Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A transistor-like pH nanoprobe for tumour detection and image-guided surgery

Abstract

It is challenging to detect a broad range of malignant tumours at high resolution, because of profound genetic and histological differences in cancerous tissue. Here, we report the design and performance of a fluorescent nanoprobe with transistor-like responses (transition pH = 6.9) for the detection of deregulated pH, which drives many of the invasive properties of cancer. The nanoprobe amplifies the fluorescence signal in the tumour over that in the surrounding normal tissues, resulting in a discretized, binary output signal with a spatial resolution smaller than 1 mm. The nanoprobe allowed us to image a broad range of tumours in mouse models using a variety of clinical cameras. We were able to perform real-time tumour-acidosis-guided detection and surgery of occult nodules (<1 mm3) in mice bearing head and neck or breast tumours, significantly lengthening mice survivability. We also show that the pH nanoprobe can be used as a reporter in a fast, quantitative assay to screen for tumour-acidosis inhibitors. The binary delineation of pH achieved by the nanoprobe promises to improve the accuracy of cancer detection, surveillance and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pH transistor nanoprobes achieve broad tumour detection specificity.
Figure 2: Comparison between PINS and other commercial NIR probes.
Figure 3: PINS improves cancer detection compared with FDG–PET.
Figure 4: TAGS in mice bearing orthotopic head and neck tumours.
Figure 5: Tumour-acidosis-guided surgery in mice bearing small occult breast tumour nodules.
Figure 6: PINS evaluation of small molecular inhibitors targeting different tumour acidosis pathways.

Similar content being viewed by others

References

  1. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Dam, G. M. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat. Med. 17, 1315–1319 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Veiseh, M. et al. Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res. 67, 6882–6888 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Ke, S. et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res. 63, 7870–7875 (2003).

    CAS  PubMed  Google Scholar 

  5. Koyama, Y. et al. Spectral fluorescence molecular imaging of lung metastases targeting HER2/neu. Clin. Cancer Res. 13, 2936–2945 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Nakajima, T. et al. Targeted, activatable, in vivo fluorescence imaging of prostate-specific membrane antigen (PSMA) positive tumors using the quenched humanized J591 antibody-indocyanine green (ICG) conjugate. Bioconjug. Chem. 22, 1700–1705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jacobs, T. W., Gown, A. M., Yaziji, H., Barnes, M. J. & Schnitt, S. J. HER-2/neu protein expression in breast cancer evaluated by immunohistochemistry. A study of interlaboratory agreement. Am. J. Clin. Pathol. 113, 251–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Paik, S. et al. HER2 and choice of adjuvant chemotherapy for invasive breast cancer: national surgical adjuvant breast and bowel project protocol B-15. J. Natl Cancer Inst. 92, 1991–1998 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Heiden, M. G. V., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  11. Zhu, A., Lee, D. & Shim, H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin. Oncol. 38, 55–69 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Gillies, R. J., Raghunand, N., Garcia-Martin, M. L. & Gatenby, R. A. pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng. Med. Biol. 23, 57–64 (2004).

    Article  Google Scholar 

  14. Volk, T., Jahde, E., Fortmeyer, H. P., Glusenkamp, K. H. & Rajewsky, M. F. pH in human tumour xenografts: effect of intravenous administration of glucose. Br. J. Cancer 68, 492–500 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater. 13, 204–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, K. et al. Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J. Am. Chem. Soc. 134, 7803–7811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Y. et al. Molecular basis of cooperativity in pH-triggered supramolecular self-assembly. Nat. Commun. 7, 13214 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bardeen, J. Research leading to point-contact transistor. Science 126, 105–113 (1957).

    Article  CAS  PubMed  Google Scholar 

  19. Cook, G. J., Wegner, E. A. & Fogelman, I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging. Semin. Nucl. Med. 34, 122–133 (2004).

    Article  PubMed  Google Scholar 

  20. Fukui, M. B. et al. Combined PET–CT in the head and neck: part 2. Diagnostic uses and pitfalls of oncologic imaging. Radiographics 25, 913–930 (2005).

    Article  PubMed  Google Scholar 

  21. Neri, D. & Supuran, C. T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov. 10, 767–777 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cardone, R. A., Casavola, V. & Reshkin, S. J. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat. Rev. Cancer 5, 786–795 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Vishvakarma, N. K. & Singh, S. M. Mechanisms of tumor growth retardation by modulation of pH regulation in the tumor-microenvironment of a murine T cell lymphoma. Biomed. Pharmacother. 65, 27–39 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Lou, Y. et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 71, 3364–3376 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Pacchiano, F. et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J. Med. Chem. 54, 1896–1902 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Gillies, R. J., Raghunand, N., Karczmar, G. S. & Bhujwalla, Z. M. MRI of the tumor microenvironment. J. Magn. Reson. 16, 430–450 (2002).

    Article  Google Scholar 

  28. Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–943 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Parks, S. K., Chiche, J. & Pouyssegur, J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat. Rev. Cancer 13, 611–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Ang, K. K. et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 62, 7350–7356 (2002).

    CAS  PubMed  Google Scholar 

  31. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. More, Y. I. et al. Functional swallowing outcomes following transoral robotic surgery vs primary chemoradiotherapy in patients with advanced-stage oropharynx and supraglottis cancers. JAMA Otolaryngol. Head Neck Surg. 139, 43–48 (2013).

    Article  PubMed  Google Scholar 

  34. Anscher, M. S. et al. Local failure and margin status in early-stage breast carcinoma treated with conservation surgery and radiation therapy. Ann. Surg. 218, 22–28 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmidt-Ullrich, R. et al. Tumor margin assessment as a guide to optimal conservation surgery and irradiation in early stage breast carcinoma. Int. J. Radiat. Oncol. 17, 733–738 (1989).

    Article  CAS  Google Scholar 

  36. Solin, L. J., Fowble, B. L., Schultz, D. J. & Goodman, R. L. The significance of the pathology margins of the tumor excision on the outcome of patients treated with definitive irradiation for early stage breast cancer. Int. J. Radiat. Oncol. 21, 279–287 (1991).

    Article  CAS  Google Scholar 

  37. Holland, R. et al. The presence of an extensive intraductal component following a limited excision correlates with prominent residual disease in the remainder of the breast. J. Clin. Oncol. 8, 113–118 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, K. et al. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. 50, 6109–6114 (2011).

    Article  CAS  Google Scholar 

  39. Matyjaszewski, K. & Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 1, 276–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Ma, X. et al. Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J. Am. Chem. Soc. 136, 11085–11092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01EB013149 and R01CA192221, to J.G.) and Cancer Prevention and Research Institute of Texas (RP140140, to B.D.S. and J.G.). Animal imaging work was supported by the UT Southwestern Small Animal Imaging Resource Grant (U24 CA126608) and Simmons Cancer Center Support Grant (P30 CA142543). We thank J. Sun for animal imaging, L.C. Su for histology analysis, D. Zhao for preparation of the U87 brain tumour model, A. Pavia-Jimenez and J. Brugarolas for the renal PDX model and G. Balch for the peritoneal metastatis model.

Author information

Authors and Affiliations

Authors

Contributions

T.Z., B.D.S and J.G. are responsible for all phases of the research. G.H., S.Y., M.L. and Z.Z. assisted animal surgery, tumour-margin analysis and safety evaluation. Y.L. helped develop the transistor concept and performed TEM analysis. S.R. and X.K.S. designed the FDG–PET experiment and performed image analysis. Z.Q.L. performed the imaging comparison of PINS with other commercial probes. Y.G.W. and E.B. helped with fluorescence imaging and X.P.M. assisted with the design and synthesis of the PEPA polymer. B.D.S. and T.Z. performed the survival surgery in mice bearing head and neck cancer, and breast cancer, respectively. X.J.X. performed the statistical analysis. J.T. interpreted the histology slides. R.A.B. helped establish genetic pancreatic models and histology interpretations.

Corresponding authors

Correspondence to Baran D. Sumer or Jinming Gao.

Ethics declarations

Competing interests

B.D.S. and J.G. are scientific co-founders of OncoNano Medicine, Inc.

Supplementary information

Supplementary Information

Supplementary methods, figures and tables, and video captions. (PDF 3212 kb)

Video 1

Real-time tumour acidosis guided surgery (TAGS) of a HN5 head/neck tumour-bearing mouse using the SPY Elite camera. (MOV 16223 kb)

Video 2

Real-time TAGS of an orthotopic 4T1 breast tumour-bearing mouse using the SPY Elite. (MOV 9731 kb)

Video 3

Real-time TAGS of a small occult breast tumour-bearing mouse using the SPY Elite camera. (MOV 10775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Huang, G., Li, Y. et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat Biomed Eng 1, 0006 (2017). https://doi.org/10.1038/s41551-016-0006

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-016-0006

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer