Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Growth of the nonbaryonic dark matter theory

Abstract

The evidence that has accumulated since the 1930s is that the mass of the Universe is dominated by an exotic nonbaryonic form of matter largely draped around the galaxies. This dark matter approximates an initially low-pressure gas of particles that interact only with gravity, but we know little more than that. Searches for detection thus must follow many difficult paths to a great discovery: what the Universe is made of.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tests of the theory.

Similar content being viewed by others

References

  1. Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933).

    MATH  ADS  Google Scholar 

  2. Smith, S. The mass of the Virgo cluster. Astrophys. J. 83, 23–30 (1936).

    Article  ADS  Google Scholar 

  3. Davis, M. & Peebles, P. J. E. A survey of galaxy redshifts. V — The two-point position and velocity correlations. Astrophys. J. 267, 465–482 (1983).

    Article  ADS  Google Scholar 

  4. Ostriker, J. P., Peebles, P. J. E. & Yahil, A. The size and mass of galaxies and the mass of the Universe. Astrophys. J. Lett. 193, L1–L4 (1974).

    Article  ADS  Google Scholar 

  5. Roberts, M. S. M 31 and a brief history of dark matter. ASP Conf. Series 3, 95, 283–288 (2008).

    ADS  Google Scholar 

  6. Rubin, V. C. One hundred years of rotating galaxies. Publ. Astron. Soc. Pac. 112, 747–750 (2000).

    Article  ADS  Google Scholar 

  7. Bertone, G. & Hooper, D. A history of dark matter. Preprint at https://arxiv.org/abs/1605.04909 (2016).

  8. Ostriker, J. P. & Peebles, P. J. E. A numerical study of the stability of flattened galaxies: or, can cold galaxies survive? Astrophys. J. 186, 467–480 (1973).

    Article  ADS  Google Scholar 

  9. Faber, S. M. & Gallagher, J. S. Masses and mass-to-light ratios of galaxies. Ann. Rev. Astron. Astrophys. 17, 135–187 (1979).

    Article  ADS  Google Scholar 

  10. Uson, J. M. & Wilkinson, D. T. Search for small-scale anisotropy in the cosmic microwave background. Phys. Rev. Lett. 49, 1463–1465 (1982).

    Article  ADS  Google Scholar 

  11. Peebles, P. J. E. Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbatiobs. Astrophys. J. Lett. 263 L1–L5 (1982).

    Article  ADS  Google Scholar 

  12. Gershtein, S. S. & Zel’dovich, Y. B. Rest mass of muonic neutrino and cosmology. J. Exp. Theor. Phys. Lett. 4, 120–122 (1966).

    Google Scholar 

  13. Cowsik, R. & McClelland, J. An upper limit on the neutrino rest mass. Phys. Rev. Lett. 29, 669–670 (1972).

    Article  ADS  Google Scholar 

  14. Marx, G. & Szalay, A. S. in Neutrino-72 Vol. 1 (eds Frankel, A. & Marx, G. ) 191–195 (OMKDT-Technoinform, 1972).

    Google Scholar 

  15. Cowsik, R. & McClelland, J. Gravity of neutrinos of nonzero mass in astrophysics. Astrophys. J. 180, 7–10 (1973).

    Article  ADS  Google Scholar 

  16. Szalay, A. S. & Marx, G. Neutrino rest mass from cosmology. Astron. Astrophys. 49, 437–441 (1976).

    ADS  Google Scholar 

  17. Doroshkevich, A. G. et al. Cosmological impact of the neutrino rest mass. Ann. NY Acad. Sci. 375, 32–42 (1981).

    Article  ADS  Google Scholar 

  18. Lee, B. W. & Weinberg, S. Cosmological lower bound on heavy-neutrino masses. Phys. Rev. Lett. 39, 165–168 (1977).

    Article  ADS  Google Scholar 

  19. Einstein, A. The Meaning of Relativity 119 (Princeton Univ. Press, 1923).

    MATH  Google Scholar 

  20. Gunn, J. E., Lee, B. W., Lerche, I., Schramm, D. N. & Steigman, G. Some astrophysical consequences of the existence of a heavy stable neutral lepton. Astrophys. J. 223, 1015–1031 (1978).

    Article  ADS  Google Scholar 

  21. Pagels, H. & Primack, J. R. Supersymmetry, cosmology, and new physics at teraelectronvolt energies. Phys. Rev. Lett. 48, 223–226 (1982).

    Article  ADS  Google Scholar 

  22. Ipser, J. & Sikivie, P. Can galactic halos be made of axions?. Phys. Rev. Lett. 50, 925–927 (1983).

    Article  ADS  Google Scholar 

  23. Guth, A. H. Inflationary Universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981).

    Article  ADS  Google Scholar 

  24. Linde, A. D. A new inflationary Universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982).

    Article  ADS  Google Scholar 

  25. Albrecht, A. & Steinhardt, P. J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982).

    Article  ADS  Google Scholar 

  26. Peebles, P. J. E. Tests of cosmological models constrained by inflation. Astrophys. J. 284, 439–444 (1984).

    Article  ADS  Google Scholar 

  27. Turner, M. S., Steigman, G. & Krauss, L. M. Flatness of the Universe: reconciling theoretical prejudices with observational data. Phys. Rev. Lett. 52, 2090–2093 (1984).

    Article  ADS  Google Scholar 

  28. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature, 311, 517–525 (1984).

    Article  ADS  Google Scholar 

  29. Dicke, R. H. Gravitation and the Universe 62 (American Philosophical Society, 1970).

    Google Scholar 

  30. Dicke, R. H. & Peebles, P. J. E. in General Relativity: An Einstein Centenary Survey (eds Hawking, S. W. & Israel, W. ) 504–517 (Cambridge Univ. Press, 1979).

    Google Scholar 

  31. Geiss, J. & Reeves, H. Cosmic and solar system abundances of deuterium and helium-3. Astron. Astrophys. 18, 126–132 (1972).

    ADS  Google Scholar 

  32. Gott, J. R. III, Gunn, J. E., Schramm, D. N. & Tinsley, B. M. An unbound Universe. Astrophys. J. 194, 543–553 (1974).

    Article  ADS  Google Scholar 

  33. Boesgaard, A. M. & Steigman, G. Big Bang nucleosynthesis: theories and observations. Ann. Rev. Astron. Astrophys. 23, 319–378 (1985).

    Article  ADS  Google Scholar 

  34. Bean, A. J. A complete galaxy redshift sample — I. The peculiar velocities between galaxy pairs and the mean mass density of the Universe. Mon. Not. R. Astron. Soc. 205, 604–624 (1983).

    Article  ADS  Google Scholar 

  35. Peebles, P. J. E. The mean mass density of the Universe. Nature 321, 27–32 (1986).

    Article  ADS  Google Scholar 

  36. Malaney, R. A. & Fowler, W. A. Late-time neutron diffusion and nucleosynthesis in a post-QCD inhomogeneous Ω b = 1 Universe. Astrophys. J. 333, 14–20 (1988).

    Article  ADS  Google Scholar 

  37. Dawid, R. String Theory and the Scientific Method (Cambridge Univ. Press, 2013).

    Book  Google Scholar 

  38. Primack, J. R., Seckel, D. & Sadoulet, B. Detection of cosmic dark matter. Annu. Rev. Nucl. Part. Sci. 38, 751–801 (1988).

    Article  ADS  Google Scholar 

  39. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a Universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985).

    Article  ADS  Google Scholar 

  40. Lilje, P. B. Abundance of rich clusters of galaxies: a test for cosmological parameters. Astrophys. J. Lett. 386, L33–L36 (1992).

    Article  ADS  Google Scholar 

  41. Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983).

    Article  ADS  Google Scholar 

  42. Lelli, F., McGaugh, S. S. & Schombert, J. M. The radial acceleration relation in rotationally supported galaxies. Phys. Rev. Lett. 117, 201101 (2016).

  43. Ostriker, J. P. & Cowie, L. L. Galaxy formation in an intergalactic medium dominated by explosions. Astrophys. J. Lett. 243, L127–L131 (1981).

    Article  ADS  Google Scholar 

  44. Zel’dovich, Ya. B. Cosmological fluctuations produced near a singularity. Mon. Not. R. Astron. Soc. 192, 663–666 (1980).

    Article  ADS  Google Scholar 

  45. Peebles, P. J. E. An isocurvature cold dark matter cosmogony. I. A worked example of evolution through inflation. Astrophys. J. 510, 523–530 (1999).

    Article  ADS  Google Scholar 

  46. Faber, S. M. What I learned this week in Paris (about cosmic velocity fields). In Cosmic Velocity Fields: Proc. 9th IAP Astrophysics Meeting (eds Bouchet, F. R. & Lachièze-Rey, M. ) 485–496 (Editions Frontieres, 1993).

    Google Scholar 

  47. Maddox, S. J., Efstathiou, G., Sutherland, W. J. & Loveday, J. Galaxy correlations on large scales. Mon. Not. R. Astron. Soc. 242, 43P-47P (1990).

    Article  ADS  Google Scholar 

  48. Bartlett, J. G., Blanchard, A., Silk, J. & Turner, M. S. The case for a Hubble constant of 30 km s−1 Mpc−1. Science 267, 980–983 (1995).

    Article  ADS  Google Scholar 

  49. Ostriker, J. P. & Steinhardt, P. J. The observational case for a low-density Universe with a non-zero cosmological constant. Nature 377, 600–602 (1995).

    Article  ADS  Google Scholar 

  50. Kamionkowski, M., Ratra, B., Spergel, D. N. & Sugiyama, N. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony. Astrophys. J. Lett. 434, L1–L4 (1994).

    Article  ADS  Google Scholar 

  51. Riess, A. G. et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  52. Perlmutter . et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    Article  ADS  Google Scholar 

  53. Balbi, A. et al. Constraints on cosmological parameters from MAXIMA-1. Astrophys. J. Lett. 545, L1–L4 (2000).

    Article  ADS  Google Scholar 

  54. Riess, A. G. et al. A 2. 4. determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016).

  55. Strauss, M. A. Questions and controversies in the measurement and interpretation of large-scale flows. Cosmic Flows Workshop ASP Conf. Series 201, 3–13 (2000).

    ADS  Google Scholar 

  56. Davis, M. & Nusser, A. Re-examination of large scale structure and cosmic flows. IAU Symp. 308, 310–317 (2016).

    ADS  Google Scholar 

  57. Planck Collaboration. Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571 A1 (2014).

  58. Anderson L. et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Mon. Not. R. Astron. Soc. 441, 24–62 (2014).

    Article  ADS  Google Scholar 

  59. Peebles, P. J. E. Primeval adiabatic perturbations: constraints from the mass distribution. Astrophys. J. 248, 885–897 (1981).

    Article  ADS  Google Scholar 

  60. Shanks, T. Arguments for an Ω = 1, low H0, baryon dominated Universe. Vista. Astron. 28, 595–609 (1985).

    Article  ADS  Google Scholar 

  61. Percival, W. J. et al. The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe. Mon. Not. R. Astron. Soc. 327, 1297–1306 (2001).

    Article  ADS  Google Scholar 

  62. Eisenstein, D. J. et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560–574 (2005).

    Article  ADS  Google Scholar 

  63. Verlinde, E. P. Emergent gravity and the dark Universe. Preprint at https://arxiv.org/abs/1611.02269 (2016).

Download references

Acknowledgements

I have profited from discussions with D. Bond, S. Faber, J. Gunn, J. Ostriker, M. Rees, G. Steigman and P. Steinhardt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. E. Peebles.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peebles, P. Growth of the nonbaryonic dark matter theory. Nat Astron 1, 0057 (2017). https://doi.org/10.1038/s41550-017-0057

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-017-0057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing