Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spiral structures in an embedded protostellar disk driven by envelope accretion

Abstract

Hydrodynamical simulations show that a pair of spiral arms can form in the disk around a rapidly growing young star and that the arms are crucial in transporting angular momentum as the disk accretes material from the surrounding envelope1,2,3,4. Here we report the detection of a pair of symmetric spiral structures in a protostellar disk, supporting the formation of spiral arms in the disk around a forming star. The HH 111 VLA 1 source is a young Class I source embedded in a massive infalling protostellar envelope and is actively accreting, driving the prominent HH 111 jet. Previous observations showed a ring of shock emission around the disk’s outer edge5, indicating accretion of the envelope material onto the disk at a high rate. Now with ALMA observations of thermal emission from dust particles, we detect a pair of spiral arms extending from the inner region to the disk’s outer edge, similar to that seen in many simulations1,2,3,4. Additionally, the disk is massive, with a Toomre Q parameter near unity in the outer parts where the spiral structures are detected, supporting the notion that envelope accretion is making the outer disk gravitationally unstable. In our observations, another source, HH 111 VLA 2, is spatially resolved for the first time, showing a disk-like structure with a diameter of ~26 au and an orientation nearly orthogonal to that of the HH 111 VLA 1 disk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The 343 GHz continuum map towards the VLA 1 and 2 sources.
Fig. 2: The spiral structure in the disk around the VLA 1 source.
Fig. 3: Two fits to each of the two spiral features in the VLA 1 disk.

Similar content being viewed by others

Data availability

This Letter makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.00037.S and 2017.1.00044.S. The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Bate, M. R. Collapse of a molecular cloud core to stellar densities: the first three-dimensional calculations. Astrophys. J. Lett. 508, L95–L98 (1998).

    Article  ADS  Google Scholar 

  2. Rice, W. K. M., Armitage, P. J., Bate, M. R. & Bonnell, I. A. The effect of cooling on the global stability of self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc. 339, 1025–1030 (2003).

    Article  ADS  Google Scholar 

  3. Tomida, K., Machida, M. N., Saigo, K., Tomisaka, K. & Matsumoto, T. Exposed long-lifetime first core: a new model of first cores based on radiation hydrodynamics. Astrophys. J. Lett. 725, L239–L244 (2010).

    Article  ADS  Google Scholar 

  4. Harsono, D., Alexander, R. D. & Levin, Y. Global gravitational instabilities in discs with infall. Mon. Not. R. Astron. Soc. 413, 423–433 (2011).

    Article  ADS  Google Scholar 

  5. Lee, C.-F., Hwang, H.-C. & Li, Z.-Y. Angular momentum loss in the envelope–disk transition region of the HH 111 protostellar system: evidence for magnetic braking? Astrophys. J. 826, 213 (2016).

    Article  ADS  Google Scholar 

  6. Pérez, L. M. et al. Spiral density waves in a young protoplanetary disk. Science 353, 1519–1521 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  7. Andrews, S. M. et al. The disk substructures at high angular resolution project (DSHARP). I. Motivation, sample, calibration, and overview. Astrophys. J. Lett. 869, L41 (2018).

    Article  ADS  Google Scholar 

  8. Huang, J. et al. The disk substructures at high angular resolution project (DSHARP). III. Spiral structures in the millimeter continuum of the Elias 27, IM Lup, and WaOph 6 disks. Astrophys. J. Lett. 869, L43 (2018).

    Article  ADS  Google Scholar 

  9. Kurtovic, N. T. et al. The disk substructures at high angular resolution project (DSHARP). IV. Characterizing substructures and interactions in disks around multiple star systems. Astrophys. J. Lett. 869, L44 (2018).

    Article  ADS  Google Scholar 

  10. Hall, C. et al. Is the spiral morphology of the Elias 2–27 circumstellar disc due to gravitational instability? Mon. Not. R. Astron. Soc. 477, 1004–1014 (2018).

    Article  ADS  Google Scholar 

  11. Meru, F. et al. On the origin of the spiral morphology in the Elias 2–27 circumstellar disk. Astrophys. J. Lett. 839, L24 (2017).

    Article  ADS  Google Scholar 

  12. Forgan, D. H., Ilee, J. D. & Meru, F. Are Elias 2–27’s spiral arms driven by self-gravity, or by a companion? A comparative spiral morphology study. Astrophys. J. Lett. 860, L5 (2018).

    Article  ADS  Google Scholar 

  13. Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).

    Article  ADS  Google Scholar 

  14. Gammie, C. F. Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys. J. 553, 174–183 (2001).

    Article  ADS  Google Scholar 

  15. Tobin, J. J. et al. A triple protostar system formed via fragmentation of a gravitationally unstable disk. Nature 538, 483–486 (2016).

    Article  ADS  Google Scholar 

  16. Alves, F. O. et al. Molecular outflow launched beyond the disk edge. Astron. Astrophys. 603, L3 (2017).

    Article  ADS  Google Scholar 

  17. Tomida, K., Machida, M. N., Hosokawa, T., Sakurai, Y. & Lin, C. H. Grand-design spiral arms in a young forming circumstellar disk. Astrophys. J. Lett. 835, L11 (2017).

    Article  ADS  Google Scholar 

  18. Turner, N. J. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 411–432 (Univ. Arizona Press, 2014).

  19. Froebrich, D. Which are the youngest protostars? Determining properties of confirmed and candidate class 0 sources by broadband photometry. Astrophys. J. Suppl. 156, 169–177 (2005).

    Article  ADS  Google Scholar 

  20. Lee, C.-F. A change of rotation profile in the envelope in the HH 111 protostellar system: a transition to a disk? Astrophys. J. 725, 712–720 (2010).

    Article  ADS  Google Scholar 

  21. Reipurth, B., Bally, J. & Devine, D. Giant Herbig-Haro flows. Astron. J. 114, 2708 (1997).

    Article  ADS  Google Scholar 

  22. Lee, C.-F. A rotating disk in the HH 111 protostellar system. Astrophys. J. 741, 62 (2011).

    Article  ADS  Google Scholar 

  23. Lee, C.-F., Li, Z.-Y., Ching, T.-C., Lai, S.-P. & Yang, H. ALMA dust polarization observations of two young edge-on protostellar disks. Astrophys. J. 854, 56 (2018).

    Article  ADS  Google Scholar 

  24. Shu, F. H., Najita, J. R., Shang, H. & Li, Z.-Y. in Protostars and Planets IV (eds Mannings, V. et al.) 789–814 (Univ. Arizona Press, 2000).

  25. Konigl, A. & Pudritz, R. E. in Protostars and Planets IV (eds Mannings, V. et al.) 759–787 (Univ. Arizona Press, 2000).

  26. Sewiło, M. et al. Very Large Array ammonia observations of the HH 111/HH 121 protostellar system: a detection of a new source with a peculiar chemistry. Astrophys. J. 849, 68 (2017).

    Article  ADS  Google Scholar 

  27. Reipurth, B., Raga, A. C. & Heathcote, S. Structure and kinematics of the HH 111 jet. Astrophys. J. 392, 145 (1992).

    Article  ADS  Google Scholar 

  28. Bae, J. & Zhu, Z. Planet-driven spiral arms in protoplanetary disks. II. Implications. Astrophys. J. 859, 119 (2018).

    Article  ADS  Google Scholar 

  29. Hall, C. et al. The temporal requirements of directly observing self-gravitating spiral waves in protoplanetary disks with ALMA. Astrophys. J. 871, 228 (2019).

    Article  ADS  Google Scholar 

  30. Hennebelle, P., Lesur, G. & Fromang, S. Spiral-driven accretion in protoplanetary discs. II. Self-similar Solut. Astron. Astrophys. 590, A22 (2016).

    Article  ADS  Google Scholar 

  31. Dong, R., Hall, C., Rice, K. & Chiang, E. Spiral arms in gravitationally unstable protoplanetary disks as imaged in scattered light. Astrophys. J. Lett. 812, L32 (2015).

    Article  ADS  Google Scholar 

  32. Hall, C. et al. Directly observing continuum emission from self-gravitating spiral waves. Mon. Not. R. Astron. Soc. 458, 306–318 (2016).

    Article  ADS  Google Scholar 

  33. Durisen, R. H. et al. in Protostars and Planets V (eds Reipurth, B. et al.) 607–622 (Univ. Arizona Press, 2007).

  34. Baruteau, C., Masset, F. & Type, I. Planetary migration in a self-gravitating disk. Astrophys. J. 678, 483–497 (2008).

    Article  ADS  Google Scholar 

  35. Noriega-Crespo, A., Raga, A. C., Lora, V., Stapelfeldt, K. R. & Carey, S. J. The precession of the Herbig-Haro 111 flow in the infrared. Astrophys. J. Lett. 732, L16–L20 (2011).

    Article  ADS  Google Scholar 

  36. Lee, C.-F. et al. First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength. Sci. Adv. 3, e1602935 (2017).

    Article  ADS  Google Scholar 

  37. Dullemond, C. P. & Dominik, C. Flaring vs. self-shadowed disks: the SEDs of Herbig Ae/Be stars. Astron. Astrophys. 417, 159–168 (2004).

    Article  ADS  Google Scholar 

  38. Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924–945 (1990).

    Article  ADS  Google Scholar 

  39. Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C. & Dullemond, C. P. Protoplanetary disk structures in Ophiuchus. Astrophys. J. 700, 1502–1523 (2009).

    Article  ADS  Google Scholar 

  40. Spitzer, L. The dynamics of the interstellar medium. III. Galactic distribution. Astrophys. J. 95, 329–344 (1942).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This Letter makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.00037.S and 2017.1.00044.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. C.-F.L. acknowledges grants from the Ministry of Science and Technology of Taiwan (MoST 107-2119-M- 001-040-MY3) and the Academia Sinica (Investigator Award AS-IA-108-M01). Z.-Y.L. is supported in part by NSF grants AST-1716259, 1815784 and 1910106 and NASA grant 80NSSC18K1095. N.J.T.’s contribution was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA and with the support of NASA grant 17-XRP17_2-0081.

Author information

Authors and Affiliations

Authors

Contributions

C.-F.L. led the project, analysis and discussion and drafted the manuscript. Z.-Y.L. and N.J.T. commented on the manuscript and participated in the discussion.

Corresponding author

Correspondence to Chin-Fei Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks John Ilee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CF., Li, ZY. & Turner, N.J. Spiral structures in an embedded protostellar disk driven by envelope accretion. Nat Astron 4, 142–146 (2020). https://doi.org/10.1038/s41550-019-0905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0905-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing