Letter

Two massive rocky planets transiting a K-dwarf 6.5 parsecs away

  • Nature Astronomy 1, Article number: 0056 (2017)
  • doi:10.1038/s41550-017-0056
  • Download Citation
Received:
Accepted:
Published online:

Abstract

HD 219134 is a K-dwarf star at a distance of 6.5 parsecs around which several low-mass planets were recently discovered1,2. The Spitzer Space Telescope detected a transit of the innermost of these planets, HD 219134 b, whose mass and radius (4.5 M and 1.6 R respectively) are consistent with a rocky composition1. Here, we report new high-precision time-series photometry of the star acquired with Spitzer revealing that the second innermost planet of the system, HD 219134c, is also transiting. A global analysis of the Spitzer transit light curves and the most up-to-date HARPS-N velocity data set yields mass and radius estimations of 4.74 ± 0.19 M and 1.602 ± 0.055 R for HD 219134 b, and of 4.36 ± 0.22 M and 1.511 ± 0.047 R for HD 219134 c. These values suggest rocky compositions for both planets. Thanks to the proximity and the small size of their host star (0.778 ± 0.005 R)3, these two transiting exoplanets — the nearest to the Earth yet found — are well suited for a detailed characterization (for example, precision of a few per cent on mass and radius, and constraints on the atmospheric properties) that could give important constraints on the nature and formation mechanism of the ubiquitous short-period planets of a few Earth masses.

  • Subscribe to Nature Astronomy for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. The HARPS-N rocky planet search. I. HD 219134 b: a transiting rocky planet in a multi-planet system at 6.5 pc from the Sun. Astron. Astrophys. 584, A72 (2015).

  2. 2.

    et al. Six planets orbiting HD 219134. Astrophys. J. 814, 12 (2015).

  3. 3.

    et al. Stellar diameters and temperatures. II. Main-sequence K- and M-stars. Astrophys. J. 757, 112 (2012).

  4. 4.

    et al. An educated search for transiting habitable planets: targetting M dwarfs with known transiting planets. Astron. Astrophys. 525, A32 (2011).

  5. 5.

    et al. HARPS-N: the new planet hunter at TNG. Proc. SPIE (2012).

  6. 6.

    et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10–17 (2004).

  7. 7.

    et al. Intra-pixel gain variations and high-precision photometry with the Infrared Array Camera (IRAC). Proc. SPIE (2012).

  8. 8.

    , , , & The 3.6-8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. Astrophys. J. 673, 526–531 (2008).

  9. 9.

    et al. The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b. Astron. Astrophys. 542, A4 (2012).

  10. 10.

    & Analytic light curves for planetary transit searches. Astrophys. J. 580, 171–175 (2002).

  11. 11.

    Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

  12. 12.

    The Theory of Probability 3rd edn (Oxford Univ. Press, 1998).

  13. 13.

    et al. The Liège oscillation code. Astrophys. Space Sci. 316, 149–154 (2008).

  14. 14.

    et al. A 12-year activity cycle for the nearby planet host star HD 219134. Astrophys. J. 821, 74 (2016).

  15. 15.

    et al. Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, galactic chemical evolution, and exoplanets. Astrophys. J. 756, 46 (2012).

  16. 16.

    , & Oxygen abundances in nearby FGK stars and the galactic chemical evolution of the local disk and halo. Astrophys. J. 764, 78 (2013).

  17. 17.

    Chromospheric activity as age indicator. An L-shaped chromospheric-activity versus age diagram. Astron. Astrophys. 551, L8 (2013).

  18. 18.

    & Q in the Solar System. Icarus 5, 375–389 (1966).

  19. 19.

    & Solar System Dynamics (Cambridge Univ. Press, 2001).

  20. 20.

    & A detailed model grid for solid planets from 0.1 through 100 Earth masses. Publ. Astron. Soc. Pacif. 125, 227–239 (2013).

  21. 21.

    , & Mass–radius relation for rocky planets based on PREM. Astrophys. J. 819, 127 (2016).

  22. 22.

    , & The atmospheric signatures of super-Earths: how to distinguish between hydrogen-rich and hydrogen-poor atmospheres. Astrophys. J. 690, 1056–1067 (2009).

  23. 23.

    & Planet–disk interaction and orbital evolution. Annu. Rev. Astron. Astrophys. 50, 211–249 (2012).

  24. 24.

    & Migration then assembly: formation of Neptune-mass planets inside 1 AU, Astrophys. J. 751, 158 (2012).

  25. 25.

    & Inside-out planet formation, Astrophys. J. 780, 53 (2014).

  26. 26.

    & Testing in situ assembly with the Kepler planet candidate sample. Astrophys. J. 775, 53 (2013).

  27. 27.

    & Vulcan planets: inside-out formation of the innermost super-Earths. Astrophys. J. 798, L32 (2015).

  28. 28.

    & On the formation of super-Earths with implications for the Solar System. Astrophys. J. 822, 90 (2016).

  29. 29.

    et al. The transiting exoplanet survey satellite (TESS). Proc. SPIE (2014).

  30. 30.

    et al. CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits. Proc. SPIE (2014).

  31. 31.

    et al. Systemic: a testbed for characterizing the detection of extrasolar planets. I. The Systemic Console package. Publ. Astron. Soc. Pacif. 121, 1016–1027 (2009).

  32. 32.

    et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. 119, 373–390 (1996).

  33. 33.

    et al. Rotation, convection, and magnetic activity in lower main-sequence stars. Astrophys. J. 279, 763–777 (1984).

  34. 34.

    Radial velocity jitter in stars from the California and Carnegie Planet Search at Keck Observatory. Publ. Astron. Soc. Pacif. 117, 657–664 (2005).

  35. 35.

    & Evolved stars and the origin of abundance trends in planet hosts. Astron. Astrophys. 588, A98 (2016)

  36. 36.

    , , & The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–452 (2009).

  37. 37.

    , & Element diffusion in the solar interior. Astrophys. J. 421, 828–842 (1994).

  38. 38.

    A new non-linear limb-darkening law for LTE stellar atmosphere models. Calculations for –5.0 ≤ log[M/H] ≤ +1, 2000K ≤ Teff ≤ 50000 K at several surface gravities. Astron. Astrophys. 363, 1081–1190 (2000).

  39. 39.

    & Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).

  40. 40.

    et al. Transit and eclipse analyses of the exoplanet HD 149026b using BLISS mapping. Astrophys. J. 754, 136 (2012).

  41. 41.

    & Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

  42. 42.

    Exoplanets transits and occultations. Exoplanets (ed. Seager, S.) 55–77 (Univ. Arizona Press, 2010).

  43. 43.

    & Radial velocity technique for exoplanets, in Exoplanets (ed. SeagerS., ) 27–53 (Univ. Arizona Press, 2010).

  44. 44.

    , & Habitable zones around main-sequence stars. Icarus 101, 108–128 (1993).

  45. 45.

    & Constraining exoplanet mass from transmission spectroscopy. Science 342, 1473–1477 (2013).

  46. 46.

    et al. Detection of an atmosphere around the super-Earth 55 Cancri e. Astrophys. J. 820, 99 (2016).

  47. 47.

    The James Webb Space Telescope: capabilities for transiting exoplanets observations. Proc. Pathways Towards Habitable Planets (16 July 2015);

  48. 48.

    et al. Two NIRCAM channels are better than one: how JWST can do more science with NIRCAM’s short-wavelength dispersed Hartmann sensor. Publ. Astron. Soc. Pacif., 129, 015001 (2017).

  49. 49.

    et al. Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e. Astron. Astrophys. 593, A219 (2016).

  50. 50.

    et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436 b. Nature 522, 459–461 (2015).

  51. 51.

Download references

Acknowledgements

This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA. M.G. is grateful to NASA and SSC Director for having supported his searches for RV planets with Spitzer. M.G. and V.V.G. are Research Associates at the Belgian Scientific Research Fund (F.R.S.-FNRS). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia–Brussels Federation. The authors thank N. Lewis for information on the potential for atmospheric characterization of HD 219134 b and c with JWST.

Author information

Affiliations

  1. Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 19C, Bat. B5C, 4000 Liège, Belgium

    • Michaël Gillon
    •  & Valérie Van Grootel
  2. Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, UK

    • Brice-Olivier Demory
  3. Observatoire de Genève, Université de Genève, 51 chemin des Maillettes, CH-1290 Sauverny, Switzerland

    • Fatemeh Motalebi
    • , Christophe Lovis
    • , Francesco A. Pepe
    • , Damien Ségransan
    • , Stéphane Udry
    •  & Michel Mayor
  4. Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews Fife, KY16 9SS, UK

    • Andrew Collier Cameron
  5. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA

    • David Charbonneau
    • , David Latham
    •  & Dimitar Sasselov
  6. INAF — Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, 38712 Berña Baja, Spain

    • Emilio Molinari
  7. INAF — IASF Milano, via Bassini 15, 20133 Milano, Italy

    • Emilio Molinari
  8. INAF — Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy

    • Giuseppina Micela
  9. Dipartimento di Fisica e Astronomia G. Galilei. Universitá di Padova, Vicolo dell’Osservatorio , 35122, Padova, Italy

    • Giampaolo Piotto
  10. INAF — Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122, Padova, Italy

    • Giampaolo Piotto
  11. INAF — Osservatorio Astrofisico di Torino, via Osservatorio 20, 10025 Pino Torinese, Italy

    • Alessandro Sozzetti

Authors

  1. Search for Michaël Gillon in:

  2. Search for Brice-Olivier Demory in:

  3. Search for Valérie Van Grootel in:

  4. Search for Fatemeh Motalebi in:

  5. Search for Christophe Lovis in:

  6. Search for Andrew Collier Cameron in:

  7. Search for David Charbonneau in:

  8. Search for David Latham in:

  9. Search for Emilio Molinari in:

  10. Search for Francesco A. Pepe in:

  11. Search for Damien Ségransan in:

  12. Search for Dimitar Sasselov in:

  13. Search for Stéphane Udry in:

  14. Search for Michel Mayor in:

  15. Search for Giuseppina Micela in:

  16. Search for Giampaolo Piotto in:

  17. Search for Alessandro Sozzetti in:

Contributions

M.G. led the HD 219134 b+c transit search with Spitzer, planned and analysed the Spitzer observations, performed the global analysis of the Spitzer and HARPS-N data, and wrote most of the manuscript. B.-O.D. performed an independent analysis of the Spitzer data to verify M.G.’s results. V.V.G. performed the stellar evolutionary modelling of the host star. A.C.C., D.C., D.L., C.L., E.M., F.M., G.M., M.M., F.A.P., G.P., D.Sa., D.Sé., A.S. and S.U. form the HARPS-N science team which managed the RV monitoring of the system. All authors contributed to the writing of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Michaël Gillon.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures 1–2 and Supplementary Tables 1–3.