Review Article

Binary stars as the key to understanding planetary nebulae

  • Nature Astronomy 1, Article number: 0117 (2017)
  • doi:10.1038/s41550-017-0117
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Planetary nebulae are traditionally considered to represent the final evolutionary stage of all intermediate-mass stars (0.7–8 M). Recent evidence seems to contradict this picture. In particular, since the launch of the Hubble Space Telescope, it has been clear that planetary nebulae display a wide range of striking morphologies that cannot be understood in a single-star scenario, instead pointing towards binary evolution in a majority of systems. Here, we summarize our current understanding of the importance of binarity in the formation and shaping of planetary nebulae, as well as the surprises that recent observational studies have revealed with respect to our understanding of binary evolution in general. These advances have critical implications for the understanding of mass transfer processes in binary stars—particularly the all-important but ever-so-poorly understood ‘common envelope phase’—as well as the formation of cosmologically important type Ia supernovae.

  • Subscribe to Nature Astronomy for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. The present and future of planetary nebula research. A white paper by the IAU Planetary Nebula Working Group. Rev. Mex. Astron. Astrophys. 50, 203–223 (2014).

  2. 2.

    , & Signatures of accretion events in the haloes of early-type galaxies from comparing PNe and GCs kinematics. Mon. Not. R. Astron. Soc. 436, 1322–1334 (2013).

  3. 3.

    , , , & Metallicity gradients in local Universe galaxies: Time evolution and effects of radial migration. Astron. Astrophys. 588, A91 (2016).

  4. 4.

    , & Planetary nebulae as tracers of galaxy stellar populations. Mon. Not. R. Astron. Soc. 368, 877–894 (2006).

  5. 5.

    et al. The kinematics of intracluster planetary nebulae and the on-going subcluster merger in the Coma cluster core. Astron. Astrophys. 468, 815–822 (2007).

  6. 6.

    et al. Narrowband imaging in [O iii] and Hα to search for intracluster planetary nebulae in the Virgo cluster. Astron. J. 125, 514–524 (2003).

  7. 7.

    , , & Planetary nebulae as standard candles. II. The calibration in M31 and its companions. Astrophys. J. 339, 53–69 (1989).

  8. 8.

    et al. Planetary nebulae as standard candles. XII. Connecting the population I and population II distance scales. Astrophys. J. 577, 31–50 (2002).

  9. 9.

    , & On the origin of planetary nebulae. Astrophys. J. 219, 125–127 (1978).

  10. 10.

    & Shapes of planetary nebulae. Mon. Not. R. Astron. Soc. 212, 837–850 (1985).

  11. 11.

    et al. The Macquarie/AAO/Strasbourg Hα planetary nebula catalogue: MASH. Mon. Not. R. Astron. Soc. 373, 79–94 (2006).

  12. 12.

    , , , & Multiple ring nebulae around blue supergiants. Astron. Astrophys. 488, L37–L41 (2008).

  13. 13.

    , , , & Single rotating stars and the formation of bipolar planetary nebula. Astrophys. J. 783, 74 (2014).

  14. 14.

    Three-dimensional magnetohydrodynamical modeling of planetary nebulae: The formation of jets, ansae, and point-symmetric nebulae via magnetic collimation. Astrophys. J. Lett. 489, L189–L192 (1997).

  15. 15.

    , & Astrophysical explosions driven by a rotating, magnetized, gravitating sphere. Astrophys. J. Lett. 647, L45–L48 (2006).

  16. 16.

    , & Isolated versus common envelope dynamos in planetary nebula progenitors. Mon. Not. R. Astron. Soc. 376, 599–608 (2007).

  17. 17.

    Common envelope binaries. In Structure and Evolution of Close Binary Systems (eds Eggleton, P., Mitton, S. & Whelan, J.) 75–80 (IAU, 1976).

  18. 18.

    & Low-mass binary-induced outflows from asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 370, 2004–2012 (2006).

  19. 19.

    , & Constraints on common envelope magnetic fields from observations of jets in planetary nebulae. Mon. Not. R. Astron. Soc. 439, 2014–2024 (2014).

  20. 20.

    Evolutionary Processes in Binary and Multiple Stars (Cambridge Univ. Press, 2011).

  21. 21.

    , & Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

  22. 22.

    & Dawes review 6: The impact of companions on stellar evolution. Pub. Astron. Soc. Australia 34, e001 (2017).

  23. 23.

    et al. A survey of stellar families: Multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 190, 1–42 (2010).

  24. 24.

    The origin and shaping of planetary nebulae: Putting the binary hypothesis to the test. Pub. Astron. Soc. Pacific 121, 316–342 (2009).

  25. 25.

    et al. Common envelope evolution: Where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).

  26. 26.

    et al. The effect of a wider initial separation on common envelope binary interaction simulations. Mon. Not. R. Astron. Soc. 464, 4028–4044 (2017).

  27. 27.

    et al. Observational confirmation of a link between common envelope binary interaction and planetary nebula shaping. Astrophys. J. 832, 125 (2016).

  28. 28.

    & The role of planets in shaping planetary nebulae. Pub. Astron. Soc. Pacific 123, 402–411 (2011).

  29. 29.

    , & Rates and delay times of type Ia supernovae. Astrophys. J. 699, 2026–2036 (2009).

  30. 30.

    in Ecology of Blue Straggler Stars (eds Boffin, H. M. J., Carraro, G., Beccari, G.) Ch. 7, 153–178 (Astrophysics and Space Science Library Vol. 413, 2015).

  31. 31.

    , & Wind accretion in binary stars. II. Accretion rates. Mon. Not. R. Astron. Soc. 280, 1264–1276 (1996).

  32. 32.

    & Mass transfer in Mira-type binaries. Baltic Astronomy 21, 88–96 (2012).

  33. 33.

    & Imaging the circumstellar envelopes of AGB stars. Astron. Astrophys. 452, 257–268 (2006).

  34. 34.

    & A new method of determining the characteristics of evolved binary systems revealed in the observed circumstellar patterns: Application to AFGL 3068. Astrophys. J. Lett. 759, L22 (2012).

  35. 35.

    et al. Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris. Nature 490, 232–234 (2012).

  36. 36.

    et al. High-resolution CO observation of the carbon star CIT 6 revealing the spiral structure and a nascent bipolar outflow. Astrophys. J. 814, 61 (2015).

  37. 37.

    et al. The large-scale nebular pattern of a superwind binary in an eccentric orbit. Nat. Astron. 1, 0060 (2017).

  38. 38.

    & Wide binary effects on asymmetries in asymptotic giant branch circumstellar envelopes. Astrophys. J. 759, 59 (2012).

  39. 39.

    Objects common to the catalogue of galactic planetary nebulae and the general catalogue of variable stars. Pub. Astron. Soc. Pacific 88, 192–194 (1976).

  40. 40.

    , & Direct optical observations of the secondary component of UU Sagittae. Mon. Not. R. Astron. Soc. 270, 449–456 (1994).

  41. 41.

    , & On the reflection effect in three sdOB binary stars. Mon. Not. R. Astron. Soc. 279, 1380–1392 (1996).

  42. 42.

    & Two-colour photometry of the binary planetary nebula nuclei UU Sagitte and V477 Lyrae: Oversized secondaries in post-common-envelope binaries. Mon. Not. R. Astron. Soc. 391, 802–814 (2008).

  43. 43.

    & Imaging and spectroscopy of ejected common envelopes – I. Mon. Not. R. Astron. Soc. 284, 32–44 (1997).

  44. 44.

    et al. Proof of polar ejection from close-binary core of the planetary nebula Abell 63. Mon. Not. R. Astron. Soc. 374, 1404–1412 (2007).

  45. 45.

    , & The abundance discrepancy — recombination line versus forbidden line abundances for a northern sample of galactic planetary nebulae. Mon. Not. R. Astron. Soc. 362, 424–454 (2005).

  46. 46.

    & On the abundance discrepancy problem in H ii regions. Astrophys. J. 670, 457–470 (2007).

  47. 47.

    , , & Binarity and the abundance discrepancy problem in planetary nebulae. Astrophys. J. 803, 99 (2015).

  48. 48.

    & Morphologies of planetary nebulae ejected by close-binary nuclei. Astrophys. J. 335, 568–576 (1990).

  49. 49.

    , & The planetary nebula K 1–2 and its binary central star VW Pyx. Mon. Not. R. Astron. Soc. 341, 1349–1359 (2003).

  50. 50.

    , , , & A study of two post-common envelope binary systems. Mon. Not. R. Astron. Soc. 359, 315–327 (2005).

  51. 51.

    Binarity of central stars of planetary nebulae. In Asymmetrical Planetary Nebulae II: From Origins to Microstructures (eds Kastner, J. H., Soker, N. & Rappaport, S.) 115 (Astronomical Society of the Pacific, 2000).

  52. 52.

    , , , & Binary planetary nebulae nuclei towards the Galactic bulge. I. Sample discovery, period distribution, and binary fraction. Astron. Astrophys. 496, 813–825 (2009).

  53. 53.

    , , & Binary planetary nebulae nuclei towards the Galactic bulge. II. A penchant for bipolarity and low-ionisation structures. Astron. Astrophys. 505, 249–263 (2009).

  54. 54.

    et al. ETHOS 1: A high-latitude planetary nebula with jets forged by a post-common-envelope binary central star. Mon. Not. R. Astron. Soc. 413, 1264–1274 (2011).

  55. 55.

    et al. Discovery of close binary central stars in the planetary nebulae NGC 6326 and NGC 6778. Astron. Astrophys. 531, A158 (2011).

  56. 56.

    et al. The Necklace: equatorial and polar outflows from the binary central star of the new planetary nebula IPHASX J194359.5+170901. Mon. Not. R. Astron. Soc. 410, 1349–1359 (2011).

  57. 57.

    et al. An interacting binary system powers precessing outflows of an evolved star. Science 338, 773–775 (2012).

  58. 58.

    et al. The post-common-envelope, binary central star of the planetary nebula Hen 2–11. Astron. Astrophys. 562, A89 (2014).

  59. 59.

    et al. The post-common envelope central stars of the planetary nebulae Henize 2–155 and Henize 2–161. Astron. Astrophys. 580, A19 (2015).

  60. 60.

    et al. Physics of eclipsing binaries. II. Toward the increased fidelity. Astrophys. J. Suppl. Ser. 227, 29 (2016).

  61. 61.

    New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae. Astron. Astrophys. 588, A25 (2016).

  62. 62.

    , & Binary central stars of planetary nebulae discovered through photometric variability. I. What we know and what we would like to find out. Astron. J. 136, 323–336 (2008).

  63. 63.

    et al. Identifying close binary central stars of PN with Kepler. Mon. Not. R. Astron. Soc. 448, 3587–3602 (2015).

  64. 64.

    & Foretellings of Ragnarök: World-engulfing asymptotic giants and the inheritance of white dwarfs. Astrophys. J. 761, 121 (2012).

  65. 65.

    , & The effect of tides on the population of PN from interacting binaries. Mon. Not. R. Astron. Soc. 463, 1040–1056 (2016).

  66. 66.

    , & Stellar mergers are common. Mon. Not. R. Astron. Soc. 443, 1319–1328 (2014).

  67. 67.

    , & WeBo 1: A young barium star surrounded by a ringlike planetary nebula. Astron. J. 125, 260–264 (2003).

  68. 68.

    et al. A barium central star binary in the type I diamond ring planetary nebula Abell 70. Mon. Not. R. Astron. Soc. 419, 39–49 (2012).

  69. 69.

    et al. SALT reveals the barium central star of the planetary nebula Hen 2–39. Mon. Not. R. Astron. Soc. 436, 3068–3081 (2013).

  70. 70.

    et al. Two rings but no fellowship: LoTr 1 and its relation to planetary nebulae possessing barium central stars. Mon. Not. R. Astron. Soc. 436, 2082–2095 (2013).

  71. 71.

    et al. Binary central stars of planetary nebulae with long orbits: The radial velocity orbit of BD+33 2642 (PN G052.7+50.7) and the orbital motion of HD 112313 (PN LoTr5). Astron. Astrophys. 563, L10 (2014).

  72. 72.

    , , , & The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5. Astron. Astrophys. 600, L9 (2017).

  73. 73.

    , , & Indications of a large fraction of spectroscopic binaries among nuclei of planetary nebulae. Astrophys. J. 602, 93–96 (2004).

  74. 74.

    , , , & The binary fraction of planetary nebula central stars. I. A high-precision, I-band excess search. Mon. Not. R. Astron. Soc. 428, 2118–2140 (2013).

  75. 75.

    et al. The binary fraction of planetary nebula central stars. II. A larger sample and improved technique for the infrared excess search. Mon. Not. R. Astron. Soc. 448, 3132–3155 (2015).

  76. 76.

    & Do most planetary nebulae derive from binaries? I. Population synthesis model of the galactic planetary nebula population produced by single stars and binaries. Astrophys. J. 650, 916–932 (2006).

  77. 77.

    & Realization of accurate close-binary light curves: Application to MR Cygni. Astrophys. J. 166, 605–619 (1971).

  78. 78.

    , , , & Binary central stars of planetary nebulae discovered through photometric variability. IV. The central stars of HaTr 4 and Hf 2–2. Astron. J. 152, 34 (2016).

  79. 79.

    & The outcome of accretion on to a fully convective star expansion or contraction? Mon. Not. R. Astron. Soc. 216, 37–52 (1985).

  80. 80.

    , & A carbon dwarf wearing a Necklace: First proof of accretion in a post-common-envelope binary central star of a planetary nebula with jets. Mon. Not. R. Astron. Soc. 428, L39–L43 (2013).

  81. 81.

    , , , & The morpho-kinematics of planetary nebulae with binary central stars. In Asymmetrical Planetary Nebulae VI Conf. 43 (Universidad Nacional Autónoma de México, 2014).

  82. 82.

    Jets and tori in proto-planetary nebulae. Astrophys. J. 663, 342–349 (2007).

  83. 83.

    & Disks and jets in planetary nebulae. Astrophys. J. 421, 219–224 (1994).

  84. 84.

    Jet power in pre-planetary nebulae: Observations vs. theory. In IAU Symposium Vol. 283 188–191 (2012).

  85. 85.

    Morphological structures of planetary nebulae. Pub. Astron. Soc. Australia 27, 174–179 (2010).

  86. 86.

    , , , & The outflows and three-dimensional structure of NGC 6337: A planetary nebula with a close binary nucleus. Astrophys. J. 699, 1633–1638 (2009).

  87. 87.

    et al. Abell 41: Shaping of a planetary nebula by a binary central star. Mon. Not. R. Astron. Soc. 408, 2312–2318 (2010).

  88. 88.

    et al. The morphology and kinematics of the Fine Ring Nebula, planetary nebula Sp 1, and the shaping influence of its binary central star. Mon. Not. R. Astron. Soc. 420, 2271–2279 (2012).

  89. 89.

    et al. Spatio-kinematic modelling of Abell 65, a double-shelled planetary nebula with a binary central star. Mon. Not. R. Astron. Soc. 434, 1505–1512 (2013).

  90. 90.

    , , , & Chemical abundances for Hf 2–2, a planetary nebula with the strongest-known heavy-element recombination lines. Mon. Not. R. Astron. Soc. 368, 1959–1970 (2006).

  91. 91.

    , , , & NGC 6778: Strengthening the link between extreme abundance discrepancy factors and central star binarity in planetary nebulae. Mon. Not. R. Astron. Soc. 455, 3263–3272 (2016).

  92. 92.

    , , , & Close binary central stars and the abundance discrepancy — new extreme objects. Preprint at (2016).

  93. 93.

    et al. Imaging the elusive H-poor gas in the high ADF planetary nebula NGC 6778. Astrophys. J. Lett. 824, L27 (2016).

  94. 94.

    et al. Imaging the elusive H-poor gas in planetary nebulae with large abundance discrepancy factors. Preprint at (2016).

  95. 95.

    , , & The kinematics of the permitted C ii λ 6578 line in a large sample of planetary nebulae. Astron. J. 153, 140 (2017).

  96. 96.

    et al. The planetary nebula IPHASXJ211420.0+434136 (Ou5): Insights into common-envelope dynamical and chemical evolution. Mon. Not. R. Astron. Soc. 441, 2799–2808 (2014).

  97. 97.

    , , & Binary central stars of planetary nebulae discovered through photometric variability. II. Modeling the central stars of NGC6026 and NGC6337. Astron. J. 140, 319–327 (2010).

  98. 98.

    The physical characteristics of binary central stars of planetary nebulae. In Asymmetric Planetary Nebulae 5 Conf. (eds Zijlstra, A. A., Lykou, F., McDonald, I. & Lagadec, E.) (Ebrary, 2011).

  99. 99.

    et al. SALT HRS discovery of a long period double-degenerate binary in the planetary nebula NGC 1360. Preprint at (2017).

  100. 100.

    et al. A close binary nucleus in the most oxygen-poor planetary nebulae PN G135.9+55.9. Astrophys. J. 616, 485–497 (2004).

  101. 101.

    et al. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2–428 Nature 519, 63–65 (2015).

  102. 102.

    et al. The discovery of infrared rings in the planetary nebula NGC 1514 during the WISE all-sky survey. Astron. J. 140, 1882–1890 (2010).

  103. 103.

    Allen's Astrophysical Quantities 4th edn (Springer, 2000).

Download references

Acknowledgements

This work makes use of data obtained from the Isaac Newton Group of Telescopes Archive, which is maintained as part of the CASU Astronomical Data Centre at the Institute of Astronomy, Cambridge. D.J. would like to thank F. Jiménez Luján, P. Jones Jiménez and D. Jones Jiménez.

Author information

Affiliations

  1. Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain.

    • David Jones
  2. Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain.

    • David Jones
  3. European Southern Observatory, Karl Schwarzschild Strasse 2, 85748 Garching, Germany

    • Henri M. J. Boffin

Authors

  1. Search for David Jones in:

  2. Search for Henri M. J. Boffin in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to David Jones.