytotoxic pathways and leads to higher therapeutic efficacy, yet without cytotoxin-induced side effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kolate, A. et al. PEG—a versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release192, 67–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kopeček, J. Polymer–drug conjugates: origins, progress to date and future directions. Adv. Drug Del. Rev.65, 49–59 (2013).

    Article  CAS  Google Scholar 

  3. Zelikin, A. N., Ehrhardt, C. & Healy, A. M. Materials and methods for delivery of biological drugs. Nat. Chem.8, 997–1007 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Cabral, H. & Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release190, 465–476 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Shi, J. J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer17, 20–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Werle, M. Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm. Res.25, 500–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Sosnik, A. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing “Generally Recognized As Safe” (GRAS) nanopharmaceuticals: a review. Adv. Drug Del. Rev.65, 1828–1851 (2013).

    Article  CAS  Google Scholar 

  8. Alakhova, D. Y. & Kabanov, A. V. Pluronics and MDR reversal: an update. Mol. Pharm.11, 2566–2578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thota, B. N. S., Urner, L. H. & Haag, R. Supramolecular architectures of dendritic amphiphiles in water. Chem. Rev.116, 2079–2102 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Hsu, H.-J., Bugno, J., Lee, S.-R. & Hong, S. Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1409 (2017).

  11. Khandare, J., Calderon, M., Dagia, N. M. & Haag, R. Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem. Soc. Rev.41, 2824–2848 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Wei, T. et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc. Natl Acad. Sci. USA112, 2978–2983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chauhan, A. S., Diwan, P. V., Jain, N. K. & Tomalia, D. A. Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly(amidoamine) dendrimers. Biomacromolecules10, 1195–1202 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Dernedde, J. et al. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc. Natl Acad. Sci. USA107, 19679–19684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rele, S. M. et al. Dendrimer-like PEO glycopolymers exhibit anti-inflammatory properties. J. Am. Chem. Soc.127, 10132–10133 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Portevin, D. et al. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy. J. Transl. Med.7, 82 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hayder, M. et al. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci. Transl. Med.3, 81ra35 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. Price, C. F. et al. SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS ONE6, e24095 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dufès, C. et al. Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Res.65, 8079–8084 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Al-Jamal, K. T. et al. Systemic antiangiogenic activity of cationic poly-l-lysine dendrimer delays tumor growth. Proc. Natl Acad. Sci. USA107, 3966–3971 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ciepluch, K. et al. Biological properties of new viologen-phosphorus dendrimers. Mol. Pharm.9, 448–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Abdel-Rahman, M. A. & Al-Abd, A. M. Thermoresponsive dendrimers based on oligoethylene glycols: design, synthesis and cytotoxic activity against MCF-7 breast cancer cells. Eur. J. Med. Chem.69, 848–854 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Sliwkowski, M. X. & Mellman, I. Antibody therapeutics in cancer. Science341, 1192–1198 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Scott, A. M., Wolchok, J. D. & Old, L. J. Antibody therapy of cancer. Nat. Rev. Cancer12, 278–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Duncan, R. Polymer therapeutics: top 10 selling pharmaceuticals—What next? J. Control. Release190, 371–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Del. Rev.65, 71–79 (2013).

    Article  CAS  Google Scholar 

  27. Dubacheva, G. V. et al. Superselective targeting using multivalent polymers. J. Am. Chem. Soc.136, 1722–1725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tito, N. B. & Frenkel, D. Optimizing the selectivity of surface-adsorbing multivalent polymers. Macromolecules47, 7496–7509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, W. et al. Redox-hypersensitive organic nanoparticles for selective treatment of cancer cells. Chem. Mater.28, 4440–4446 (2016).

    Article  CAS  Google Scholar 

  30. Barner-Kowollik, C. et al. “Clicking” polymers or just efficient linking: What is the difference? Angew. Chem. Int. Ed.50, 60–62 (2011).

    Article  CAS  Google Scholar 

  31. Xiao, S., Turkyilmaz, S. & Smith, B. D. Convenient synthesis of multivalent zinc(II)–dipicolylamine complexes for molecular recognition. Tetrahedron Lett.54, 861–864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nair, D. P. et al. The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater.26, 724–744 (2014).

    Article  CAS  Google Scholar 

  33. Restani, R. B. et al. Biocompatible polyurea dendrimers with pH-dependent fluorescence. Angew. Chem. Int. Ed.51, 5162–5165 (2012).

    Article  CAS  Google Scholar 

  34. Wang, D., Imae, T. & Miki, M. Fluorescence emission from PAMAM and PPI dendrimers. J. Colloid Interface Sci.306, 222–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, H., Zhao, E., Lam, J. W. Y. & Tang, B. Z. AIE luminogens: emission brightened by aggregation. Mater. Today18, 365–377 (2015).

    Article  CAS  Google Scholar 

  36. Zhang Yuan, W. & Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci. A Polym. Chem.55, 560–574 (2017).

    Article  CAS  Google Scholar 

  37. Hu, R., Leung, N. L. & Tang, B. Z. AIE macromolecules: syntheses, structures and functionalities. Chem. Soc. Rev.43, 4494–4562 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Shen, Y. et al. Multifunctioning pH-responsive nanoparticles from hierarchical self-assembly of polymer brush for cancer drug delivery. AIChE J.54, 2979–2989 (2008).

    Article  CAS  Google Scholar 

  39. Krzewska, S., Pajdowski, L. & Podsiadły, H. Studies on the reaction of copper (II) with thiourea-II: the modification of bjerrum’s method. The determination of equilibrium in simultaneous redox and complexation reactions. J. Inorg. Nucl. Chem.42, 87–88 (1980).

    Article  CAS  Google Scholar 

  40. Campos, C., Guzmán, R., López-Fernández, E. & Casado, Á. Evaluation of the copper(II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: the CUPRAC–BCS assay. Anal. Biochem.392, 37–44 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. El Brahmi, N. et al. Original multivalent copper(II)-conjugated phosphorus dendrimers and corresponding mononuclear copper(II) complexes with antitumoral activities. Mol. Pharm.10, 1459–1464 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Jain, S. et al. Tetrathiomolybdate-associated copper depletion decreases circulating endothelial progenitor cells in women with breast cancer at high risk of relapse. Ann. Oncol.24, 1491–1498 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun, Q. et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater.26, 7615–7621 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, L. et al. Rejection of metastatic 4T1 breast cancer by attenuation of Treg cells in combination with immune stimulation. Mol. Ther.15, 2194–2202 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Larive, R. M. et al. Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease. Nat. Commun.5, 3881 (2014).

  46. Hua, K.-T. et al. N-α-Acetyltransferase 10 protein suppresses cancer cell metastasis by binding PIX proteins and inhibiting Cdc42/Rac1 activity. Cancer Cell19, 218–231 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science319, 195–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Longmire, M., Choyke, P. L. & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine3, 703–717 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Olivares, M., Méndez, M. A., Astudillo, P. A. & Pizarro, F. Present situation of biomarkers for copper status. Am. J. Clin. Nutr.88, 859S–862S (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Kalliolias, G. D. & Ivashkiv, L. B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol.12, 49–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Solinas, A. et al. Acylthiourea, acylurea, and acylguanidine derivatives with potent Hedgehog inhibiting activity. J. Med. Chem.55, 1559–1571 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Antoni, P. et al. Pushing the limits for thiol-ene and CuAAC reactions: synthesis of a 6th generation dendrimer in a single day. Macromolecules43, 6625–6631 (2010).

    Article  CAS  Google Scholar 

  53. Lee, C. C., MacKay, J. A., Frechet, J. M. J. & Szoka, F. C. Designing dendrimers for biological applications. Nat. Biotechnol.23, 1517–1526 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Kesharwani, P., Jain, K. & Jain, N. K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci.39, 268–307 (2014).

    Article  CAS  Google Scholar 

  55. Liu, X. X. et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angew. Chem. Int. Ed.53, 11822–11827 (2014).

    Article  CAS  Google Scholar 

  56. Ornelas, C. Brief timelapse on dendrimer chemistry: advances, limitations, and expectations. Macromol. Chem. Phys.217, 149–174 (2016).

    Article  CAS  Google Scholar 

  57. Shaunak, S. et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat. Biotechnol.22, 977–984 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Lipshultz, S. E., Cochran, T. R., Franco, V. I. & Miller, T. L. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat. Rev. Clin. Oncol.10, 697–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Sahni, V., Choudhury, D. & Ahmed, Z. Chemotherapy-associated renal dysfunction. Nat. Rev. Nephrol.5, 450–462 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Schiff, D., Wen, P. Y. & van den Bent, M. J. Neurological adverse effects caused by cytotoxic and targeted therapies. Nat. Rev. Clin. Oncol.6, 596–603 (2009).

    Article  PubMed  Google Scholar 

  61. Gupte, A. & Mumper, R. J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev.35, 32–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Brady, D. C. et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature509, 492–496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. MacDonald, G. et al. Memo is a copper-dependent redox protein with an essential role in migration and metastasis. Sci. Signal.7, ra56 (2014).

    Article  PubMed  CAS  Google Scholar 

  64. Martin, F. et al. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood105, 4613–4619 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Lazarchick, J. Update on anemia and neutropenia in copper deficiency. Curr. Opin. Hematol.19, 58–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Madsen, E. & Gitlin, J. D. Copper deficiency. Curr. Opin. Gastroenterol.23, 187–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Klevay, L. M. Cardiovascular disease from copper deficiency—a history. J. Nutr.130, 489S–492S (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Olivares, M. & Uauy, R. Copper as an essential nutrient. Am. J. Clin. Nutr.63, 791S–796S (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Volm, M., Koomägi, R. & Mattern, J. Prognostic value of vascular endothelial growth factor and its receptor Flt-1 in squamous cell lung cancer. Int. J. Cancer74, 64–68 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N. Engl. J. Med.324, 1–8 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Hassouneh, B. et al. Tetrathiomolybdate promotes tumor necrosis and prevents distant metastases by suppressing angiogenesis in head and neck cancer. Mol. Cancer Ther.6, 1039–1045 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Schosinsky, K. H., Lehmann, H. P. & Beeler, M. F. Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin. Chem.20, 1556–1563 (1974).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Basic Research Program of China (2014CB931900), the National Natural Science Foundation of China (51390481, U1501243, 51522304, 21090352 and 50888001) and the Doctoral Fund of Ministry of Education of China (20110101130007) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. designed and supervised the project and wrote the manuscript with S.S.; S.S. Q.Z. and J.S. carried out all the experiments; M.W. checked the anticancer activity; X.L., J.G., R.X. and K.W. instructed the bioassays; J.T. instructed the synthesis.

Corresponding author

Correspondence to Youqing Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Zhou, Q., Si, J. et al. A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nat Biomed Eng 1, 745–757 (2017). https://doi.org/10.1038/s41551-017-0130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-017-0130-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing