Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions

Abstract

Multiple planet systems provide an ideal laboratory for probing exoplanet composition, formation history and potential habitability. For the TRAPPIST-1 planets, the planetary radii are well established from transits1,2, with reasonable mass estimates coming from transit timing variations2,3 and dynamical modelling4. The low bulk densities of the TRAPPIST-1 planets demand substantial volatile content. Here we show, using mass–radius–composition models, that TRAPPIST-1f and g probably contain substantial (≥50 wt%) water/ice, with TRAPPIST-1 b and c being significantly drier (≤15 wt%). We propose that this gradient of water mass fractions implies that planets f and g formed outside the primordial snow line whereas b and c formed within it. We find that, compared with planets in our Solar System that also formed within the snow line, TRAPPIST-1b and c contain hundreds more oceans of water. We demonstrate that the extent and timescale of migration in the TRAPPIST-1 system depends on how rapidly the planets formed and the relative location of the primordial snow line. This work provides a framework for understanding the differences between the protoplanetary disks of our Solar System versus M dwarfs. Our results provide key insights into the volatile budgets, timescales of planet formation and migration history of M dwarf systems, probably the most common type of planetary host in the Galaxy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modelled χ2 goodness of fit for the masses of the TRAPPIST-1 planets as a function of the planet's radius and relative H2O mass fraction in wt% added to the system.
Fig. 2: The orbital radius of our modelled water-ice snow line (see Methods) as a function of time of planet formation, assuming the condensation temperature of water-ice at 170 K (blue) and 212 K (red).
Fig. 3: Phase diagram with depth as modelled with the ExoPlex mass–radius–composition calculator for the best-fit interiors of TRAPPIST-1f.

Similar content being viewed by others

References

  1. Gillon, M. A. et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221–224 (2016).

    Article  ADS  Google Scholar 

  2. Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    Article  ADS  Google Scholar 

  3. Wang, S., Wu, D.-H., Barclay, T. & Laughlin, G. P. Updated masses for the TRAPPIST-1 planets. Preprint at https://arxiv.org/abs/1704.04290 (2017).

  4. Quarles, B., Quintana, E., Lopez, E., Schlieder, J. & Barclay, T. Plausible compositions of the seven TRAPPIST-1 planets using long-term dynamical simulations. Astrophys. J. Lett. 842, L5–L11 (2017).

    Article  ADS  Google Scholar 

  5. Dorn, C. et al. Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron. Astrophys 577, A83–A101 (2015).

    Article  Google Scholar 

  6. Unterborn, C. T., Dismukes, E. E. & Panero, W. R. Scaling the Earth: a sensitivity analysis of terrestrial exoplanetary interior models. Astron. J. 819, 32–40 (2016).

    Article  ADS  Google Scholar 

  7. Zeng, L., Sasselov, D. D. & Jacobsen, S. B. Mass–radius relation for rocky planets based on PREM. Astrophys. J. 819, 127–132 (2016).

    Article  ADS  Google Scholar 

  8. Weiss, L. M. & Marcy, G. W. The mass–radius relation for 65 exoplanets smaller than 4 Earth radii. Astrophys. J. 783, L6–L13 (2014).

    Article  ADS  Google Scholar 

  9. Rogers, L. A. Most 1A6 Earth-radius planets are not rocky. Astrophys. J. 801, 41–54 (2015).

    Article  ADS  Google Scholar 

  10. Mottl, M., Glazer, B., Kaiser, R. & Meech, K. Water and astrobiology. Chem. Erde-Geochem. 67, 253–282 (2007).

    Article  ADS  Google Scholar 

  11. Unterborn, C. T. & Panero, W. R. The effects of Mg/Si on the exoplanetary refractory oxygen budget. Astrophys. J. 845, 61–70 (2017).

    Article  ADS  Google Scholar 

  12. Raymond, S. N., Quinn, T. & Lunine, J. I. Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004).

    Article  ADS  Google Scholar 

  13. Lissauer, J. J. et al. Architecture and dynamics of Kepler's candidate multiple transiting planet systems. Astrophys. J. Suppl. Ser. 197, 8–34 (2011).

    Article  ADS  Google Scholar 

  14. Fabrycky, D. C. Architecture of Kepleras multi-transiting systems. II. New investigations with twice as many candidates. Astrophys. J 790, 146–158 (2014).

    Article  ADS  Google Scholar 

  15. Steffen, J. H. & Hwang, J. A. The period ratio distribution of Kepler’s candidate multiplanet systems. Mon. Not. R. Astron. Soc. 448, 1956–1972 (2015).

    Article  ADS  Google Scholar 

  16. Chiang, E. & Goldreich, P. Spectral energy distributions of T Tauri stars with passive circumstellar disks. Astrophys. J. 490, 368–376 (1997).

    Article  ADS  Google Scholar 

  17. Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. H. Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages. Astron. Astrophys. 382, 563–572 (2002).

    Article  ADS  Google Scholar 

  18. Lee, E. J. & Chiang, E. Breeding super-earths and birthing super-puffs in transitional disks. Astrophys. J. 817, 90–101 (2016).

    Article  ADS  Google Scholar 

  19. Gaidos, E. A minimum mass nebula for M dwarfs. Mon. Not. R. Astron. Soc. 470, L1–L5 (2017).

    Article  ADS  Google Scholar 

  20. Noack, L. et al. Water-rich planets: how habitable is a water layer deeper than on Earth? Icarus 277, 215–236 (2016).

    Article  ADS  Google Scholar 

  21. Barr, A. C., Dobos, V. & Kiss, L. L. Interior structures and tidal heating in the TRAPPIST-1 planets. Preprint at https://arxiv.org/abs/1712.05641 (2017).

  22. Kite, E. S., Manga, M. & Gaidos, E. Geodynamics and rate of volcanism on massive Earth-like planets. Astrophys. J. 700, 1732–1749 (2009).

    Article  ADS  Google Scholar 

  23. Lopez, E. D., Fortney, J. J. & Mille, N. How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond. Astrophys. J. 761, 59–72 (2012).

    Article  ADS  Google Scholar 

  24. Bedell, M. et al. Kepler-11 is a solar twin: revising the masses and radii of benchmark planets via precise stellar characterization. Astrophys. J 839, 94–106 (2017).

    Article  ADS  Google Scholar 

  25. Stökl, A., Dorfi, E. & Lammer, H. Hydrodynamic simulations of captured protoatmospheres around Earth-like planets. Astron. Astrophys. 576, A87–A98 (2015).

    Article  Google Scholar 

  26. Watson, A. J., Donahue, T. M. & Walker, J. C. G. The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48, 150–166 (1981).

    Article  ADS  Google Scholar 

  27. Erkaev, N. V. et al. Roche lobe effects on the atmospheric loss from ‘hot Jupiters'. Astron. Astrophys 472, 329–334 (2007).

    Article  ADS  Google Scholar 

  28. Wheatley, P. J., Louden, T., Bourrier, V., Ehrenreich, D. & Gillon, M. Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1. Mon. Not. R. Astron. Soc. 465, L74–L78 (2017).

    Article  ADS  Google Scholar 

  29. Burgasser, A. J. & Mamajek, E. E. On the age of the TRAPPIST-1 system. Astrophys. J. 845, 110–120 (2017).

    Article  ADS  Google Scholar 

  30. Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, https://doi.org/10.1029/2009GC002540 (2009).

  31. Stixrude, L. & Bukowinski, M. S. T. Fundamental thermodynamic relations and silicate melting with implications for the constitution of D″. J. Geophys. Res. Solid Earth 95, 19311–19325 (1990).

    Article  Google Scholar 

  32. Bond, J. C., O’Brien, D. P. & Lauretta, D. S. The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. Astrophys. J. 715, 1050–1070 (2010).

    Article  ADS  Google Scholar 

  33. Thiabaud, A., Marboeuf, U., Alibert, Y., Leya, I. & Mezger, K. Elemental ratios in stars vs planets. Astron. Astrophys. 580, A30–A37 (2015).

    Article  ADS  Google Scholar 

  34. McDonough, W. F. in Treatise on Geochemistry, Vol. 2 (ed. Carlson, R. W.) 547–568 (Elsevier, Amsterdam, 2003).

  35. Hinkel, N. R., Timmes, F. X., Young, P. A., Pagano, M. D. & Turnbull, M. C. Stellar abundances in the solar neighborhood: the Hypatia Catalog. Astron. J. 148, 54–87 (2014).

    Article  ADS  Google Scholar 

  36. Zapolsky, H. S. & Salpeter, E. E. The mass–radius relation for cold spheres of low mass. Astrophys. J. 158, 809–813 (1969).

    Article  ADS  Google Scholar 

  37. Seager, S., Kuchner, M., Hier-Majumder, C. A. & Militzer, B. Mass–radius relationships for solid exoplanets. Astrophys. J. 669, 1279–1297 (2007).

    Article  ADS  Google Scholar 

  38. Zeng, L. & Sasselov, D. A detailed model grid for solid planets from 0.1 through 100 Earth masses. Publ. Astron. Soc. Pac. 125, 227–239 (2013).

    Article  ADS  Google Scholar 

  39. Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals—I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).

    Article  ADS  Google Scholar 

  40. Anderson, W. W. & Ahrens, T. J. An equation of state for liquid iron and implications for the Earth’s core. J. Geophys. Res. 99, 4273–4284 (1994).

    Article  ADS  Google Scholar 

  41. Hinkel, N. R. et al. A comparison of stellar elemental abundance techniques and measurements. Astrophys. J. Suppl. Ser. 226, 4–70 (2016).

    Article  ADS  Google Scholar 

  42. Hinkel, N. R.. et al. A Catalog of Stellar Unified Properties (CATSUP) for 951 FGK-Stars within 30 pc. Astrophys. J. 848, 34–53 (2017).

    Article  ADS  Google Scholar 

  43. Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Ac. 53, 197–214 (1989).

    Article  ADS  Google Scholar 

  44. Mauersberger, K. & Krankowsky, D. Vapor pressure above ice at temperatures below 170 K. Geophys. Res. Lett. 30, 1121–1131 (2003).

    Article  ADS  Google Scholar 

  45. Kennedy, G. M. & Kenyon, S. J. Planet formation around stars of various masses: the snow line and the frequency of giant planets. Astrophys. J. 673, 502–512 (2008).

    Article  ADS  Google Scholar 

  46. Swift, J. J. et al. Characterizing the cool KOIs. IV. Kepler-32 as a prototype for the formation of compact planetary systems throughout the Galaxy. Astrophys. J 764, 105–119 (2013).

    Article  ADS  Google Scholar 

  47. Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    Article  ADS  Google Scholar 

  48. Backus, I. & Quinn, T. Fragmentation of protoplanetary discs around M-dwarfs. Mon. Not. R. Astron. Soc. 463, 2480–2493 (2016).

    Article  ADS  Google Scholar 

  49. Kuchner, M. J. A minimum-mass extrasolar nebula. Astrophys. J. 612, 1147–1151 (2004).

    Article  ADS  Google Scholar 

  50. Desch, S. J. Mass distribution and planet formation in the solar nebula. Astrophys. J. 671, 878–893 (2007).

    Article  ADS  Google Scholar 

  51. Chiang, E. & Laughlin, G. The minimum-mass extrasolar nebula: in situ formation of close-in super-earths. Mon. Not. R. Astron. Soc. 431, 3444–3455 (2013).

    Article  ADS  Google Scholar 

  52. Tanaka, H., Takeuchi, T. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002).

    Article  ADS  Google Scholar 

  53. Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.T.U. acknowledges the support of Arizona State University through the SESE Exploration fellowship. The results reported herein benefited from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate. N.R.H. would like to thank CHW3 and acknowledges the support of the Vanderbilt Office of the Provost through the Vanderbilt Initiative in Data-intensive Astrophysics (VIDA) fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.T.U. and S.J.D. conceived the project and wrote the manuscript. C.T.U. performed the mass–radius–composition calculations. S.J.D. constructed the snow line model and performed the atmospheric retention calculations. N.R.H. supplied the input stellar data and helped to prepare the manuscript. C.T.U. and A.L. wrote the ExoPlex mass–radius–composition calculator.

Corresponding author

Correspondence to Cayman T. Unterborn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unterborn, C.T., Desch, S.J., Hinkel, N.R. et al. Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions. Nat Astron 2, 297–302 (2018). https://doi.org/10.1038/s41550-018-0411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0411-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing