Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A kilonova associated with GRB 070809

Abstract

For on-axis typical short gamma-ray bursts (sGRBs), the forward shock emission is usually so bright1,2 that it renders the identification of kilonovae (also known as macronovae)3,4,5,6 in the early afterglow (t < 0.5 d) phase rather challenging. This is why previously no thermal-like kilonova component has been identified at such an early time7,8,9,10,11,12,13 except in the off-axis dim GRB 170817A (refs. 14,15,16,17,18,19) associated with GW170817 (ref. 20). Here we report the identification of an unusual optical radiation component in GRB 070809 at t ~ 0.47 d, thanks plausibly to the very-weak/subdominant forward shock emission. The optical emission with a very red spectrum is well in excess of the extrapolation of the X-ray emission that is distinguished by an unusually hard spectrum, which is at odds with the forward shock afterglow prediction but can be naturally interpreted as a kilonova. Our finding supports the speculation that kilonovae are ubiquitous11, and demonstrates the possibility of revealing the neutron star merger origin with the early afterglow data of some typical sGRBs that take place well beyond the sensitive radius of the advanced gravitational wave detectors21,22 and hence the opportunity of organizing dedicated follow-up observations for events of interest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Keck and HST observations of GRB 070809.
Fig. 2: Light curves and SEDs of GRB 070809.
Fig. 3: The optical to X-ray SEDs of sGRBs.
Fig. 4: Comparison of kilonova signal of GRB 070809 with other kilonova event and candidates.

Similar content being viewed by others

Data availability

The Keck, HST, Gemini and Swift observation data analysed/used in this work are all publicly available.

Code availability

The codes used in this analysis are standard in the community, as introduced in Methods.

References

  1. Eichler, D., Livio, M., Piran, T. & Schramm, D. N. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126–128 (1989).

    ADS  Google Scholar 

  2. Berger, E. Short-duration gamma-ray bursts. Annu. Rev. Astron. Astrophys. 52, 43–105 (2014).

    ADS  Google Scholar 

  3. Li, L. X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. Lett. 507, L59–L62 (1998).

    ADS  Google Scholar 

  4. Kasen, D., Badnell, N. R. & Barnes, J. Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 774, 25 (2013).

    ADS  Google Scholar 

  5. Tanaka, M. & Hotokezaka, K. Radiative transfer simulations of neutron star merger ejecta. Astrophys. J. 775, 113 (2013).

    ADS  Google Scholar 

  6. Metzger, B. D. Kilonovae. Living Rev. Relativ. 20, 3 (2017).

    ADS  Google Scholar 

  7. Tanvir, N. R. et al. A ‘kilonova’ associated with the short-duration gamma-ray burst GRB 130603B. Nature 500, 547–549 (2013).

    ADS  Google Scholar 

  8. Berger, E., Fong, W. & Chornock, R. An r-process kilonova associated with the short-hard GRB 130603B. Astrophys. J. Lett. 744, L23 (2013).

    ADS  Google Scholar 

  9. Yang, B. et al. A possible macronova in the late afterglow of the long–short burst GRB 060614. Nat. Commun. 6, 7323 (2015).

    ADS  Google Scholar 

  10. Jin, Z. P. et al. The light curve of the macronova associated with the long–short burst GRB 060614. Astrophys. J. Lett. 811, L22 (2015).

    ADS  Google Scholar 

  11. Jin, Z. P. et al. The macronova in GRB 050709 and the GRB-macronova connection. Nat. Commun. 7, 12898 (2016).

    ADS  Google Scholar 

  12. Jin, Z. P. et al. Short GRBs: opening angles, local neutron star merger rate, and off-axis events for GRB/GW association. Astrophys. J. 857, 128 (2018).

    ADS  Google Scholar 

  13. Troja, E. et al. A luminous blue kilonova and an off-axis jet from a compact binary merger at z = 0.1341. Nat. Commun. 9, 4089 (2018).

    ADS  Google Scholar 

  14. Goldstein, A. et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. Lett. 848, L14 (2017).

    ADS  Google Scholar 

  15. Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).

    ADS  Google Scholar 

  16. Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358, 1570–1574 (2017).

    ADS  Google Scholar 

  17. Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017a).

    ADS  Google Scholar 

  18. Arcavi, I. et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551, 64–66 (2017).

    ADS  Google Scholar 

  19. Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. Lett. 848, L17 (2017).

    ADS  Google Scholar 

  20. Abbott, T. D. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    ADS  Google Scholar 

  21. Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 21, 3 (2018).

    ADS  Google Scholar 

  22. Li, X., Hu, Y. M., Fan, Y. Z. & Wei, D. M. GRB/GW association: long–short GRB candidates, time-lag, measuring gravitational wave velocity and testing Einstein’s equivalence principle. Astrophys. J. 827, 75 (2016).

    ADS  Google Scholar 

  23. Marshall, F. E. et al. Swift Observations of GRB 070809 Report 80 (GCN, 2007).

  24. Perley, D. A., Thoene, C. C., Cooke, J., Bloom, J. S. & Barton, E. GRB 070809: Confirmation of Optical Transient Circular 6774 (GCN, 2007).

  25. Berger, E. A short gamma-ray burst “no-host” problem? Investigating large progenitor offsets for short GRBs with optical afterglows. Astrophys. J. 722, 1946–1961 (2010).

    ADS  Google Scholar 

  26. Perley, D. A., Thoene, C. C. & Bloom, J. S. GRB 070809: Putative Host Galaxy and Redshift Circular 7889 (GCN, 2008).

  27. Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Preprint at https://arxiv.org/abs/1807.06209 (2018).

  28. Alexander, K. D. et al. A decline in the X-ray through radio emission from GW170817 continues to support an off-axis structured jet. Astrophys. J. Lett. 863, L18 (2018).

    ADS  Google Scholar 

  29. Piro, L. et al. A long-lived neutron star merger remnant in GW170817: constraints and clues from X-ray observations. Mon. Not. R. Astron. Soc. 483, 1912–1921 (2019).

    ADS  Google Scholar 

  30. de Ugarte Postigo, A. et al. Spectroscopy of the short-hard GRB130603B: the host galaxy and environment of a compact object merger. Astron. Astrophys. 563, 62 (2014).

    Google Scholar 

  31. Rykoff, E. S. et al. GRB 070809: ROTSE-III Optical Limits Circular 6279 (GCN, 2007).

  32. Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    ADS  Google Scholar 

  33. Malesani, D. et al. Multicolor observations of the afterglow of the short/hard GRB050724. Astron. Astrophys. 473, 77–84 (2007).

    ADS  Google Scholar 

  34. Soderberg, A. M. et al. The afterglow, energetics, and host galaxy of the short-hard gamma-ray burst 051221a. Astrophys. J. 650, 261–271 (2006).

    ADS  Google Scholar 

  35. Burrows, D. N. et al. Jet breaks in short gamma-ray bursts. II. The collimated afterglow of GRB 051221A. Astrophys. J. 653, 468–473 (2006).

    ADS  Google Scholar 

  36. Mangano, V. et al. Swift observations of GRB 060614: an anomalous burst with a well behaved afterglow. Astron. Astrophys. 470, 105–118 (2007).

    ADS  Google Scholar 

  37. Stratta, G. et al. A study of the prompt and afterglow emission of the short GRB 061201. Astron. Astrophys. 474, 827–835 (2007).

    ADS  Google Scholar 

  38. Berger, E., Cenko, S. B., Fox, D. B. & Cucchiara, A. Discovery of the very red near-infrared and optical afterglow of the short-duration GRB 070724A. Astrophys. J. 704, 877 (2009).

    ADS  Google Scholar 

  39. Kocevski, D. et al. Limits on radioactive powered emission associated with a short-hard GRB 070724A in a star-forming galaxy. Mon. Not. R. Astron. Soc. 404, 963 (2010).

    ADS  Google Scholar 

  40. Antonelli, L. A. et al. GRB090426: the farthest short gamma-ray burst? Astron. Astrophys. 507, L45–L48 (2009).

    ADS  Google Scholar 

  41. Nicuesa Guelbenzu, A. et al. The late-time afterglow of the extremely energetic short burst GRB 090510 revisited. Astron. Astrophys. 538, 7 (2012).

    ADS  Google Scholar 

  42. Troja, E. et al. An achromatic break in the afterglow of the short GRB 140903A: evidence for a narrow jet. Astrophys. J. 827, 102 (2016).

    ADS  Google Scholar 

  43. Knust, F. et al. Long optical plateau in the afterglow of the short GRB 150424A with extended emission. Astron. Astrophys. 607, 84 (2017).

    Google Scholar 

  44. Kasliwal, M. M., Korobkin, O., Lau, R. M., Wollaeger, R. & Fryer, C. L. Infrared emission from kilonovae: the case of the nearby short hard burst GRB 160821B. Astrophys. J. Lett. 843, L34 (2017).

    ADS  Google Scholar 

  45. Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).

    ADS  Google Scholar 

  46. Hjorth, J. et al. The distance to NGC 4993: the host galaxy of the gravitational-wave event GW170817. Astrophys. J. Lett. 848, L31 (2017).

    ADS  Google Scholar 

  47. Troja, E. et al. The outflow structure of GW170817 from late-time broad-band observations. Mon. Not. R. Astron. Soc. 478, L18–L23 (2018).

    ADS  Google Scholar 

  48. D’Avanzo, P. et al. The evolution of the X-ray afterglow emission of GW 170817/ GRB 170817A in XMM-Newton observations. Astron. Astrophys. 613, L1 (2018).

    ADS  Google Scholar 

  49. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103–115 (2011).

    ADS  Google Scholar 

  50. Troja, E. et al. The afterglow and kilonova of the short GRB 160821B. Preprint at https://arxiv.org/abs/1905.01290 (2019).

  51. Lamb, G. P. et al. Short GRB 160821B: a reverse shock, a refreshed shock, and a well-sampled kilonova. Preprint at https://arxiv.org/abs/1905.02159 (2019).

  52. Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143–1210 (2004).

    ADS  Google Scholar 

  53. Nakar, E., Ando, S. & Sari, R. Klein-Nishina effects on optically thin synchrotron and synchrotron self-Compton spectrum. Astrophys. J. 703, 675 (2009).

    ADS  Google Scholar 

  54. Fan, Y. Z., Zhang, B. & Proga, D. Linearly polarized X-ray flares following short gamma-ray bursts. Astrophys. J. Lett. 635, L129–L132 (2005).

    ADS  Google Scholar 

  55. Metzger, B. D. & Fernández, R. Red or blue? a potential kilonova imprint of the delay until black hole formation following a neutron star merger. Mon. Not. R. Astron. Soc. 441, 3444–3453 (2014).

    ADS  Google Scholar 

  56. Kasen, D., Fernández, R. & Metzger, B. D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon. Not. R. Astron. Soc. 450, 1777–1786 (2015).

    ADS  Google Scholar 

  57. Smartt, S. J. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79 (2017).

    ADS  Google Scholar 

  58. Chornock, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with Gemini-South. Astrophys. J. Lett. 848, L19 (2017).

    ADS  Google Scholar 

  59. Valenti, S. et al. The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys. J. Lett. 848, L24 (2017).

    ADS  Google Scholar 

  60. Fong, W. et al. The afterglow and early-type host galaxy of the short GRB 150101B at z = 0.1343. Astrophys. J. 833, 151 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC under grants no. 11525313 (that is, Funds for Distinguished Young Scholars), no. 11433009 and no. 11773078, the Funds for Distinguished Young Scholars of Jiangsu Province (no. BK20180050), the Chinese Academy of Sciences via the Strategic Priority Research Programme (grant no. XDB23040000) and the Key Research Programme of Frontier Sciences (no. QYZDJ-SSW-SYS024). S.C. and P.D. have been supported by ASI grant I/004/11/0.

Author information

Authors and Affiliations

Authors

Contributions

Y.-Z.F., Z.-P.J, S.C. and D.-M.W launched the project. Z.-P.J, N.-H.L, X.L. (from PMO), S.C. and P.D. (from INAF/OAB) carried out the data analysis. Y.-Z.F. and D.-M.W. interpreted the data. Y.-Z.F. and Z.-P.J. prepared the paper and all authors participated in the discussion.

Corresponding author

Correspondence to Yi-Zhong Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Tables 1, 2 and refs. 1–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, ZP., Covino, S., Liao, NH. et al. A kilonova associated with GRB 070809. Nat Astron 4, 77–82 (2020). https://doi.org/10.1038/s41550-019-0892-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0892-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing