Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects

Abstract

Knowledge of the surface temperature distribution on a comet’s nucleus and its temporal evolution at different timescales is key to constraining its thermophysical properties and understanding the physical processes that take place at and below the surface. Here we report on time-resolved maps of comet 67P/Churyumov–Gerasimenko retrieved on the basis of infrared data acquired by the Visible InfraRed and Thermal Imaging Spectrometer (VIRTIS) onboard the Rosetta orbiter in 2014, over a roughly two-month period in the pre-perihelion phase at heliocentric distances between 3.62 and 3.31 au from the Sun. We find that at a spatial resolution ≤15 m per pixel, the measured temperatures point out the major effect that self-heating, due to the complex shape of the nucleus, has on the diurnal temperature variation. The bilobate nucleus of comet 67P also induces daytime shadowing effects, which result in large thermal gradients. Over longer periods, VIRTIS-derived temperature values reveal seasonal changes driven by decreasing heliocentric distance combined with an increasing abundance of ice within the uppermost centimetre-thick layer, which implies the possibility of having a largely pristine nucleus interior already in the shallow subsurface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VIRTIS-derived global temperature map of comet 67P.
Fig. 2: Temperature versus solar illumination in several morphological regions.
Fig. 3: Surface temperature versus albedo.
Fig. 4: Measured and modelled surface temperature.
Fig. 5: Spatial and temporal thermal gradients.
Fig. 6: Seasonal evolution of surface temperature in Imhotep.

Similar content being viewed by others

Data availability

The VIRTIS calibrated data are publicly available through the ESA’s Planetary Science Archive (PSA) website (https://archives.esac.esa.int/psa/) and NASA’s Planetary Data System (https://pds.nasa.gov/) in accordance with the schedule established by the Rosetta project. Other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Readers are welcome to comment on the online version of the paper.

Code availability

The code used to retrieve surface temperature values from VIRTIS-M infrared data is a direct implementation of a published method7. The code used to derive synthetic thermal images of the nucleus of comet 67P is a direct implementation of published models18,44,45,46,51. The code used to derive theoretical temperature profiles for specific locations of the nucleus of comet 67P is a direct implementation of a published model28,29.

References

  1. Groussin, O. et al. Surface temperature of the nucleus of comet 9P/Tempel 1. Icarus 187, 16–25 (2007).

    Article  ADS  Google Scholar 

  2. Squyres, S. W., McKay, C. P. & Reynolds, R. T. Temperatures within comet nuclei. J. Geophys. Res. Solid Earth 90, 12831–12392 (1985).

    Article  Google Scholar 

  3. Emerich, C. et al. Temperature and size of the nucleus of comet P/Halley deduced from IKS infrared Vega 1 measurements. Astron. Astrophys. 187, 839–842 (1987).

    ADS  Google Scholar 

  4. Soderblom, L. A. et al. Short-wavelength infrared (1.3–2.6 μm) observations of the nucleus of comet 19P/Borrelly. Icarus 167, 100–112 (2004).

    Article  ADS  Google Scholar 

  5. Groussin, O. et al. The temperature, thermal inertia, roughness and color of the nuclei of comets 103P/Hartley 2 and 9P/Tempel 1. Icarus 222, 580–594 (2013).

    Article  ADS  Google Scholar 

  6. Coradini, A. et al. VIRTIS: an imaging spectrometer for the Rosetta mission. Space Sci. Rev. 128, 529–559 (2007).

    Article  ADS  Google Scholar 

  7. Tosi, F. et al. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR. Icarus 240, 36–57 (2014).

    Article  ADS  Google Scholar 

  8. Coradini, A. et al. The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS. Science 334, 492–494 (2011).

    Article  ADS  Google Scholar 

  9. Keihm, S. et al. Interpretation of combined infrared, submillimeter, and millimeter thermal flux data obtained during the Rosetta fly-by of Asteroid (21) Lutetia. Icarus 221, 395–404 (2012).

    Article  ADS  Google Scholar 

  10. Ciarniello, C. et al. Photometric properties of comet 67P/Churyumov–Gerasimenko from VIRTIS-M onboard Rosetta. Astron. Astrophys. 583, A31 (2015).

    Article  Google Scholar 

  11. Longobardo, A. et al. Photometric behaviour of 67P/Churyumov–Gerasimenko and analysis of its pre-perihelion diurnal variations. Mon. Not. R. Astron. Soc. 469 (Suppl. 2), S346–S356 (2017).

    Article  Google Scholar 

  12. Gulkis, S. et al. MIRO: Microwave Instrument for Rosetta Orbiter. Space Sci. Rev. 128, 561–597 (2007).

    Article  ADS  Google Scholar 

  13. Gulkis, S. et al. Subsurface properties and early activity of comet 67P/Churyumov–Gerasimenko. Science 347, aaa0709 (2015).

    Article  Google Scholar 

  14. Schloerb, F. P. et al. MIRO observations of subsurface temperatures of the nucleus of 67P/Churyumo–Gerasimenko. Astron. Astrophys. 583, A29 (2015).

    Article  Google Scholar 

  15. Jorda, L. et al. The global shape, density and rotation of comet 67P/Churyumov–Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus 277, 257–278 (2016).

    Article  ADS  Google Scholar 

  16. Thomas, N. et al. The morphological diversity of comet 67P/Churyumov–Gerasimenko. Science 347, aaa0440 (2015).

    Article  Google Scholar 

  17. Davidsson, B. J. R. & Rickman, H. Surface roughness and three-dimensional heat conduction in thermophysical models. Icarus 243, 58–77 (2014).

    Article  ADS  Google Scholar 

  18. Keller, H. U. et al. Insolation, erosion, and morphology of comet 67P/Churyumov–Gerasimenko. Astron. Astrophys. 583, A34 (2015).

    Article  Google Scholar 

  19. Marshall, D. et al. Thermal inertia and roughness of the nucleus of comet 67P/Churyumov–Gerasimenko from MIRO and VIRTIS observations. Astron. Astrophys. 616, A122 (2018).

    Article  Google Scholar 

  20. Lagerros, J. S. V. Thermal physics of asteroids. III. Irregular shapes and albedo variegations. Astron. Astrophys. 325, 1226–1236 (1997).

    ADS  Google Scholar 

  21. Davidsson, B. J. R. et al. Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies. Icarus 252, 1–21 (2015).

    Article  ADS  Google Scholar 

  22. Preusker, F. et al. Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov–Gerasimenko—stereo-photogrammetric analysis of Rosetta/OSIRIS image data. Astron. Astrophys. 583, A33 (2015).

    Article  Google Scholar 

  23. Spohn, T. et al. Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov–Gerasimenko. Science 349, aab0464 (2015).

    Article  ADS  Google Scholar 

  24. Fornasier, S. et al. Spectrophotometric properties of the nucleus of comet 67P/Churyumov–Gerasimenko from the OSIRIS instrument onboard the Rosetta spacecraft. Astron. Astrophys. 583, A30 (2015).

    Article  Google Scholar 

  25. Vincent, J.-B. et al. Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature 523, 63–66 (2015).

    Article  ADS  Google Scholar 

  26. Sierks, H. et al. On the nucleus structure and activity of comet 67P/Churyumov–Gerasimenko. Science 347, aaa1044 (2015).

    Article  Google Scholar 

  27. Keller, H. U. et al. OSIRIS — The Scientific camera system onboard Rosetta. Space Sci. Rev. 128, 433–506 (2007).

    Article  ADS  Google Scholar 

  28. De Sanctis, M. C., Lasue, J. & Capria, M. T. Seasonal effects on comet nuclei evolution: activity, internal structure, and dust mantle formation. Astron. J. 140, 1–13 (2010).

    Article  ADS  Google Scholar 

  29. Capria, M. T., Marchi, S., De Sanctis, M. C., Coradini, A. & Ammannito, E. The activity of main belt comets. Astron. Astrophys. 537, A71 (2012).

    Article  Google Scholar 

  30. Capaccioni, F. et al. The organic-rich surface of comet 67P/Churyumov–Gerasimenko as seen by VIRTIS/Rosetta. Science 347, aaa0628 (2015).

    Article  Google Scholar 

  31. Quirico, E. et al. Refractory and semi-volatile organics at the surface of comet 67P/Churyumov–Gerasimenko: insights from the VIRTIS/Rosetta imaging spectrometer. Icarus 272, 32–47 (2016).

    Article  ADS  Google Scholar 

  32. Rousseau, B. et al. Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-μm sized cosmochemical analogues. Icarus 306, 306–318 (2018).

    Article  ADS  Google Scholar 

  33. Molaro, J. & Byrne, S. Rates of temperature change of airless landscapes and implications for thermal stress weathering. J. Geophys. Res. Planets 117, E10011 (2012).

    Article  ADS  Google Scholar 

  34. Delbo, M. et al. Thermal fatigue as the origin of regolith on small asteroids. Nature 508, 233–236 (2014).

    Article  ADS  Google Scholar 

  35. De Sanctis, M. C. et al. The cycle of water ice on the surface of 67P/Churyumov–Gerasimenko. Nature 525, 500–503 (2015).

    Article  ADS  Google Scholar 

  36. El-Maarry, M. R. et al. Regional surface morphology of comet 67P/Churyumov–Gerasimenko from Rosetta/OSIRIS images: the southern hemisphere. Astron. Astrophys. 593, A110 (2016).

    Article  Google Scholar 

  37. Filacchione, G. et al. Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature 529, 368–372 (2016).

    Article  ADS  Google Scholar 

  38. Filacchione, G. et al. The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase. Icarus 274, 334–349 (2016).

    Article  ADS  Google Scholar 

  39. Ciarniello, M. et al. The global surface composition of 67P/Churyumov–Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability. Mon. Not. R. Astron. Soc. 462 (Suppl. 1), S443–S458 (2016).

    Google Scholar 

  40. Raponi, A. et al. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov–Gerasimenko: spectral analysis. Mon. Not. R. Astron. Soc. 462 (Suppl. 1), S476–S490 (2017).

    Google Scholar 

  41. Barucci, M. A. et al. Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov–Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments. Astron. Astrophys. 595, A102 (2016).

    Article  Google Scholar 

  42. Fornasier, S. et al. Rosetta’s comet 67P/Churyumov–Gerasimenko sheds its dusty mantle to reveal its icy nature. Science 354, 1566–1570 (2016).

    Article  ADS  Google Scholar 

  43. Lethuillier, A. et al. Analysis of observations of the Imhotep region of 67P/C-G performed by MIRO/Rosetta in 2014 and 2016 and derived constraints on the close subsurface properties. In American Astronomical Society, DPS Meeting 49 415.03 (2017).

  44. Skorov, Yu. & Blum, J. Dust release and tensile strength of the non-volatile layer of cometary nuclei. Icarus 221, 1–11 (2012).

    Article  ADS  Google Scholar 

  45. Skorov, Yu. V., Lieshout, R. V., Blum, J. & Keller, H. U. Activity of comets: gas transport in the near-surface porous layers of a cometary nucleus. Icarus 212, 867–876 (2011).

    Article  ADS  Google Scholar 

  46. Gundlach, B., Skorov, Yu. V. & Blum, J. Outgassing of icy bodies in the Solar System—I. The sublimation of hexagonal water ice through dust layers. Icarus 213, 710–719 (2011).

    Article  ADS  Google Scholar 

  47. Zinzi, A. et al. The SSDC contribution to the improvement of knowledge by means of 3D data projections of minor bodies. Adv. Space Res. 62, 2306–2316 (2018).

    Article  ADS  Google Scholar 

  48. Lagerros, J. S. V. Thermal physics of asteroids. IV. Thermal infrared beaming. Astron. Astrophys. 332, 1123–1132 (1998).

    ADS  Google Scholar 

  49. Davidsson, B. J. R., Gutiérrez, P. J. & Rickman, H. Physical properties of morphological units on comet 9P/Tempel 1 derived from near-IR Deep Impact spectra. Icarus 201, 335–357 (2009).

    Article  ADS  Google Scholar 

  50. Giese, B. & Kührt, E. Theoretical interpretation of infrared measurements at Deimos in the framework of crater radiation. Icarus 88, 372–379 (1990).

    Article  ADS  Google Scholar 

  51. Capria, M. T. et al. How pristine is the interior of the comet 67P/Churyumov–Gerasimenko? Mon. Not. R. Astron. Soc. 469 (Suppl. 2), S685–S694 (2017).

    Article  Google Scholar 

  52. Acton, C. H. Ancillary data services of NASA’s navigation and ancillary information facility. Planet. Space Sci. 44, 65–70 (1996).

    Article  ADS  Google Scholar 

  53. Grün, E. et al. Development of a dust mantle on the surface of an insulated ice-dust mixture: results from the KOSI-9 experiment. J. Geophys. Res. 98, 15091–15104 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the following institutions and agencies, which supported this work: Italian Space Agency (ASI-Italy), Centre National d’Etudes Spatiales (CNES-France), Deutsches Zentrum für Luft- und Raumfahrt (DLR-Germany), National Aeronautic and Space Administration (NASA-USA). VIRTIS was built by a consortium from Italy, France and Germany, under the scientific responsibility of IAPS, Istituto di Astrofisica e Planetologia Spaziali of INAF, Rome, Italy, which led also the scientific operations. The VIRTIS instrument development for ESA has been funded and managed by ASI, with contributions from Observatoire de Meudon financed by CNES and from DLR. The VIRTIS instrument industrial prime contractor was former Officine Galileo, now Leonardo SpA in Campi Bisenzio, Florence, Italy. The authors thank the Rosetta Liaison Scientists, the Rosetta Science Ground Segment and the Rosetta Mission Operations Centre for their support in planning the VIRTIS observations. We also thank the MIRO science and MIRO archiving teams for making MIRO data available to us before their public release. This research has made use of NASA’s Astrophysics Data System. D.K. acknowledges DFG-grant KA 3757/2-1. This work is dedicated to Angioletta Coradini (1946–2011), conceiver of the VIRTIS instrument, and to Sergio Fonti (1945–2018), co-author of this Article and active contributor in the development of VIRTIS. The first author dedicates this work also to Luca Malagutti (1965–2017), who was a brilliant researcher at the University of Milan.

Author information

Authors and Affiliations

Authors

Contributions

F.T. carried out the surface temperature retrieval from VIRTIS-M infrared data, derived geometric information for those data, and led the analysis of VIRTIS-measured temperature data, writing major sections of the main text and Methods. F.C. is the principal investigator of the VIRTIS instrument; he designed the overall study and wrote part of the main text. S.M., M.T.C. and M.F. carried out the thermophysical modelling and wrote part of the Methods. M.C. led the spectrophotometric analysis and derived the single scattering albedo values. G.F. was responsible for the VIRTIS calibration pipeline and flagged the saturated spectral pixels. M.H. is the principal investigator of the MIRO instrument; he granted MIRO data calibrated with the latest responsivity function, and provided key information for their proper interpretation. F.C., G.F., S.E., D.B.-M. and C.L. planned VIRTIS observations. S.E. and G.A. are respectively the French and German group leaders within the VIRTIS Science Team. The other authors are all VIRTIS co-investigators and associates who participated in the study and/or reviewed the manuscript, providing edits, comments and suggestions that led to substantial improvement of the paper.

Corresponding author

Correspondence to F. Tosi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Ben Rozitis and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Supplementary Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosi, F., Capaccioni, F., Capria, M.T. et al. The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects. Nat Astron 3, 649–658 (2019). https://doi.org/10.1038/s41550-019-0740-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0740-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing