Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia

Abstract

Molecular imaging probes for biomarker-based diagnosis typically target, with limited sensitivity, a single molecular process or event in a complex biological system. Here, we show that the macromolecular near-infrared poly(ethylene glycol)-conjugated iridium (iii) complex can be designed to successively respond to tumour acidity and hypoxia while amplifying detection sensitivity via signal propagation. We used the probe to detect, by near-infrared imaging, primary tumours and metastatic tumour nodules as small as 1 mm in mice, and to measure the in vivo metabolic rate of cancer cells. We anticipate that probes for imaging coupled biological events with amplified detection sensitivity will offer opportunities for enhanced molecular diagnostics and image-guided biomedical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the dual-stimuli signal-amplification process of the probe and its photophysical properties.
Figure 2: Probe responses to acidity and oxygenation in cell culture, and immunofluorescence staining of tumour sections.
Figure 3: Optical imaging of mice bearing tumour xenografts.
Figure 4: Detection of metastatic liver lesions and orthotopic hepatocellular carcinoma.
Figure 5: Probe responses to drug-induced OCR and ECAR changes.

Similar content being viewed by others

References

  1. Jacobs, T. W., Gown, A. M., Yaziji, H., Barnes, M. J. & Schnitt, S. J. HER-2/neu protein expression in breast cancer evaluated by immunohistochemistry. A study of interlaboratory agreement. Am. J. Clin. Pathol. 113, 251–258 (2000).

    Article  CAS  Google Scholar 

  2. Cheng, T. C., et al. An activity-based near-infrared glucuronide trapping probe for imaging β-glucuronidase expression in deep tissues. J. Am. Chem. Soc. 134, 3103–3110 (2012).

    Article  CAS  Google Scholar 

  3. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer. 11, 671–677 (2011).

    Article  CAS  Google Scholar 

  4. Zhou, K. et al. Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J. Am. Chem. Soc. 134, 7803–7811 (2012).

    Article  CAS  Google Scholar 

  5. Brahimi-Horn, M. C. & Pouysségur, J. Oxygen, a source of life and stress. FEBS Lett. 581, 3582–3591 (2007).

    Article  CAS  Google Scholar 

  6. Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347–361 (2003).

    Article  Google Scholar 

  7. Xue, S. et al. Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging. Proc. Natl Acad. Sci. USA 112, 6607–6612 (2015).

    Article  CAS  Google Scholar 

  8. Oyewumi, M. O., Yokel, R. A., Jay, M., Coakley, T. & Mumper, R. J. Comparison of cell uptake, bio-distribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control. Release 95, 613–626 (2004).

    Article  CAS  Google Scholar 

  9. Han, H. S. et al. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc. Natl Acad. Sci. USA 112, 1350–1355 (2015).

    Article  CAS  Google Scholar 

  10. Voura, E. B., Jaiswal, J. K., Mattoussi, H. & Simon, S. M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 10, 993–998 (2004).

    Article  CAS  Google Scholar 

  11. Ke, S. et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res. 63, 7870–7875 (2003).

    CAS  Google Scholar 

  12. Sokolov, K. et al. Real-time vital optical imaging of pre-cancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999–2004 (2003).

    CAS  PubMed  Google Scholar 

  13. Lee, E. S., Gao, Z. & Bae, Y. H. Recent progress in tumor pH targeting nanotechnology. J. Control. Release 132, 164–170 (2008).

    Article  CAS  Google Scholar 

  14. Ma, X. et al. Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J. Am. Chem. Soc. 136, 11085–11092 (2014).

    Article  CAS  Google Scholar 

  15. Gallo, K., Assanto, G. & Stegeman, G. I. Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides. Appl. Phys. Lett. 71, 1020–1022 (1997).

    Article  CAS  Google Scholar 

  16. Walker-Samuel, S. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013).

    Article  CAS  Google Scholar 

  17. Henze, A. T. et al. Loss of PHD3 allows tumors to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat. Commun. 5, 5582 (2014).

    Article  CAS  Google Scholar 

  18. Chen, H. et al. Selective phosphorescence chemosensor for homocysteine based on an iridium (iii) complex. Inorg. Chem. 46, 11075−11081 (2007).

    Article  CAS  Google Scholar 

  19. Lin, W. et al. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org. Lett. 10, 5577–5580 (2008).

    Article  CAS  Google Scholar 

  20. Denko, N. C. Hypoxia, HIF1 and glucose metabolism in the solid tumor. Nat. Rev. Cancer 8, 705–713 (2008).

    Article  CAS  Google Scholar 

  21. Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 14, 709–721 (2014).

    Article  CAS  Google Scholar 

  22. Shi, P. et al. A smart “sense-act-treat” system: combining a ratiometric pH sensor with a near infrared therapeutic gold nanocage. Adv. Mater. 26, 6635–6641 (2014).

    Article  CAS  Google Scholar 

  23. Sun, D. et al. pH-responsive reversible PEGylation improves performance of antineoplastic agent. Adv. Healthc. Mater. 4, 844–855 (2015).

    Article  CAS  Google Scholar 

  24. Wang, Y. et al. A nanoparticle-based strategy for the imaging of a broad range of tumors by nonlinear amplification of microenvironment signals. Nat. Mater. 13, 204–212 (2014).

    Article  CAS  Google Scholar 

  25. Krishna, M. C. et al. Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. Proc. Natl Acad. Sci. USA 99, 2216–2221 (2002).

    Article  CAS  Google Scholar 

  26. Papkovsky, D. B., Ponomarev, G. V., Trettnak, W. & O’Leary, P. Phosphorescent complexes of porphyrin ketones: optical properties and application to oxygen sensing. Anal. Chem. 67, 4112–4117 (1995).

    Article  CAS  Google Scholar 

  27. Papkovsky, D. B. Methods in optical oxygen sensing: protocols and critical analyses. Methods Enzymol. 381, 715–735 (2004).

    Article  CAS  Google Scholar 

  28. Zheng, X. et al. Hypoxia-specific ultrasensitive detection of tumors and cancer cells in vivo. Nat. Commun. 6, 5834 (2015).

    Article  CAS  Google Scholar 

  29. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).

    Article  CAS  Google Scholar 

  30. Troyan, S. L. et al. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol. 16, 2943–2952 (2009).

    Article  Google Scholar 

  31. Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

    Article  CAS  Google Scholar 

  32. Longo, D. L. et al. In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res. 76, 6463–6470 (2016).

    Article  CAS  Google Scholar 

  33. Jiang, T . et al. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl Acad. Sci. USA. 101, 17867–17872 (2004).

    Article  CAS  Google Scholar 

  34. Savariar, E. N. et al. Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides. Cancer Res. 73, 855–864 (2013).

    Article  CAS  Google Scholar 

  35. Urano, Y. et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat. Med. 15, 104–109 (2009).

    Article  CAS  Google Scholar 

  36. Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–944 (2008).

    Article  CAS  Google Scholar 

  37. Semenza, G. L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365, 537–547 (2011).

    Article  CAS  Google Scholar 

  38. Yu, X., Zhang, Z. L. & Zheng, S. Y. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization. Biosens. Bioelectron. 66, 520–526 (2015).

    Article  CAS  Google Scholar 

  39. Tian, T. et al. Sensitive and convenient detection of microRNAs based on cascade amplification by catalytic DNAzymes. Chem. Eur. J. 19, 92–95 (2013).

    Article  CAS  Google Scholar 

  40. Wang, X. D. et al. Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J. Am. Chem. Soc. 134, 17011–17014 (2012).

    Article  CAS  Google Scholar 

  41. Shuhendler, A. J., Pu, K., Cui, L., Uetrecht, J. P. & Rao, J. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 32, 373–380 (2014).

    Article  CAS  Google Scholar 

  42. Doolittle, E. et al. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis. ACS Nano 9, 8012–8021 (2015).

    Article  CAS  Google Scholar 

  43. Zheng, X. et al. Dataset for ‘Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia’ figsharehttp://dx.doi.org/10.6084/m9.figshare.4729765 (2017).

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant nos. 51690153, 21474045 and 51422303), the Specialized Research Fund for the Doctoral Program of Higher Education, and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Contributions

X.Z., H.M. and X.J. conceived and designed the research. X.Z., D.H. and W.W. performed the experiments. X.Z., H.M., X.J. and B.L. analysed the data and wrote the manuscript. X.J. supervised the project.

Corresponding author

Correspondence to Xiqun Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures, tables, methods and references. (PDF 6892 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Mao, H., Huo, D. et al. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat Biomed Eng 1, 0057 (2017). https://doi.org/10.1038/s41551-017-0057

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-017-0057

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer