Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Observational constraints on the feeding of supermassive black holes

Abstract

Supermassive black holes grow at the centre of galaxies in consonance with them. In this Review Article, we discuss the mass-feeding mechanisms that lead to this growth in active galactic nuclei (AGNs), focusing on constraints derived from observations of their environment, from extragalactic down to galactic and nuclear scales. At high AGN luminosities, galaxy mergers and interactions play an important role in AGN triggering and feeding. However, chaotic cold gas accretion in galaxy clusters can trigger radiatively inefficient AGNs in brightest cluster galaxies. At lower luminosities, minor mergers feed AGNs in early-type, gas-starving galaxies, while secular processes dominate in later-type, gas-rich galaxies. While bars do not appear to directly feed AGNs, AGN flickering leads to the dissociation of small and large scales, hence affecting the interpretation of cause and effect. At ~100 pc scales, recent observations have revealed compact disks and inflows along nuclear gaseous spirals and bars, while chaotic cold accretion continues to feed the brightest cluster galaxies at these scales. Estimated mass inflow rates—of 0.01 to a few M yr−1—are in many cases 1,000 times higher than the mass accretion rate to the supermassive black hole. As a result, 106–109M gas reservoirs can be built in 107–108 yr, which in turn may lead to the formation of new stars and/or be ejected via the onset of AGN feedback.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interaction between two galaxies triggering the nuclear activity in the QSO2 SDSS-J084135.04+010156.3 as seen in HST images.

reproduced from ref. 39, IOP

Fig. 2: A model for inflows at high AGN luminosities (≥1046 erg s−1) on few 100 pc scales.
Fig. 3: A model for inflows at low AGN luminosities (≤1044 erg s−1).
Fig. 4: The inner kiloparsec structure of a sample of active galaxies.
Fig. 5: Inflow in the Seyfert 1 galaxy NGC 1566 observed with ALMA.
Fig. 6: Channel maps in the H2 2.12 μm emission-line of the inner 600 pc of the Seyfert 1 galaxy Mrk 79.
Fig. 7: Measured versus toy model kinematics of the inner kiloparsec of NGC 1667
Fig. 8: The quest for SMBH feeding.

Similar content being viewed by others

References

  1. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. Lett. 539, L9–L12 (2000).

    ADS  Google Scholar 

  2. Gebhardt, K. et al. A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys. J. Lett. 539, L13–L16 (2000).

    ADS  Google Scholar 

  3. McLure, R. J. & Dunlop, J. S. On the black hole-bulge mass relation in active and inactive galaxies. Mon. Not. R. Astron. Soc. 331, 795–804 (2002).

    ADS  Google Scholar 

  4. Marconi, A. & Hunt, L. K. The relation between black hole mass, bulge mass, and near-infrared luminosity. Astrophys. J. Lett. 589, L21–L24 (2003).

    ADS  Google Scholar 

  5. Häring, N. & Rix, H.-W. On the black hole mass–bulge mass relation. Astrophys. J. Lett. 604, L89–L92 (2004).

    ADS  Google Scholar 

  6. Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    ADS  Google Scholar 

  7. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS  Google Scholar 

  8. Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary Universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).

    ADS  Google Scholar 

  9. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    ADS  Google Scholar 

  10. McNamara, B. R. & Nulsen, P. E. J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. N. J. Phys. 14, 055023 (2012).

    Google Scholar 

  11. Greene, J. E., Zakamska, N. L., Ho, L. C. & Barth, A. J. Feedback in luminous obscured quasars. Astrophys. J. 732, 9 (2011).

    ADS  Google Scholar 

  12. Tombesi, F. et al. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers. Mon. Not. R. Astron. Soc. 430, 1102–1117 (2013).

    ADS  Google Scholar 

  13. Zubovas, K. & King, A. R. Galaxy-wide outflows: cold gas and star formation at high speeds. Mon. Not. R. Astron. Soc. 439, 400–406 (2014).

    ADS  Google Scholar 

  14. Harrison, C. M. et al. AGN outflows and feedback twenty years on. Nat. Astron. 2, 198–205 (2018).

    ADS  Google Scholar 

  15. Gaspari, M., Ruszkowski, M. & Sharma, P. Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94 (2012).

    ADS  Google Scholar 

  16. Ho, L. C. Nuclear activity in nearby galaxies. Annu. Rev. Astron. Astrophys. 46, 475–539 (2008).

    ADS  Google Scholar 

  17. Croton, D. J. Evolution in the black hole mass-bulge mass relation: a theoretical perspective. Mon. Not. R. Astron. Soc. 369, 1808–1812 (2006).

    ADS  Google Scholar 

  18. Hopkins, P. F. et al. A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys. J. Suppl. 163, 1–49 (2006).

    ADS  Google Scholar 

  19. Marleau, F. R., Clancy, D. & Bianconi, M. The ubiquity of supermassive black holes in the Hubble sequence. Mon. Not. R. Astron. Soc. 435, 3085–3095 (2013).

    ADS  Google Scholar 

  20. Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local Universe. Astrophys. J. 813, 82 (2015).

    ADS  Google Scholar 

  21. Simmons, B. D., Smethurst, R. J. & Lintott, C. Supermassive black holes in disc-dominated galaxies outgrow their bulges and co-evolve with their host galaxies. Mon. Not. R. Astron. Soc. 470, 1559–1569 (2017).

    ADS  Google Scholar 

  22. Elitzur, M., Ho, L. C. & Trump, J. R. Evolution of broad-line emission from active galactic nuclei. Mon. Not. R. Astron. Soc. 438, 3340–3351 (2014).

    ADS  Google Scholar 

  23. Pancoast, A. et al. Modelling reverberation mapping data — II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set. Mon. Not. R. Astron. Soc. 445, 3073–3091 (2014).

    ADS  Google Scholar 

  24. Storchi-Bergmann, T. et al. Double-peaked profiles: ubiquitous signatures of disks in the broad emission lines of active galactic nuclei. Astrophys. J. 835, 236 (2017).

    ADS  Google Scholar 

  25. Menci, N., Gatti, M., Fiore, F. & Lamastra, A. Triggering active galactic nuclei in hierarchical galaxy formation: disk instability vs. interactions. Astron. Astrophys. 569, A37 (2014).

    ADS  Google Scholar 

  26. Hopkins, P. F., Kocevski, D. D. & Bundy, K. Do we expect most AGN to live in discs? Mon. Not. R. Astron. Soc. 445, 823–834 (2014).

    ADS  Google Scholar 

  27. Gatti, M., Lamastra, A., Menci, N., Bongiorno, A. & Fiore, F. Physical properties of AGN host galaxies as a probe of supermassive black hole feeding mechanisms. Astron. Astrophys. 576, A32 (2015).

    ADS  Google Scholar 

  28. Treister, E., Schawinski, K., Urry, C. M. & Simmons, B. D. Major galaxy mergers only trigger the most luminous active galactic nuclei. Astrophys. J. Lett. 758, L39 (2012).

    ADS  Google Scholar 

  29. Fan, L., Knudsen, K. K., Fogasy, J. & Drouart, G. ALMA detections of CO emission in the most luminous, heavily dust-obscured quasars at z > 3. Astrophys. J. Lett. 856, L5 (2018).

    ADS  Google Scholar 

  30. Trakhtenbrot, B. et al. ALMA observations show major mergers among the host galaxies of fast-growing, high-redshift supermassive black holes. Astrophys. J. 836, 8 (2017).

    ADS  Google Scholar 

  31. Schawinski, K., Simmons, B. D., Urry, C. M., Treister, E. & Glikman, E. Heavily obscured quasar host galaxies at z ~ 2 are discs, not major mergers. Mon. Not. R. Astron. Soc. 425, L61–L65 (2012).

    ADS  Google Scholar 

  32. Urrutia, T., Lacy, M. & Becker, R. H. Evidence for quasar activity triggered by galaxy mergers in HST observations of dust-reddened quasars. Astrophys. J. 674, 80–96 (2008).

    ADS  Google Scholar 

  33. Glikman, E. et al. FIRST-2MASS red quasars: transitional objects emerging from the dust. Astrophys. J. 757, 51 (2012).

    ADS  Google Scholar 

  34. Glikman, E. et al. Major mergers host the most-luminous red quasars at z ~ 2: a Hubble Space Telescope WFC3/IR study. Astrophys. J. 806, 218 (2015).

    ADS  Google Scholar 

  35. Fan, L. et al. The most luminous heavily obscured quasars have a high merger fraction: morphological study of WISE-selected hot dust-obscured galaxies. Astrophys. J. Lett. 822, L32 (2016).

    ADS  Google Scholar 

  36. Emonts, B. H. C. et al. Timescales of merger, starburst and AGN activity in radio galaxy B2 0648+27. Astron. Astrophys. 454, 125–135 (2006).

    ADS  Google Scholar 

  37. González-Alfonso, E. et al. Herschel/PACS spectroscopy of NGC 4418 and Arp 220: H2O, H2 18O, OH, 18OH, O I, HCN, and NH3. Astron. Astrophys. 541, A4 (2012).

    Google Scholar 

  38. Falstad, N., González-Alfonso, E., Aalto, S. & Fischer, J. Inflowing gas onto a compact obscured nucleus in Arp 299A. Herschel spectroscopic studies of H2O and OH. Astron. Astrophys. 597, A105 (2017).

    ADS  Google Scholar 

  39. Storchi-Bergmann, T. et al. Bipolar ionization cones in the extended narrow-line region of nearby QSO2s. Astrophys. J. 868, 14 (2018).

    ADS  Google Scholar 

  40. Koss, M., Mushotzky, R., Veilleux, S. & Winter, L. Merging and clustering of the Swift BAT AGN sample. Astrophys. J. Lett. 716, L125–L130 (2010).

    ADS  Google Scholar 

  41. Silverman, J. D. et al. The impact of galaxy interactions on active galactic nucleus activity in zCOSMOS. Astrophys. J. 743, 2 (2011).

    ADS  Google Scholar 

  42. Ellison, S. L., Patton, D. R., Mendel, J. T. & Scudder, J. M. Galaxy pairs in the Sloan Digital Sky Survey — IV. Interactions trigger active galactic nuclei. Mon. Not. R. Astron. Soc. 418, 2043–2053 (2011).

    ADS  Google Scholar 

  43. Ellison, S. L., Mendel, J. T., Scudder, J. M., Patton, D. R. & Palmer, M. J. D. Galaxy pairs in the Sloan Digital Sky Survey — VII. The merger-luminous infrared galaxy connection. Mon. Not. R. Astron. Soc. 430, 3128–3141 (2013).

    ADS  Google Scholar 

  44. Satyapal, S. et al. Galaxy pairs in the Sloan Digital Sky Survey — IX. Merger-induced AGN activity as traced by the Wide-field Infrared Survey Explorer. Mon. Not. R. Astron. Soc. 441, 1297–1304 (2014).

    ADS  Google Scholar 

  45. Böhm, A. et al. AGN host galaxies at redshift z ≈ 0.7: peculiar or not? Astron. Astrophys. 549, A46 (2013).

    Google Scholar 

  46. Gabor, J. M. et al. Active galactic nucleus host galaxy morphologies in COSMOS. Astrophys. J. 691, 705–722 (2009).

    ADS  Google Scholar 

  47. Grogin, N. A. et al. AGN host galaxies at z ~ 0.4–1.3: bulge-dominated and lacking merger-AGN connection. Astrophys. J. Lett. 627, L97–L100 (2005).

    ADS  Google Scholar 

  48. Cisternas, M. et al. The bulk of the black hole growth since z ~ 1 occurs in a secular universe: no major merger-AGN connection. Astrophys. J. 726, 57 (2011).

    ADS  Google Scholar 

  49. Kocevski, D. D. et al. CANDELS: constraining the AGN-merger connection with host morphologies at z ~ 2. Astrophys. J. 744, 148 (2012).

    ADS  Google Scholar 

  50. Villforth, C. et al. Morphologies of z ~ 0.7 AGN host galaxies in CANDELS: no trend of merger incidence with AGN luminosity. Mon. Not. R. Astron. Soc. 439, 3342–3356 (2014).

    ADS  Google Scholar 

  51. Karouzos, M., Jarvis, M. J. & Bonfield, D. Mergers as triggers for nuclear activity: a near-IR study of the close environment of AGN in the VISTA-VIDEO survey. Mon. Not. R. Astron. Soc. 439, 861–877 (2014).

    ADS  Google Scholar 

  52. Mechtley, M. et al. Do the most massive black holes at z = 2 grow via major mergers? Astrophys. J. 830, 156 (2016).

    ADS  Google Scholar 

  53. Villforth, C. et al. Host galaxies of luminous z ~ 0.6 quasars: major mergers are not prevalent at the highest AGN luminosities. Mon. Not. R. Astron. Soc. 466, 812–830 (2017).

    ADS  Google Scholar 

  54. Hickox, R. C. et al. Black hole variability and the star formation-active galactic nucleus connection: do all star-forming galaxies host an active galactic nucleus? Astrophys. J. 782, 9 (2014).

    ADS  Google Scholar 

  55. Goulding, A. D. et al. Galaxy interactions trigger rapid black hole growth: an unprecedented view from the Hyper Suprime-Cam survey. Publ. Astron. Soc. Jpn 70, S37 (2018).

    Google Scholar 

  56. Padovani, P. et al. Active galactic nuclei: what’s in a name? Astron. Astrophys. Rev. 25, 2 (2017).

    ADS  Google Scholar 

  57. Hickox, R. C. & Alexander, D. M. Obscured active galactic nuclei. Annu. Rev. Astron. Astrophys. 56, 625–671 (2018).

    ADS  Google Scholar 

  58. Weston, M. E. et al. Incidence of WISE -selected obscured AGNs in major mergers and interactions from the SDSS. Mon. Not. R. Astron. Soc. 464, 3882–3906 (2017).

    ADS  Google Scholar 

  59. Donley, J. L. et al. Evidence for merger-driven growth in luminous, high-z, obscured AGNs in the CANDELS/COSMOS field. Astrophys. J. 853, 63 (2018).

    ADS  Google Scholar 

  60. Neistein, E. & Netzer, H. What triggers black hole growth? Insights from star formation rates. Mon. Not. R. Astron. Soc. 437, 3373–3384 (2014).

    ADS  Google Scholar 

  61. Simões Lopes, R. D., Storchi-Bergmann, T., de Fátima Saraiva, M. & Martini, P. A strong correlation between circumnuclear dust and black hole accretion in early-type galaxies. Astrophys. J. 655, 718–734 (2007).

    ADS  Google Scholar 

  62. Martini, P., Dicken, D. & Storchi-Bergmann, T. The origin of dust in early-type galaxies and implications for accretion onto supermassive black holes. Astrophys. J. 766, 121 (2013).

    ADS  Google Scholar 

  63. Struve, C., Oosterloo, T. A., Morganti, R. & Saripalli, L. Centaurus A: morphology and kinematics of the atomic hydrogen. Astron. Astrophys. 515, A67 (2010).

    ADS  Google Scholar 

  64. Morganti, R. The many faces of the gas in Centaurus A (NGC 5128). Publ. Astron. Soc. Austr. 27, 463–474 (2010).

    ADS  Google Scholar 

  65. Couto, G. S. et al. Kinematics and excitation of the nuclear spiral in the active galaxy Arp 102B. Mon. Not. R. Astron. Soc. 435, 2982–3000 (2013).

    ADS  Google Scholar 

  66. Couto, G. S. et al. Integral field spectroscopy of the circum-nuclear region of the radio galaxy Pictor A. Mon. Not. R. Astron. Soc. 458, 855–867 (2016).

    ADS  Google Scholar 

  67. Couto, G. S., Storchi-Bergmann, T. & Schnorr-Müller, A. Gas rotation, shocks and outflow within the inner 3 kpc of the radio galaxy 3C 33. Mon. Not. R. Astron. Soc. 469, 1573–1586 (2017).

    ADS  Google Scholar 

  68. Riffel, R. A., Storchi-Bergmann, T. & Riffel, R. Feeding versus feedback in active galactic nuclei from near-infrared integral field spectroscopy — X. NGC 5929. Mon. Not. R. Astron. Soc. 451, 3587–3605 (2015).

    ADS  Google Scholar 

  69. Raimundo, S. I. et al. Tracing the origin of the AGN fuelling reservoir in MCG-6-30-15. Mon. Not. R. Astron. Soc. 464, 4227–4246 (2017).

    ADS  Google Scholar 

  70. Fischer, T. C. et al. A minor merger caught in the act of fueling the active galactic nucleus in Mrk 509. Astrophys. J. 799, 234 (2015).

    ADS  Google Scholar 

  71. Pizzolato, F. & Soker, N. On the nature of feedback heating in cooling flow clusters. Astrophys. J. 632, 821–830 (2005).

    ADS  Google Scholar 

  72. Wada, K., Papadopoulos, P. P. & Spaans, M. Molecular gas disk structures around active galactic nuclei. Astrophys. J. 702, 63–74 (2009).

    ADS  Google Scholar 

  73. Sharma, P., McCourt, M., Quataert, E. & Parrish, I. J. Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies. Mon. Not. R. Astron. Soc. 420, 3174–3194 (2012).

    ADS  Google Scholar 

  74. Gaspari, M., Brighenti, F., Temi, P. & Ettori, S. Can AGN feedback break the self-similarity of galaxies, groups, and clusters? Astrophys. J. Lett. 783, L10 (2014).

    ADS  Google Scholar 

  75. Li, Y. & Bryan, G. L. Modeling active galactic nucleus feedback in cool-core clusters: the formation of cold clumps. Astrophys. J. 789, 153 (2014).

    ADS  Google Scholar 

  76. Voit, G. M., Donahue, M., Bryan, G. L. & McDonald, M. Regulation of star formation in giant galaxies by precipitation, feedback and conduction. Nature 519, 203–206 (2015).

    ADS  Google Scholar 

  77. Voit, G. M., Bryan, G. L., O’Shea, B. W. & Donahue, M. Precipitation-regulated star formation in galaxies. Astrophys. J. Lett. 808, L30 (2015).

    ADS  Google Scholar 

  78. Gaspari, M., Ruszkowski, M. & Oh, S. P. Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 432, 3401–3422 (2013).

    ADS  Google Scholar 

  79. Gaspari, M., Brighenti, F. & Temi, P. Chaotic cold accretion on to black holes in rotating atmospheres. Astron. Astrophys. 579, A62 (2015).

    ADS  Google Scholar 

  80. Gaspari, M. & Sadowski, A. Unifying the micro and macro properties of AGN feeding and feedback. Astrophys. J. 837, 149 (2017).

    ADS  Google Scholar 

  81. Gaspari, M. et al. Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. Astrophys. J. 854, 167 (2018).

    ADS  Google Scholar 

  82. Temi, P. et al. ALMA observations of molecular clouds in three group-centered elliptical galaxies: NGC 5846, NGC 4636, and NGC 5044. Astrophys. J. 858, 17 (2018).

    ADS  Google Scholar 

  83. Diniz, S. I. F. et al. Integral field spectroscopy of the inner kpc of the elliptical galaxy NGC 5044. Mon. Not. R. Astron. Soc. 470, 1703–1717 (2017).

    ADS  Google Scholar 

  84. David, L. P. et al. Molecular gas in the X-ray bright group NGC 5044 as revealed by ALMA. Astrophys. J. 792, 94 (2014).

    ADS  Google Scholar 

  85. García-Burillo, S. et al. Fueling the central engine of radio galaxies. I. The molecular/dusty disk of 4C 31.04. Astron. Astrophys. 468, L71–L75 (2007).

    ADS  Google Scholar 

  86. Labiano, A. et al. Fueling the central engine of radio galaxies. II. The footprints of AGN feedback on the ISM of 3C 236. Astron. Astrophys. 549, A58 (2013).

    Google Scholar 

  87. Labiano, A. et al. Fueling the central engine of radio galaxies. III. Molecular gas and star formation efficiency of 3C 293. Astron. Astrophys. 564, A128 (2014).

    Google Scholar 

  88. Tremblay, G. R. et al. Cold, clumpy accretion onto an active supermassive black hole. Nature 534, 218–221 (2016).

    ADS  Google Scholar 

  89. Russell, H. R. et al. ALMA observations of cold molecular gas filaments trailing rising radio bubbles in PKS 0745-191. Mon. Not. R. Astron. Soc. 458, 3134–3149 (2016).

    ADS  Google Scholar 

  90. Morganti, R. et al. Is cold gas fuelling the radio galaxy NGC 315? Astron. Astrophys. 505, 559–567 (2009).

    ADS  Google Scholar 

  91. Maccagni, F. M., Morganti, R., Oosterloo, T. A. & Mahony, E. K. What triggers a radio AGN? The intriguing case of PKS B1718-649. Astron. Astrophys. 571, A67 (2014).

    ADS  Google Scholar 

  92. Davies, R. I. et al. The role of host galaxy for the environmental dependence of active nuclei in local galaxies. Mon. Not. R. Astron. Soc. 466, 4917–4927 (2017).

    ADS  Google Scholar 

  93. Poggianti, B. M. et al. Ram-pressure feeding of supermassive black holes. Nature 548, 304–309 (2017).

    ADS  Google Scholar 

  94. Marshall, M. A. et al. Triggering active galactic nuclei in galaxy clusters. Mon. Not. R. Astron. Soc. 474, 3615–3628 (2018).

    ADS  Google Scholar 

  95. Ruderman, J. T. & Ebeling, H. The origin of the spatial distribution of X-ray-luminous active galactic nuclei in massive galaxy clusters. Astrophys. J. Lett. 623, L81–L84 (2005).

    ADS  Google Scholar 

  96. Haines, C. P. et al. LoCuSS: A dynamical analysis of X-Ray active galactic nuclei in local clusters. Astrophys. J. 754, 97 (2012).

    ADS  Google Scholar 

  97. Pimbblet, K. A., Shabala, S. S., Haines, C. P., Fraser-McKelvie, A. & Floyd, D. J. E. The drivers of AGN activity in galaxy clusters: AGN fraction as a function of mass and environment. Mon. Not. R. Astron. Soc. 429, 1827–1839 (2013).

    ADS  Google Scholar 

  98. Pentericci, L. et al. The evolution of the AGN content in groups up to z ~ 1. Astron. Astrophys. 552, A111 (2013).

    Google Scholar 

  99. Ehlert, S. et al. X-ray bright active galactic nuclei in massive galaxy clusters — I. Number counts and spatial distribution. Mon. Not. R. Astron. Soc. 428, 3509–3525 (2013).

    ADS  Google Scholar 

  100. Mahajan, S., Raychaudhury, S. & Pimbblet, K. A. Plunging fireworks: why do infalling galaxies light up on the outskirts of clusters? Mon. Not. R. Astron. Soc. 427, 1252–1265 (2012).

    ADS  Google Scholar 

  101. Gilmour, R. et al. Environmental dependence of active galactic nuclei activity in the supercluster A901/2. Mon. Not. R. Astron. Soc. 380, 1467–1487 (2007).

    ADS  Google Scholar 

  102. Gavazzi, G., Savorgnan, G. & Fumagalli, M. The complete census of optically selected AGNs in the Coma supercluster: the dependence of AGN activity on the local environment. Astron. Astrophys. 534, A31 (2011).

    ADS  Google Scholar 

  103. Pimbblet, K. A. & Jensen, P. C. The role of stellar mass and environment for cluster blue fraction, AGN fraction and star formation indicators from a targeted analysis of Abell 1691. Mon. Not. R. Astron. Soc. 426, 1632–1646 (2012).

    ADS  Google Scholar 

  104. Gordon, Y. A. et al. Galaxy and Mass Assembly (GAMA): the effect of galaxy group environment on active galactic nuclei. Mon. Not. R. Astron. Soc. 475, 4223–4234 (2018).

    ADS  Google Scholar 

  105. Orban de Xivry, G. et al. The role of secular evolution in the black hole growth of narrow-line Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 417, 2721–2736 (2011).

    ADS  Google Scholar 

  106. Davies, R. I. et al. Insights on the dusty torus and neutral torus from optical and X-ray obscuration in a complete volume limited hard X-ray AGN sample. Astrophys. J. 806, 127 (2015).

    ADS  Google Scholar 

  107. Rosario, D. J. et al. LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies. Mon. Not. R. Astron. Soc. 473, 5658–5679 (2018).

    ADS  Google Scholar 

  108. Genzel, R. et al. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z ~ 1–2 star-forming galaxies. Astrophys. J. 796, 7 (2014).

    ADS  Google Scholar 

  109. Cowie, L. L., Songaila, A., Hu, E. M. & Cohen, J. G. New insight on galaxy formation and evolution from Keck spectroscopy of the Hawaii deep fields. Astron. J. 112, 839 (1996).

    ADS  Google Scholar 

  110. Elmegreen, D. M., Elmegreen, B. G. & Hirst, A. C. Discovery of face-on counterparts of chain galaxies in the Tadpole Advanced Camera For Surveys field. Astrophys. J. Lett. 604, L21–L23 (2004).

    ADS  Google Scholar 

  111. Elmegreen, D. M., Elmegreen, B. G., Rubin, D. S. & Schaffer, M. A. Galaxy morphologies in the Hubble ultra deep field: dominance of linear structures at the detection limit. Astrophys. J. 631, 85–100 (2005).

    ADS  Google Scholar 

  112. Förster Schreiber, N. M. et al. SINFONI integral field spectroscopy of z ~ 2 UV-selected galaxies: rotation curves and dynamical evolution. Astrophys. J. 645, 1062–1075 (2006).

    ADS  Google Scholar 

  113. Ravindranath, S. et al. The morphological diversities among star-forming galaxies at high redshifts in the Great Observatories Origins Deep Survey. Astrophys. J. 652, 963–980 (2006).

    ADS  Google Scholar 

  114. Genzel, R. et al. From rings to bulges: evidence for rapid secular galaxy evolution at z ~ 2 from integral field spectroscopy in the SINS survey. Astrophys. J. 687, 59–77 (2008).

    ADS  Google Scholar 

  115. Guo, Y., Giavalisco, M., Ferguson, H. C., Cassata, P. & Koekemoer, A. M. Multi-wavelength view of kiloparsec-scale clumps in star-forming galaxies at z ~ 2. Astrophys. J. 757, 120 (2012).

    ADS  Google Scholar 

  116. Shapiro, K. L. et al. Kinemetry of SINS high-redshift star-forming galaxies: distinguishing rotating disks from major mergers. Astrophys. J. 682, 231–251 (2008).

    ADS  Google Scholar 

  117. Bournaud, F. et al. Observations and modeling of a clumpy galaxy at z = 1.6. Spectroscopic clues to the origin and evolution of chain galaxies. Astron. Astrophys. 486, 741–753 (2008).

    ADS  Google Scholar 

  118. Förster Schreiber, N. M. et al. The SINS survey: SINFONI integral field spectroscopy of z ~ 2 star-forming galaxies. Astrophys. J. 706, 1364–1428 (2009).

    ADS  Google Scholar 

  119. Genzel, R. et al. The SINS survey of z ~ 2 galaxy kinematics: properties of the giant star-forming clumps. Astrophys. J. 733, 101 (2011).

    ADS  Google Scholar 

  120. Mandelker, N. et al. The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival. Mon. Not. R. Astron. Soc. 443, 3675–3702 (2014).

    ADS  Google Scholar 

  121. Bournaud, F. et al. Black hole growth and active galactic nuclei obscuration by instability-driven inflows in high-redshift disk galaxies fed by cold streams. Astrophys. J. Lett. 741, L33 (2011).

    ADS  Google Scholar 

  122. Dekel, A. & Krumholz, M. R. Steady outflows in giant clumps of high-z disc galaxies during migration and growth by accretion. Mon. Not. R. Astron. Soc. 432, 455–467 (2013).

    ADS  Google Scholar 

  123. Wuyts, S. et al. Smooth(er) stellar mass maps in CANDELS: constraints on the longevity of clumps in high-redshift star-forming galaxies. Astrophys. J. 753, 114 (2012).

    ADS  Google Scholar 

  124. Cava, A. et al. The nature of giant clumps in distant galaxies probed by the anatomy of the cosmic snake. Nat. Astron. 2, 76–82 (2018).

    ADS  MathSciNet  Google Scholar 

  125. Hopkins, P. F., Kereš, D., Murray, N., Quataert, E. & Hernquist, L. Stellar feedback and bulge formation in clumpy discs. Mon. Not. R. Astron. Soc. 427, 968–978 (2012).

    ADS  Google Scholar 

  126. Hopkins, P. F. et al. Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium. Mon. Not. R. Astron. Soc. 430, 1901–1927 (2013).

    ADS  Google Scholar 

  127. Forbes, J. C., Krumholz, M. R., Burkert, A. & Dekel, A. Balance among gravitational instability, star formation and accretion determines the structure and evolution of disc galaxies. Mon. Not. R. Astron. Soc. 438, 1552–1576 (2014).

    ADS  Google Scholar 

  128. Oklopčić, A. et al. Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy. Mon. Not. R. Astron. Soc. 465, 952–969 (2017).

    ADS  Google Scholar 

  129. Bournaud, F. et al. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift. Astrophys. J. 780, 57 (2014).

    ADS  Google Scholar 

  130. Mandelker, N. et al. Giant clumps in simulated high-z galaxies: properties, evolution and dependence on feedback. Mon. Not. R. Astron. Soc. 464, 635–665 (2017).

    ADS  Google Scholar 

  131. Bournaud, F. et al. An observed link between active galactic nuclei and violent disk instabilities in high-redshift galaxies. Astrophys. J. 757, 81 (2012).

    ADS  Google Scholar 

  132. Trump, J. R. et al. No more active galactic nuclei in clumpy disks than in smooth galaxies at z ~ 2 in CANDELS/3D-HST. Astrophys. J. 793, 101 (2014).

    ADS  Google Scholar 

  133. Shlosman, I., Frank, J. & Begelman, M. C. Bars within bars — a mechanism for fuelling active galactic nuclei. Nature 338, 45–47 (1989).

    ADS  Google Scholar 

  134. Athanassoula, E. The existence and shapes of dust lanes in galactic bars. Mon. Not. R. Astron. Soc. 259, 345–364 (1992).

    ADS  Google Scholar 

  135. Regan, M. W., Vogel, S. N. & Teuben, P. J. Dust and molecular gas in the barred spiral galaxy NGC 1530. Astrophys. J. 449, 576 (1995).

    ADS  Google Scholar 

  136. Regan, M. W., Sheth, K. & Vogel, S. N. Molecular gas kinematics in barred spiral galaxies. Astrophys. J. 526, 97–113 (1999).

    ADS  Google Scholar 

  137. Sakamoto, K., Okumura, S. K., Ishizuki, S. & Scoville, N. Z. Bar-driven transport of molecular gas to galactic centers and its consequences. Astrophys. J. 525, 691–701 (1999).

    ADS  Google Scholar 

  138. Sheth, K., Vogel, S. N., Regan, M. W., Thornley, M. D. & Teuben, P. J. Secular evolution via bar-driven gas inflow: results from BIMA SONG. Astrophys. J. 632, 217–226 (2005).

    ADS  Google Scholar 

  139. Li, Z., Shen, J. & Kim, W.-T. Hydrodynamical simulations of nuclear rings in barred galaxies. Astrophys. J. 806, 150 (2015).

    ADS  Google Scholar 

  140. Knapen, J. H. et al. Massive star formation in the central regions of spiral galaxies. Astron. Astrophys. 448, 489–498 (2006).

    ADS  Google Scholar 

  141. Storchi-Bergmann, T., Rodriguez-Ardila, A., Schmitt, H. R., Wilson, A. S. & Baldwin, J. A. Circumnuclear star formation in active galaxies. Astrophys. J. 472, 83 (1996).

    ADS  Google Scholar 

  142. Storchi-Bergmann, T., Wilson, A. S. & Baldwin, J. A. Nuclear rings in active galaxies. Astrophys. J. 460, 252 (1996).

    ADS  Google Scholar 

  143. Fathi, K. et al. Streaming motions toward the supermassive black hole in NGC 1097. Astrophys. J. Lett. 641, L25–L28 (2006).

    ADS  Google Scholar 

  144. Hennig, M. G. et al. Circumnuclear star formation in Mrk 42 mapped with Gemini Near-infrared Integral Field Spectrograph. Mon. Not. R. Astron. Soc. 477, 1086–1098 (2018).

    ADS  Google Scholar 

  145. Ho, L. C., Filippenko, A. V. & Sargent, W. L. W. The influence of bars on nuclear activity. Astrophys. J. 487, 591–602 (1997).

    ADS  Google Scholar 

  146. Mulchaey, J. S. & Regan, M. W. The fueling of nuclear activity: the bar properties of seyfert and normal galaxies. Astrophys. J. Lett. 482, L135–L137 (1997).

    ADS  Google Scholar 

  147. Malkan, M. A., Gorjian, V. & Tam, R. A Hubble Space Telescope imaging survey of nearby active galactic nuclei. Astrophys. J. Suppl. 117, 25–88 (1998).

    ADS  Google Scholar 

  148. Hunt, L. K. & Malkan, M. A. Morphology of the 12 micron Seyfert galaxies. I. Hubble types, axial ratios, bars, and rings. Astrophys. J. 516, 660–671 (1999).

    ADS  Google Scholar 

  149. Martini, P. & Pogge, R. W. Hubble Space Telescope observations of the CFA Seyfert 2 galaxies: the fueling of active galactic nuclei. Astron. J. 118, 2646–2657 (1999).

    ADS  Google Scholar 

  150. Erwin, P. & Sparke, L. S. Double bars, inner disks, and nuclear rings in early-type disk galaxies. Astron. J. 124, 65–77 (2002).

    ADS  Google Scholar 

  151. Lee, G.-H., Park, C., Lee, M. G. & Choi, Y.-Y. Dependence of barred galaxy fraction on galaxy properties and environment. Astrophys. J. 745, 125 (2012).

    ADS  Google Scholar 

  152. Knapen, J. H., Shlosman, I. & Peletier, R. F. A subarcsecond resolution near-infrared study of Seyfert and “normal” galaxies. II. Morphology. Astrophys. J. 529, 93–100 (2000).

    ADS  Google Scholar 

  153. Laine, S., Shlosman, I., Knapen, J. H. & Peletier, R. F. Nested and single bars in Seyfert and non-Seyfert galaxies. Astrophys. J. 567, 97–117 (2002).

    ADS  Google Scholar 

  154. Laurikainen, E., Salo, H. & Buta, R. Comparison of bar strengths and fractions of bars in active and nonactive galaxies. Astrophys. J. 607, 103–124 (2004).

    ADS  Google Scholar 

  155. Alonso, M. S., Coldwell, G. & Lambas, D. G. Effect of bars in AGN host galaxies and black hole activity. Astron. Astrophys. 549, A141 (2013).

    ADS  Google Scholar 

  156. Cheung, E. et al. Galaxy Zoo: are bars responsible for the feeding of active galactic nuclei at 0.2 < z < 1.0? Mon. Not. R. Astron. Soc. 447, 506–516 (2015).

    ADS  Google Scholar 

  157. Cisternas, M. et al. X-Ray nuclear activity in S4G barred galaxies: no link between bar strength and co-occurrent supermassive black hole fueling. Astrophys. J. 776, 50 (2013).

    ADS  Google Scholar 

  158. Galloway, M. A. et al. Galaxy Zoo: the effect of bar-driven fuelling on the presence of an active galactic nucleus in disc galaxies. Mon. Not. R. Astron. Soc. 448, 3442–3454 (2015).

    ADS  Google Scholar 

  159. Goulding, A. D. et al. Galaxy-scale bars in late-type Sloan Digital Sky Survey galaxies do not influence the average accretion rates of supermassive black holes. Astrophys. J. 843, 135 (2017).

    ADS  Google Scholar 

  160. Hopkins, P. F. & Quataert, E. How do massive black holes get their gas? Mon. Not. R. Astron. Soc. 407, 1529–1564 (2010).

    ADS  Google Scholar 

  161. Kim, W.-T. & Elmegreen, B. G. Nuclear spiral shocks and induced gas inflows in weak oval potentials. Astrophys. J. Lett. 841, L4 (2017).

    ADS  Google Scholar 

  162. Fukuda, H., Wada, K. & Habe, A. The effect of a central supermassive black hole on gas fuelling. Mon. Not. R. Astron. Soc. 295, 463 (1998).

    ADS  Google Scholar 

  163. Maciejewski, W., Teuben, P. J., Sparke, L. S. & Stone, J. M. Gas inflow in barred galaxies — effects of secondary bars. Mon. Not. R. Astron. Soc. 329, 502–512 (2002).

    ADS  Google Scholar 

  164. Maciejewski, W. Nuclear spirals in galaxies: gas response to an asymmetric potential — II. hydrodynamical models. Mon. Not. R. Astron. Soc. 354, 892–904 (2004).

    ADS  Google Scholar 

  165. Emsellem, E. et al. The interplay between a galactic bar and a supermassive black hole: nuclear fuelling in a subparsec resolution galaxy simulation. Mon. Not. R. Astron. Soc. 446, 2468–2482 (2015).

    ADS  Google Scholar 

  166. Vollmer, B., Beckert, T. & Davies, R. I. Starbursts and torus evolution in AGN. Astron. Astrophys. 491, 441–453 (2008).

    ADS  Google Scholar 

  167. Vollmer, B. & Davies, R. I. The quenching of star formation in accretion-driven clumpy turbulent tori of active galactic nuclei. Astron. Astrophys. 556, A31 (2013).

    ADS  Google Scholar 

  168. Kawakatu, N. & Wada, K. Coevolution of supermassive black holes and circumnuclear disks. Astrophys. J. 681, 73–83 (2008).

    ADS  Google Scholar 

  169. Schartmann, M. et al. The life cycle of starbursting circumnuclear gas discs. Mon. Not. R. Astron. Soc. 473, 953–968 (2018).

    ADS  Google Scholar 

  170. Martini, P., Pogge, R. W., Ravindranath, S. & An, J. H. Hubble Space Telescope observations of the CfA Seyfert 2 galaxies: near-infrared surface photometry and nuclear bars. Astrophys. J. 562, 139–151 (2001).

    ADS  Google Scholar 

  171. Pogge, R. W. & Martini, P. Hubble Space Telescope imaging of the circumnuclear environments of the CfA Seyfert galaxies: nuclear spirals and fueling. Astrophys. J. 569, 624–640 (2002).

    ADS  Google Scholar 

  172. Martini, P., Regan, M. W., Mulchaey, J. S. & Pogge, R. W. Circumnuclear dust in nearby active and inactive galaxies. I. Data. Astrophys. J. Suppl. 146, 353–406 (2003).

    ADS  Google Scholar 

  173. Prieto, M. A., Maciejewski, W. & Reunanen, J. Feeding the monster: the nucleus of NGC 1097 at subarcsecond scales in the infrared with the very large telescope. Astron. J. 130, 1472–1481 (2005).

    ADS  Google Scholar 

  174. García-Burillo, S. et al. Feeding AGN: new results from the NUGA survey. Proc. Int. Astron. Union 222, 427–430 (2004).

    Google Scholar 

  175. Mazzalay, X. et al. Molecular gas in the centre of nearby galaxies from VLT/SINFONI integral field spectroscopy — I. Morphology and mass inventory. Mon. Not. R. Astron. Soc. 428, 2389–2406 (2013).

    ADS  Google Scholar 

  176. García-Burillo, S. & Combes, F. The feeding of activity in galaxies: a molecular line perspective. J. Phys. Conf. Ser. 372, 012050 (2012).

    Google Scholar 

  177. Lindt-Krieg, E. et al. Molecular gas in NUclei of GAlaxies (NUGA). VIII. The Seyfert 2 NGC 6574. Astron. Astrophys. 479, 377–388 (2008).

    ADS  Google Scholar 

  178. Hunt, L. K. et al. Molecular gas in NUclei of GAlaxies (NUGA). IX. The decoupled bars and gas inflow in NGC 2782. Astron. Astrophys. 482, 133–150 (2008).

    ADS  Google Scholar 

  179. Casasola, V. et al. Molecular gas in NUclei of GAlaxies (NUGA). X. The Seyfert 2 galaxy NGC 3147. Astron. Astrophys. 490, 61–76 (2008).

    ADS  Google Scholar 

  180. García-Burillo, S. et al. Molecular gas in NUclei of GAlaxies (NUGA). XI. A complete gravity torque map of NGC 4579: new clues to bar evolution. Astron. Astrophys. 496, 85–105 (2009).

    ADS  Google Scholar 

  181. Casasola, V., Hunt, L. K., Combes, F., García-Burillo, S. & Neri, R. Molecular gas in NUclei of GAlaxies (NUGA). XIV. The barred LINER/Seyfert 2 galaxy NGC 3627. Astron. Astrophys. 527, A92 (2011).

    ADS  Google Scholar 

  182. Sani, E. et al. Physical properties of dense molecular gas in centres of Seyfert galaxies. Mon. Not. R. Astron. Soc. 424, 1963–1976 (2012).

    ADS  Google Scholar 

  183. Lin, M.-Y. et al. Thick discs, and an outflow, of dense gas in the nuclei of nearby Seyfert galaxies. Mon. Not. R. Astron. Soc. 458, 1375–1392 (2016).

    ADS  Google Scholar 

  184. Espada, D. et al. Disentangling the circumnuclear environs of Centaurus A. III. An inner molecular ring, nuclear shocks, and the CO to warm H2 interface. Astrophys. J. 843, 136 (2017).

    ADS  Google Scholar 

  185. Combes, F. et al. ALMA observations of feeding and feedback in nearby Seyfert galaxies: an AGN-driven outflow in NGC 1433. Astron. Astrophys. 558, A124 (2013).

    Google Scholar 

  186. Combes, F. et al. ALMA reveals the feeding of the Seyfert 1 nucleus in NGC 1566. Astron. Astrophys. 565, A97 (2014).

    Google Scholar 

  187. Slater, R. et al. Outflows in the inner kiloparsec of NGC 1566 as revealed by molecular (ALMA) and ionized gas (Gemini-GMOS/IFU) kinematics. Preprint at https://arxiv.org/abs/1804.02054 (2018).

  188. Maccagni, F. M., Morganti, R., Oosterloo, T. A., Oonk, J. B. R. & Emonts, B. H. C. ALMA observations of AGN fuelling: the case of PKS B1718-649. Astron. Astrophys. 614, A42 (2018).

    ADS  Google Scholar 

  189. Krug, H. B., Rupke, D. S. N. & Veilleux, S. Neutral gas outflows and inflows in infrared-faint Seyfert galaxies. Astrophys. J. 708, 1145–1161 (2010).

    ADS  Google Scholar 

  190. Hsieh, P.-Y. et al. Molecular gas feeding the circumnuclear disk of the Galactic Center. Astrophys. J. 847, 3 (2017).

    ADS  Google Scholar 

  191. Diniz, M. R., Riffel, R. A., Storchi-Bergmann, T. & Winge, C. Feeding versus feedback in AGN from near-infrared IFU observations XI: NGC 2110. Mon. Not. R. Astron. Soc. 453, 1727–1739 (2015).

    ADS  Google Scholar 

  192. Riffel, R. A., Storchi-Bergmann, T. & Winge, C. Feeding versus feedback in AGNs from near-infrared IFU observations: the case of Mrk 79. Mon. Not. R. Astron. Soc. 430, 2249–2261 (2013).

    ADS  Google Scholar 

  193. Riffel, R. A. et al. Mapping of molecular gas inflow towards the Seyfert nucleus of NGC4051 using Gemini NIFS. Mon. Not. R. Astron. Soc. 385, 1129–1142 (2008).

    ADS  Google Scholar 

  194. Riffel, R. A. & Storchi-Bergmann, T. Compact molecular disc and ionized gas outflows within 350 pc of the active nucleus of Mrk 1066. Mon. Not. R. Astron. Soc. 411, 469–486 (2011).

    ADS  Google Scholar 

  195. Davies, R. I. et al. Stellar and molecular gas kinematics Of NGC 1097: inflow driven by a nuclear spiral. Astrophys. J. 702, 114–128 (2009).

    ADS  Google Scholar 

  196. Müller Sánchez, F. et al. Molecular gas streamers feeding and obscuring the active nucleus of NGC 1068. Astrophys. J. 691, 749–759 (2009).

    ADS  Google Scholar 

  197. Davies, R. I. et al. Fueling active galactic nuclei. II. Spatially resolved molecular inflows and outflows. Astrophys. J. 792, 101 (2014).

    ADS  Google Scholar 

  198. Maccagni, F. M. et al. The warm molecular hydrogen of PKS B1718-649. Feeding a newly born radio AGN. Astron. Astrophys. 588, A46 (2016).

    Google Scholar 

  199. Neumayer, N. et al. The central parsecs of Centaurus A: high-excitation gas, a molecular disk, and the mass of the black hole. Astrophys. J. 671, 1329–1344 (2007).

    ADS  Google Scholar 

  200. Storchi-Bergmann, T. et al. Feeding versus feedback in NGC4151 probed with Gemini NIFS — II. Kinematics. Mon. Not. R. Astron. Soc. 402, 819–835 (2010).

    ADS  Google Scholar 

  201. Hicks, E. K. S. et al. The role of molecular gas in obscuring Seyfert active galactic nuclei. Astrophys. J. 696, 448–470 (2009).

    ADS  Google Scholar 

  202. Riffel, R. A. & Storchi-Bergmann, T. Feeding and feedback in the active nucleus of Mrk 1157 probed with the Gemini Near-Infrared Integral-Field Spectrograph. Mon. Not. R. Astron. Soc. 417, 2752–2769 (2011).

    ADS  Google Scholar 

  203. Hicks, E. K. S. et al. Fueling active galactic nuclei. I. How the global characteristics of the central kiloparsec of Seyferts differ from quiescent galaxies. Astrophys. J. 768, 107 (2013).

    ADS  Google Scholar 

  204. Schnorr-Müller, A., Storchi-Bergmann, T., Nagar, N. M. & Ferrari, F. Gas inflows towards the nucleus of the active galaxy NGC 7213. Mon. Not. R. Astron. Soc. 438, 3322–3331 (2014).

    ADS  Google Scholar 

  205. Schnorr-Müller, A., Storchi-Bergmann, T., Ferrari, F. & Nagar, N. M. Gas inflows towards the nucleus of the Seyfert 2 galaxy NGC 1667. Mon. Not. R. Astron. Soc. 466, 4370–4380 (2017).

    ADS  Google Scholar 

  206. Schnorr-Müller, A., Storchi-Bergmann, T., Nagar, N. M., Robinson, A. & Lena, D. Gas inflows towards the nucleus of NGC 1358. Mon. Not. R. Astron. Soc. 471, 3888–3898 (2017).

    ADS  Google Scholar 

  207. Schnorr Müller, A. et al. Gas streaming motions towards the nucleus of M81. Mon. Not. R. Astron. Soc. 413, 149–161 (2011).

    ADS  Google Scholar 

  208. Storchi-Bergmann, T. et al. Nuclear spirals as feeding channels to the supermassive black hole: the case of the galaxy NGC 6951. Astrophys. J. 670, 959–967 (2007).

    ADS  Google Scholar 

  209. Schnorr-Müller, A., Storchi-Bergmann, T., Robinson, A., Lena, D. & Nagar, N. M. Feeding and feedback in NGC 3081. Mon. Not. R. Astron. Soc. 457, 972–985 (2016).

    ADS  Google Scholar 

  210. Steffen, W., Koning, N., Wenger, S., Morisset, C. & Magnor, M. Shape: a 3D modeling tool for astrophysics. IEEE Trans. Vis. Comput. Graph. 17, 454–465 (2011).

    Google Scholar 

  211. Fischer, T. C. et al. Gemini Near Infrared Field Spectrograph observations of the Seyfert 2 galaxy Mrk 573: in situ acceleration of ionized and molecular gas off fueling flows. Astrophys. J. 834, 30 (2017).

    ADS  Google Scholar 

  212. Riffel, R. A., Storchi-Bergmann, T. & Riffel, R. An outflow perpendicular to the radio jet in the Seyfert nucleus of NGC 5929. Astrophys. J. Lett. 780, L24 (2014).

    ADS  Google Scholar 

  213. Lena, D. et al. The complex gas kinematics in the nucleus of the Seyfert 2 galaxy NGC 1386: rotation, outflows, and inflows. Astrophys. J. 806, 84 (2015).

    ADS  Google Scholar 

  214. Schnorr-Müller, A. et al. Feeding and feedback in the inner kiloparsec of the active galaxy NGC 2110. Mon. Not. R. Astron. Soc. 437, 1708–1724 (2014).

    ADS  Google Scholar 

  215. Schinnerer, E., Eckart, A., Tacconi, L. J., Genzel, R. & Downes, D. Bars and warps traced by the molecular gas in the Seyfert 2 galaxy NGC 1068. Astrophys. J. 533, 850–868 (2000).

    ADS  Google Scholar 

  216. García-Burillo, S. et al. Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. Astron. Astrophys. 567, A125 (2014).

    Google Scholar 

  217. Casasola, V., Hunt, L., Combes, F. & García-Burillo, S. The resolved star-formation relation in nearby active galactic nuclei. Astron. Astrophys. 577, A135 (2015).

    ADS  Google Scholar 

  218. Riffel, R. A. et al. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies — II. The sample and surface mass density profiles. Mon. Not. R. Astron. Soc. 474, 1373–1389 (2018).

    ADS  Google Scholar 

  219. Dale, D. A., Sheth, K., Helou, G., Regan, M. W. & Hüttemeister, S. Warm and cold molecular gas in galaxies. Astron. J. 129, 2197–2202 (2005).

    ADS  Google Scholar 

  220. Tadhunter, C. et al. The dust masses of powerful radio galaxies: clues to the triggering of their activity. Mon. Not. R. Astron. Soc. 445, L51–L55 (2014).

    ADS  Google Scholar 

  221. Storchi-Bergmann, T., Raimann, D., Bica, E. L. D. & Fraquelli, H. A. The frequency of nuclear star formation in Seyfert 2 galaxies. Astrophys. J. 544, 747–762 (2000).

    ADS  Google Scholar 

  222. Raimann, D., Storchi-Bergmann, T., Quintana, H., Hunstead, R. & Wisotzki, L. Stellar populations in a complete sample of local radio galaxies. Mon. Not. R. Astron. Soc. 364, 1239–1252 (2005).

    ADS  Google Scholar 

  223. Davies, R. I., Tacconi, L. J. & Genzel, R. The nuclear gasdynamics and star formation of NGC 7469. Astrophys. J. 602, 148–161 (2004).

    ADS  Google Scholar 

  224. Davies, R. I. et al. The star-forming torus and stellar dynamical black hole mass in the Seyfert 1 nucleus of NGC 3227. Astrophys. J. 646, 754–773 (2006).

    ADS  Google Scholar 

  225. Friedrich, S. et al. Adaptive optics near infrared integral field spectroscopy of NGC 2992. Astron. Astrophys. 519, A79 (2010).

    Google Scholar 

  226. Storchi-Bergmann, T. et al. Two-dimensional mapping of young stars in the inner 180 pc of NGC 1068: correlation with molecular gas ring and stellar kinematics. Astrophys. J. 755, 87 (2012).

    ADS  Google Scholar 

  227. Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).

    ADS  Google Scholar 

  228. Mallmann, N. D. et al. The first 62 AGN observed with SDSS-IV MaNGA — II. Resolvedstellar populations. Mon. Not. R. Astron. Soc. 478, 5491–5504 (2018).

    ADS  Google Scholar 

  229. Combes, F. et al. ALMA observations of molecular tori around massive black holes. Preprint at https://arxiv.org/abs/1811.00984 (2018).

  230. Gaspari, M., Temi, P. & Brighenti, F. Raining on black holes and massive galaxies: the top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 466, 677–704 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge many colleagues who have contributed with suggestions of discussion points and reference papers that address the feeding of supermassive black holes, especially R. Davies, R. Morganti, S. Garcia-Burillo, F. Combes, W. Maciejewski, T. Fischer, M. Crenshaw and D. Rosario, who helped to improve this Review Article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaisa Storchi-Bergmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storchi-Bergmann, T., Schnorr-Müller, A. Observational constraints on the feeding of supermassive black holes. Nat Astron 3, 48–61 (2019). https://doi.org/10.1038/s41550-018-0611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0611-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing