Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An intense thermospheric jet on Titan

Abstract

The presence of winds in Titan’s lower and middle atmosphere has been determined by a variety of techniques, including direct measurements from the Huygens Probe1 over 0–150 km; Doppler shifts of molecular spectral lines in the optical, thermal infrared and millimetre ranges2,3,4, which together have probed the ~100–450 km altitude range; inferences from the thermal field over 10–0.001 mbar (that is, ~100–500 km)5,6; and inferences from central flashes in stellar occultation curves7,8,9. These measurements predominantly indicated strong prograde winds, reaching maximum speeds of ~150–200 m s−1 in the upper stratosphere, with important latitudinal and seasonal variations. However, these observations provided incomplete atmospheric sounding; in particular, the wind regime in Titan’s upper mesosphere and thermosphere (500–1,200 km) has remained unconstrained so far. Here we report direct wind measurements based on Doppler shifts of six molecular species observed with the Atacama Large Millimeter/submillimeter Array (ALMA). We show that contrary to expectations, strong prograde winds extend up to the thermosphere, with the circulation progressively turning into an equatorial jet regime as the altitude increases, reaching ~340 m s−1 at 1,000 km. We suggest that these winds may represent the dynamical response of forcing by waves launched at upper stratospheric/mesospheric levels and/or of magnetospheric–ionospheric interaction. We also demonstrate that the distribution of the hydrogen isocyanide (HNC) molecule is restricted to Titan’s thermosphere above ~870 km altitude.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evidence for zonal winds.
Fig. 2: Doppler wind maps.
Fig. 3: Molecular abundance profiles and probed altitudes.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the ALMA archive (http://almascience.nrao.edu/aq/; Cycle 3 programme 2015.1.01023.S (PI M. Gurwell)) and from the corresponding author upon reasonable request.

Code availability

Novel methods developed for this research and not available from previous studies are available from the corresponding author upon reasonable request.

References

  1. Folkner, W. M. et al. Winds on Titan from ground-based tracking of the Huygens probe. J. Geophys. Res. 111, E07S02 (2006).

    Article  Google Scholar 

  2. Luz, D. et al. Characterization of the zonal winds in Titan’s stratosphere of Titan with UVES. 2. Observations coordinated with the Huygens Probe entry. J. Geophys. Res. 111, E08S90 (2006).

    Article  Google Scholar 

  3. Kostiuk, T. et al. High spectral resolution infrared studies of Titan: winds, temperature and composition. Planet. Space Sci. 58, 1715–1723 (2010).

    Article  ADS  Google Scholar 

  4. Moreno, R., Marten, A. & Hidayat, T. Interferometric measurements of zonal winds on Titan. Astron. Astrophys. 437, 319–328 (2005).

    Article  ADS  Google Scholar 

  5. Achterberg, R. K. et al. Titan’s middle atmospheric temperatures and dynamics observed by the Cassini Composite Infrared Spectrometer. Icarus 194, 263–277 (2008).

    Article  ADS  Google Scholar 

  6. Achterberg, R. K. et al. Temporal variations of Titan’s middle atmospheric temperatures from 2004 to 2009 observed by the Cassini/CIRS. Icarus 211, 686–698 (2011).

    Article  ADS  Google Scholar 

  7. Hubbard, W. B. et al. The occultation of 28Sgr by Titan. Astron. Astrophys. 269, 541–563 (2005).

    ADS  Google Scholar 

  8. Bouchez, A. H. Seasonal Trends in Titan’s Atmosphere: Haze, Winds, and Clouds. PhD thesis, California Institute of Technology (2004).

  9. Sicardy, B. et al. The two Titan stellar occultations of 14 November 2003. J. Geophys. Res. 111, E11S91 (2006).

    Article  ADS  Google Scholar 

  10. Cordiner, M. et al. ALMA measurements of the HNC and HC3N distributions in Titan’s atmosphere. Astrophys. J. Lett. 795, L30 (2014).

    Article  ADS  Google Scholar 

  11. Lai, J. C.-Y. et al. Mapping vinyl cyanide and other nitriles in Titan’s atmosphere using ALMA. Astron. J. 154, L206 (2017).

    Article  ADS  Google Scholar 

  12. Vinatier, S. et al. Vertical abundance profiles of hydrocarbons in Titan’s atmosphere at 15° S and 80° N retrieved from Cassini/CIRS spectra. Icarus 188, 120–138 (2007).

    Article  ADS  Google Scholar 

  13. Teanby, N. et al. Vertical profiles of HCN, HC3N and C2H2 in Titan’s atmosphere derived from Cassini/CIRS data. Icarus 186, 364–384 (2007).

    Article  ADS  Google Scholar 

  14. Dobrijevic, M., Loison, J.-C., Hickson, K. M. & Gronoff, G. 1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan. Icarus 268, 313–339 (2016).

    Article  ADS  Google Scholar 

  15. Crary, F. J. et al. Heavy ions, temperatures and winds in Titan’s ionosphere: combined Cassini CAPS and INMS observations. Planet. Space Sci. 57, 1847–1856 (2009).

    Article  ADS  Google Scholar 

  16. Cravens, T. et al. Dynamical and magnetic field time constants for Titan’s ionosphere: empirical estimates and comparisons with Venus. J. Geophys. Res. 115, A08319 (2010).

    Article  ADS  Google Scholar 

  17. Rishbeth, H., Yelle, R. V. & Mendillo, M. Dynamics of Titan’s thermosphere. Planet. Space Sci. 48, 51–58 (2000).

    Article  ADS  Google Scholar 

  18. Müller-Wodarg, I. C. F., Yelle, R. V., Mendillo, M. & Aylward, A. D. On the global distribution of neutral gases in Titan’s upper atmosphere and its effect on the thermal structure. J. Geophys. Res. 108, 1453 (2003).

    Article  Google Scholar 

  19. Müller-Wodarg, I. C. F., Yelle, R. V., Cui, J. & Waite, J. H. Horizontal structures and dynamics of Titan’s thermosphere. J. Geophys. Res. 113, E10005 (2008).

    Article  ADS  Google Scholar 

  20. Snowden, D. et al. The thermal structure of Titan’s upper atmosphere. I: Temperature profiles from Cassini INMS observations. Icarus 226, 552–582 (2013).

    Article  ADS  Google Scholar 

  21. Westlake, J. H. et al. Titan’s thermospheric response to various plasma environments. J. Geophys. Res. 116, A03318 (2011).

    Article  ADS  Google Scholar 

  22. Snowden, D. & Yelle, R. V. The thermal structure of Titan’s upper atmosphere. II: Energetics. Icarus 228, 64–77 (2014).

    Article  ADS  Google Scholar 

  23. Ågren, K. et al. On the ionospheric structure of Titan. Planet. Space Sci. 57, 1821–1827 (2009).

    Article  ADS  Google Scholar 

  24. Ulusen, D. et al. Comparisons of Cassini flybys of the Titan magnetospheric interaction with an MHD model: evidence for organized behavior at high altitudes. Icarus 217, 43–54 (2012).

    Article  ADS  Google Scholar 

  25. Ågren, K. et al. Detection of currents and associated electric fields in Titan’s ionosphere from Cassini data. J. Geophys. Res. 116, A04313 (2011).

    Article  ADS  Google Scholar 

  26. Aboudan, A., Colombatti, G., Ferri, F. & Angrilli, F. Huygens probe entry trajectory and attitude estimated simultaneously with Titan’s atmospheric structure by Kalman filtering. Planet. Space Sci. 56, 573–585 (2008).

    Article  ADS  Google Scholar 

  27. Müller-Wodarg, I. C. F., Yelle, R. V., Borggren, N. & Waite, J. H. Waves and horizontal structures and dynamics of Titan’s thermosphere. J. Geophys. Res. 111, A12, id A12315 (2006).

    Article  Google Scholar 

  28. Strobel, D. F. Gravitational tidal waves in Titan’s upper atmosphere. Icarus 182, 251–258 (2006).

    Article  ADS  Google Scholar 

  29. Bézard, B., Vinatier, S. & Achterberg, R. Seasonal radiative transfer modeling of Titan’s stratospheric temperatures at low latitudes. Icarus 302, 437–450 (2018).

    Article  ADS  Google Scholar 

  30. Fels, S. B. & Lindzen, R. S. The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn. 6, 149–191 (1974).

    Article  ADS  Google Scholar 

  31. Zhu, X. Maintenance of equatorial superrotation in the atmosphere of Venus and Titan. Planet. Space Sci. 54, 761–773 (2006).

    Article  ADS  Google Scholar 

  32. Hoshino, N., Fujiwara, H., Takagi, M. & Kasaba, Y. Effects of gravity waves on the day-night difference of the general circulation in the Venusian lower thermosphere. J. Geophys. Res. Planets 118, 2004–2015 (2013).

    Article  ADS  Google Scholar 

  33. Thelen, A. et al. Abundance measurements of Titan’s stratospheric HCN, HC3N, C3H4 and CH3CN from ALMA observations. Icarus 319, 417–432 (2019).

    Article  ADS  Google Scholar 

  34. Moreno, R. et al. First detection of hydrogen isocyanide (HNC) in Titan’s atmosphere. Astron. Astrophys. 536, L12 (2011).

    Article  ADS  Google Scholar 

  35. Lellouch, E. et al. Detection of CO and HCN in Pluto’s atmosphere with ALMA. Icarus 286, 289–307 (2017).

    Article  ADS  Google Scholar 

  36. Anderson, C. M. & Samuelson, R. E. Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm: vertical and spectral characteristics from Cassini CIRS. Icarus 212, 762–778 (2011).

    Article  ADS  Google Scholar 

  37. Conrath, B. J., Gierasch, P. J. & Ustinov, E. A. Thermal structure and para hydrogen fraction on the outer planets from Voyager IRIS measurements. Icarus 135, 501–517 (1998).

    Article  ADS  Google Scholar 

  38. Rodgers, C. D Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).

  39. Marten, A., Hidayat, T., Biraud, Y. & Moreno, R. New millimeter heterodyne observations of Titan: vertical distributions of nitriles: HCN, HC3N, CH3CN, and the isotopic ratio 15N/14N in its atmosphere. Icarus 158, 532–544 (2002).

    Article  ADS  Google Scholar 

  40. Thelen, A. E. et al. Spatial variations in Titan’s atmospheric temperature: ALMA and Cassini comparisons from 2012 to 2015. Icarus 307, 380–390 (2018).

    Article  ADS  Google Scholar 

  41. Cui, J., Cao, Y.-T., Lavvas, P. P. & Koskinen, T. T. The variability of HCN in Titan’s upper atmosphere as implied by the Cassini Ion-Neutral Mass Spectrometer measurements. Astrophys. J. Lett. 826, L5 (2016).

    Article  ADS  Google Scholar 

  42. Koskinen, T. T. et al. The mesosphere and lower thermosphere of Titan revealed by Cassini/UVIS stellar occultations. Icarus 207, 511–534 (2011).

    Google Scholar 

  43. Yelle, R. V. Non-LTE models of Titan’s upper atmosphere. Astrophys. J. 383, 380–400 (1991).

    Article  ADS  Google Scholar 

  44. Molter, E. M. et al. ALMA observations of HCN and its isotopologues on Titan. Astron. J. 152, 42 (2016).

    Article  ADS  Google Scholar 

  45. Vinatier, S. et al. Seasonal variations in Titan’s stratosphere observed with Cassini/CIRS during northern spring. In American Astronomical Society DPS Meeting 49 304.03 (AAS, 2017).

  46. Cui, J. et al. Analysis of Titan’s neutral upper atmosphere from Cassini ion neutral mass spectrometer measurements. Icarus 200, 581–615 (2009).

    Article  ADS  Google Scholar 

  47. Vinatier, S. et al. Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission. I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles. Icarus 205, 559–570 (2010).

    Article  ADS  Google Scholar 

  48. Lellouch, E., Goldstein, J. J., Rosenqvist, J., Bougher, S. W. & Paubert, G. Global circulation, thermal structure, and carbon monoxide distribution in Venus’ mesosphere in 1991. Icarus 110, 315–339 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.L., R.M. and S.V. acknowledge support from the Programme National de Planétologie (PNP-INSU). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.1023.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The paper is dedicated to the memory of Daniel Lellouch, deceased on 13 February 2019.

Author information

Authors and Affiliations

Authors

Contributions

M.A.G. wrote the ALMA proposal. M.A.G. and R.M. reduced the ALMA data. E.L. analysed and modelled the data (with contribution from R.M.) and wrote most of the manuscript. S.V. provided initial thermal profiles as well as insight in the general science context. D.F.S. led the interpretative part. All authors discussed the manuscript.

Corresponding author

Correspondence to E. Lellouch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Agustín Sanchez-Lavega and Jan-Erik Wahlund for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Supplementary Table 1, Supplementary Figures 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lellouch, E., Gurwell, M.A., Moreno, R. et al. An intense thermospheric jet on Titan. Nat Astron 3, 614–619 (2019). https://doi.org/10.1038/s41550-019-0749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0749-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing