Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constraints on the magnetic field strength of HAT-P-7 b and other hot giant exoplanets

Abstract

Observations of the infrared and optical light curves of hot giant exoplanets have demonstrated that the peak brightness is generally offset eastwards from the substellar point1,2. This observation is consistent with hydrodynamic numerical simulations producing fast, eastwards directed winds that advect the hottest point in the atmosphere eastwards of the substellar point3,4. However, recent continuous Kepler measurements of HAT-P-7 b show that its peak brightness offset varies considerably over time, with excursions such that the brightest point is sometimes westwards of the substellar point5. These variations in brightness offset require wind variability, with or without the presence of clouds. While such wind variability has not been seen in hydrodynamic simulations of hot giant exoplanet atmospheres, it has been seen in magnetohydrodynamic simulations6. Here I show that magnetohydrodynamic simulations of HAT-P-7 b indeed display variable winds and a corresponding variability in the position of the hottest point in the atmosphere. Assuming that the observed variability in HAT-P-7 b is due to magnetism, I constrain its minimum magnetic field strength to be 6 G. Similar observations of wind variability on hot giant exoplanets, or the lack thereof, could help constrain their magnetic field strengths. As dynamo simulations of these planets do not exist and theoretical scaling relations7 may not apply, such observational constraints could prove immensely useful.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic field lines in the atmosphere of a hot giant exoplanet.
Figure 2: Atmospheric dynamics of a simulated hot giant exoplanet.
Figure 3: Hotspot displacement of simulated HAT-P-7b

Similar content being viewed by others

References

  1. Knutson, H. A. et al. Multiwavelength constraints on the day–night circulation patterns of HD 189733b. Astrophys. J. 690, 822–836 (2009).

    Article  ADS  Google Scholar 

  2. Wong, I. et al. 3.6 and 4.5 μm Spitzer phase curves of ten highly-irradiated hot Jupiters WASP-19b and HAT-P-7b. Astrophys. J. 680, 83–122 (2016).

    Google Scholar 

  3. Showman, A. P. & Guillot, T. Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astron. Astrophys. 385, 166–180 (2002).

    Article  ADS  Google Scholar 

  4. Dobbs-Dixon, I. & Lin, D. N. C. Atmospheric dynamics of short-period extrasolar gas giant planets. I. Dependence of nightside temperature on opacity. Astrophys. J. 673, 513–525 (2008).

    Article  ADS  Google Scholar 

  5. Armstrong, D. J. et al. Variability in the atmosphere of the hot giant planet HAT-P-7b. Nat. Astron. 1, 0004 (2016).

    Article  ADS  Google Scholar 

  6. Rogers, T. M. & Komacek, T. Magnetic effects in hot Jupiter atmospheres. Astrophys. J. 794, 132–144 (2014).

    Article  ADS  Google Scholar 

  7. Christensen, U. Dynamo scaling laws and applications to the planets. Space Sci. Rev. 152, 565–590 (2010).

    Article  ADS  Google Scholar 

  8. Rogers, T. M. On limiting the thickness of the solar tachocline. Astrophys. J. 733, 12–25 (2011).

    Article  ADS  Google Scholar 

  9. Cooper, C. S. & Showman, A. P. Dynamic meteorology at the photosphere of HD 209458b. Astrophys. J. Lett. 629, L45–L48 (2005).

    Article  ADS  Google Scholar 

  10. Rauscher, E. & Menou, K. Three-dimensional modeling of hot Jupiter atmospheric flows. Astrophys. J. 714, 1334–1342 (2010).

    Article  ADS  Google Scholar 

  11. Perna, R., Menou, K. & Rauscher, E. Magnetic drag on hot Jupiter atmospheric winds. Astrophys. J. 719, 1421–1426 (2010).

    Article  ADS  Google Scholar 

  12. Batygin, K. & Stevenson, D. J. Inflating hot Jupiters with ohmic dissipation. Astrophys. J. Lett. 714, L238–L243 (2010).

    Article  ADS  Google Scholar 

  13. Menou, K. Magnetic scaling laws for the atmospheres of hot giant exoplanets. Astrophys. J. 745, 138–146 (2012).

    Article  ADS  Google Scholar 

  14. Rogers, T. & McElwaine, J. The hottest hot-Jupiters may host atmospheric dynamos. Astrophys. J. Lett. Preprint at https://arxiv.org/abs/1704.04197 (2017).

  15. Perez-Becker, D. & Showman, A. P. Atmospheric heat redistribution on hot Jupiters. Astrophys. J. 776, 134–150 (2013).

    Article  ADS  Google Scholar 

  16. Stevenson, D. Turbulent thermal convection in the presence of rotation and a magnetic field — a heuristic theory. Geophys. Astrophys. Fluid Dynam. 12, 139–169 (1979).

    Article  ADS  Google Scholar 

  17. Vidotto, A., Jardine, M. & Helling, C. Early UV ingress in WASP-12b: measuring planetary magnetic fields. Astrophys. J. Lett. 722, 168–172 (2010).

    Article  ADS  Google Scholar 

  18. Barman, T. S., Hauschildt, P. H. & Allard, F. Phase-dependent properties of extrasolar planet atmospheres. Astrophys. J. 632, 1132–1139 (2005).

    Article  ADS  Google Scholar 

  19. Agol, E. et al. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer. Astrophys. J. 721, 1861–1877 (2010).

    Article  ADS  Google Scholar 

  20. Kislyakova, K. G., Holmstrom, M., Lammer, H., Odert, P. & Khodachenko, M. L. Magnetic moment and plasma environment of HD 209458b as determined from Lyα observations. Science 346, 981–983 (2014).

    Article  ADS  Google Scholar 

  21. Gough, D. O. The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448–456 (1969).

    Article  ADS  Google Scholar 

  22. Rogers, T. M. & Glatzmaier, G. A. Penetrative convection within the anelastic approximation. Astrophys. J. 620, 432–445 (2005).

    Article  ADS  Google Scholar 

  23. Rauscher, E. & Menou, K. Three-dimensional atmospheric circulation models of HD 189733 b and HD209458 b with consistent magnetic drag and ohmic dissipation. Astrophys. J. 764, 103–121 (2013).

    Article  ADS  Google Scholar 

  24. Lodders, K. in Principles and Perspectives in Cosmochemistry (eds Goswani, A. & Reddy, B. E. ) 379–417 (Springer, 2010).

    Book  Google Scholar 

  25. Iro, N., Bézard, B. & Guillot, T. A time-dependent radiative model of HD 209458b. Astron. Astrophys. 436, 719–727 (2005).

    Article  ADS  Google Scholar 

  26. Rogers, T. M. & Showman, A. P. Magnetohydrodynamic simulations of the atmosphere of HD 209458b. Astrophys. J. Lett. 782, L4–L10 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.M.R. thanks J. McElwaine and G. Glatzmaier for helpful discussions leading to this paper and J. Vriesema for help with the graphics. Figure 1 was produced using VAPOR. Funding for this work was provided by NASA (National Aeronautics and Space Administration) grant NNX13AG80G and the computing was carried out on Pleiades at NASA Ames.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Rogers.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Video 1 caption, Supplementary Figures 1,2 (PDF 134 kb)

Supplementary Video

Supplementary Video 1 (MOV 126484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, T. Constraints on the magnetic field strength of HAT-P-7 b and other hot giant exoplanets. Nat Astron 1, 0131 (2017). https://doi.org/10.1038/s41550-017-0131

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-017-0131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing