Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Analogues of primeval galaxies two billion years after the Big Bang

A Corrigendum to this article was published on 13 March 2017

Abstract

Deep observations are revealing a growing number of young galaxies in the first billion years of cosmic time1. Compared to typical galaxies at later times, they show more extreme emission-line properties2, higher star formation rates3, lower masses4, and smaller sizes5. However, their faintness precludes studies of their chemical abundances and ionization conditions, strongly limiting our understanding of the physics driving early galaxy build-up and metal enrichment. Here we study a rare population of ultraviolet-selected, low-luminosity galaxies at redshift 2.4 < z < 3.5 that exhibit all the rest-frame properties expected from primeval galaxies. These low-mass, highly compact systems are rapidly forming galaxies able to double their stellar mass in only a few tens of millions of years. They are characterized by very blue ultraviolet spectra with weak absorption features and bright nebular emission lines, which imply hard radiation fields from young hot massive stars6,7. Their highly ionized gas phase has strongly sub-solar carbon and oxygen abundances, with metallicities more than a factor of two lower than that found in typical galaxies of similar mass and star formation rate at z≤2.58. These young galaxies reveal an early and short stage in the assembly of their galactic structures and their chemical evolution, a vigorous phase that is likely to be dominated by the effects of gas-rich mergers, accretion of metal-poor gas and strong outflows.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composite spectrum of the 10 sample galaxies.
Figure 2: The UV morphologies.
Figure 3: The C/O versus O/H relation.
Figure 4: The relation between stellar mass, gas-phase metallicity and SFR.

Similar content being viewed by others

References

  1. Bouwens, R. J. et al. UV luminosity functions at redshifts z~4 to z~10: 10,000 galaxies from HST legacy fields. Astrophys. J. 803, 34–49 (2015).

    Article  ADS  Google Scholar 

  2. Smit, R. et al. Evidence for ubiquitous high-equivalent-width nebular emission in z~7 galaxies: toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies. Astrophys. J. 784, 58 (2014).

    Article  ADS  Google Scholar 

  3. Tasca, L. A. M. et al. The evolving star formation rate: M relation and sSFR since z 5 from the VUDS spectroscopic survey. Astron. Astrophys. 581A, 54 (2015).

    Article  Google Scholar 

  4. Grazian, A. et al. The galaxy stellar mass function at 3.5 ≤ z ≤ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields. Astron. Astrophys. 575, A96 (2015).

    Article  Google Scholar 

  5. Shibuya, T. et al. Morphologies of 190,000 galaxies at z = 0–10 revealed with HST legacy data. I. Size evolution. Astrophys. J. Suppl. 219, 15 (2015).

    Article  ADS  Google Scholar 

  6. Erb, D. et al. Physical conditions in a young, unreddened, low-metallicity galaxy at high redshift. Astrophys. J. 719, 1168–1190 (2010).

    Article  ADS  Google Scholar 

  7. Stark, D. et al. Ultraviolet emission lines in young low-mass galaxies at z 2: physical properties and implications for studies at z &gt; 7. Mon. Not. R. Astron. Soc. 445, 3200 (2014).

    Article  ADS  Google Scholar 

  8. Mannucci, F. et al. A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies. Mon. Not. R. Astron. Soc. 408, 2115–2127 (2010).

    Article  ADS  Google Scholar 

  9. Shapley, A. et al. Rest-frame ultraviolet spectra of z~3 Lyman break galaxies. Astrophys. J. 588, 65–89 (2003).

    Article  ADS  Google Scholar 

  10. Vanzella, E. et al. High-resolution spectroscopy of a young, low-metallicity optically thin L = 0.02L* star-forming galaxy at z = 3.12. Astrophys. J. Lett. 821, L27 (2016).

    Article  ADS  Google Scholar 

  11. de Barros, S. et al. An extreme [O iii] emitter at z = 3.2: a low metallicity Lyman continuum source. Astron. Astrophys. 585, A51 (2016).

    Article  Google Scholar 

  12. Vanzella, E. et al. Hubble imaging of the ionizing radiation from a star-forming galaxy at z=3.2 with fesc&gt;50%. Astrophys. J. 825, 41 (2016).

    Article  ADS  Google Scholar 

  13. Le Fèvre, O. et al. The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z 6. Astron. Astrophys. 576, A79 (2015).

    Article  Google Scholar 

  14. Steidel, C. C. et al. Strong nebular line ratios in the spectra of z ~ 2–3 star forming galaxies: first results from KBSS-MOSFIRE. Astrophys. J. 795, 165 (2014).

    Article  ADS  Google Scholar 

  15. Onodera, M. et al. ISM excitation and metallicity of star-forming galaxies at z 3.3 from near-IR spectroscopy. Astrophys. J. 822, 42 (2016).

    Article  ADS  Google Scholar 

  16. Perez-Montero, E. Deriving model-based Te-consistent chemical abundances in ionized gaseous nebulae. Mon. Not. R. Astron. Soc. 441, 2663–2675 (2014).

    Article  ADS  Google Scholar 

  17. Pérez-Montero, E. & Amorín, R. Using photo-ionisation models to derive carbon and oxygen abundances in the rest UV. Mon. Not. R. Astron. Soc. accepted (2017).

  18. Asplund, M. et al. The chemical composition of the sun. Ann. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  19. Mattsson, L. et al. The origin of carbon: low-mass stars and an evolving, initially top-heavy IMF? Astron. Astrophys. 515, A68 (2010).

    Article  ADS  Google Scholar 

  20. Berg, D. A. et al. Carbon and oxygen abundances in low metallicity dwarf galaxies. Astrophys. J. 827, 126 (2016).

    Article  ADS  Google Scholar 

  21. Malhotra, S. & Rhoads, J. E. Large equivalent width Lyα line emission at z=4.5: young galaxies in a young universe? Astrophys. J. Lett. 565, 71–74 (2002).

    Article  ADS  Google Scholar 

  22. Steidel, C. et al. Reconciling the stellar and nebular spectra of high-redshift galaxies. Astrophys. J. 826, 159 (2016).

    Article  ADS  Google Scholar 

  23. Cassata, P. et al. He ii emitters in the VIMOS VLT Deep Survey: population III star formation or peculiar stellar populations in galaxies. Astron. Astrophys. 556, A68 (2013).

    Article  Google Scholar 

  24. Kehrig, C. et al. The extended He ii λ4686-emitting region in IZw 18 unveiled: clues for peculiar ionizing sources. Astrophys. J. Lett. 801, 28–34 (2015).

    Article  ADS  Google Scholar 

  25. Andrews, B.H. & Martini, P. The mass-metallicity relation with the direct method on stacked spectra of SDSS galaxies. Astrophys. J. 765, 140 (2013).

    Article  ADS  Google Scholar 

  26. Maiolino, R., et al. AMAZE. I. The evolution of the mass-metallicity relation at z &gt; 3. Astron. Astrophys. 488, 463 (2008).

    Article  ADS  Google Scholar 

  27. Troncoso, P. et al. Metallicity evolution, metallicity gradients, and gas fractions at z~3.4. Astron. Astrophys. 563, A58 (2014).

    Article  Google Scholar 

  28. Sánchez Almeida, J. et al. Localized starbursts in dwarf galaxies produced by the impact of low-metallicity cosmic gas clouds. Astrophys. J. Lett. 810, L15 (2016).

    Article  ADS  Google Scholar 

  29. Ceverino, D. et al. Gas inflow and metallicity drops in star-forming galaxies. Mon. Not. R. Astron. Soc. 457, 2605–2612 (2016).

    Article  ADS  Google Scholar 

  30. Bekki, K. Formation of blue compact dwarf galaxies from merging and interacting gas-rich dwarfs. Mon. Not. R. Astron. Soc. Lett. 388, L10–14 (2008).

    Article  ADS  Google Scholar 

  31. Bournaud, F. et al. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift. Astrophys. J. 780, 57 (2014).

    Article  ADS  Google Scholar 

  32. Zanella, A. et al. An extremely young massive clump forming by gravitational collapse in a primordial Galaxy. Nature 521, 54–56 (2015).

    Article  ADS  Google Scholar 

  33. Erb, D. Feedback in low-mass galaxies in the early Universe. Nature 523, 169–176 (2014).

    Article  ADS  Google Scholar 

  34. Tasca, L. A. M. The VIMOS Ultra Deep Survey first data release: spectra and spectroscopic redshifts of 698 objects up to z~6 in CANDELS. Preprint at https://arxiv.org/abs/1602.01842 (2016).

  35. Karman, W. et al. MUSE integral-field spectroscopy towards the Frontier Fields cluster Abell S1063. II. Properties of low luminosity Lyman alpha emitters at z&gt;3. Preprint at https://arxiv.org/abs/1606.01471 (2016).

  36. Christensen, L. et al. Gravitationally lensed galaxies at 2 &lt; z &lt; 3.5: direct abundance measurements of Lyα emitters. Mon. Not. R. Astron. Soc. 427, 1973–1982 (2012).

    Article  ADS  Google Scholar 

  37. James, B. L., et al. Testing metallicity indicators at z~1.4 with the gravitationally lensed galaxy CASSOWARY 20. Mon. Not. R. Astron. Soc. 440, 1794–1809 (2014).

    Article  ADS  Google Scholar 

  38. Bayliss, M. B., et al. The physical conditions, metallicity and metal abundance ratios in a highly magnified galaxy at z = 3.6252. Astrophys. J. 790, 144 (2014).

    Article  ADS  Google Scholar 

  39. Garnett, D. et al. High carbon in I Zwicky 18: new results from Hubble Space Telescope spectroscopy. Astrophys. J. 481, 174–178 (1997).

    Article  ADS  Google Scholar 

  40. Garnett, D. et al. Carbon in spiral galaxies from Hubble Space Telescope spectroscopy. Astrophys. J. 513, 168–179 (1999).

    Article  ADS  Google Scholar 

  41. Pettini, M. et al. C, N, O abundances in the most metal-poor damped Lyman alpha systems. Mon. Not. R. Astron. Soc. 385, 2011–2024 (2008).

    Article  ADS  Google Scholar 

  42. Jaskot, A. E. & Ravindranath, S. Photoionization models for the semi-forbidden C iii] 1909 emission in star-forming galaxies. Astrophys. J. 833, 136 (2016).

    Article  ADS  Google Scholar 

  43. Cassata, P. et al. The VIMOS Ultra-Deep Survey (VUDS): fast increase in the fraction of strong Lyman-α emitters from z = 2 to z = 6. Astrophys. J. 573, A24 (2015).

    Google Scholar 

  44. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article  ADS  Google Scholar 

  45. Grogin, N. A. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. 197, 35 (2011).

    Article  ADS  Google Scholar 

  46. Koekemoer, A. M. et al. The COSMOS survey: Hubble Space Telescope Advanced Camera for Surveys observations and data processing. Astrophys. J. Suppl. 172, 196–202 (2007).

    Article  ADS  Google Scholar 

  47. Koekemoer, A. M. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey — the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. 197, 36 (2011).

    Article  ADS  Google Scholar 

  48. Civano, F. et al. The Chandra COSMOS Legacy survey: overview and point source catalog. Astrophys. J. 819, 62 (2016).

    Article  ADS  Google Scholar 

  49. Marchesi, S., et al. The Chandra COSMOS Legacy survey: optical/IR identifications. Astrophys. J. 817, 34 (2016).

    Article  ADS  Google Scholar 

  50. Feltre, A., Charlot, S. & Gutkin, J. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths. Mon. Not. R. Astron. Soc. 456, 3354–3374 (2016).

    Article  ADS  Google Scholar 

  51. Gutkin, J., Charlot, S. & Bruzual, G. Modelling the nebular emission from primeval to present-day star-forming galaxies. Mon. Not. R. Astron. Soc. 462, 1757–1774 (2016).

    Article  ADS  Google Scholar 

  52. Hainline, K. N. et al. The rest-frame ultraviolet spectra of UV-selected active galactic nuclei at z ~ 2–3. Astrophys. J. 733, 31 (2011).

    Article  ADS  Google Scholar 

  53. Keenan, F. P., Feibelman, W. A. & Berrington, K. A. Improved calculations for the C iii 1907, 1909 and Si iii 1883, 1892 electron density sensitive emission-line ratios, and a comparison with IUE observations. Astrophys. J. 389, 443–446 (1992).

    Article  ADS  Google Scholar 

  54. Steidel, C. et al. The structure and kinematics of the circumgalactic medium from far-ultraviolet spectra of z ~= 2–3 Galaxies. Astrophys. J. 717, 289–322 (2010).

    Article  ADS  Google Scholar 

  55. Hashimoto, T. et al. Gas motion study of Lyα emitters at z ~ 2 using FUV and optical spectral lines, Astrophys. J. 765, 70 (2013).

    Article  ADS  Google Scholar 

  56. Shibuya, T. et al. What is the physical origin of strong Lyα emission? II. Gas kinematics and distribution of Lyα emitters. Astrophys. J. 788, 48 (2014).

    Article  ADS  Google Scholar 

  57. Erb, D. et al. The Lyα properties of faint galaxies at z ~ 2–3 with systemic redshifts and velocity dispersions from Keck-MOSFIRE. Astrophys. J. 795, 33 (2014).

    Article  ADS  Google Scholar 

  58. Trainor, R. et al. The spectroscopic properties of Lyα-emitters at z 2.7: escaping gas and photons from faint galaxies. Astrophys. J. 809, 89 (2015).

    Article  ADS  Google Scholar 

  59. Bradač, M. ALMA, [Cii] detection of a redshift 7 lensed galaxy behind RXJ1347.1-1145T. Astrophys. J. Lett. 836, L2 (2017).

  60. Heckman, T. M. et al. Extreme feedback and the epoch of reionization: clues in the local universe. Astrophys. J. 730, 5 (2011).

    Article  ADS  Google Scholar 

  61. Jaskot, A. E. & Oey, M. S. Linking Lyα and low-ionization transitions at low optical depth. Astrophys. J. Lett. 791, L19 (2014).

    Article  ADS  Google Scholar 

  62. Henry, A. et al. Lyα emission from green peas: the role of circumgalactic gas density, covering, and kinematics. Astrophys. J. 809, 19 (2015).

    Article  ADS  Google Scholar 

  63. Verhamme, A. et al. Using Lyman-α to detect galaxies that leak Lyman continuum. Astron. Astrophys. 578, A7 (2015).

    Article  Google Scholar 

  64. Dijkstra, M., Gronke, M. & Venkatesan, A. The Lyα-LyC connection: evidence for an enhanced contribution of UV-faint galaxies to cosmic reionization. Astrophys. J. 828, 71 (2016).

    Article  ADS  Google Scholar 

  65. Borthakur, S. et al. A local clue to the reionization of the universe. Science 346, 216–219 (2014).

    Article  ADS  Google Scholar 

  66. Verhamme, A. et al. Lyman-alpha spectral properties of five newly discovered Lyman continuum emitters. Astron. Astrophys. 597, A13 (2017).

    Article  Google Scholar 

  67. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article  ADS  Google Scholar 

  68. Fontana, A. et al. A European Southern Observatory Very Large Telescope survey of near-infrared (Z &lt;= 25) selected galaxies at redshifts 4.5 &lt; z &lt; 6: constraining the cosmic star formation rate near the reionization epoch. Astrophys. J. 587, 544–550 (2003).

    Article  ADS  Google Scholar 

  69. Castellano, M. et al. Constraints on the star-formation rate of z ~ 3 LBGs with measured metallicity in the CANDELS GOODS-South field. Astron. Astrophys. 566, A19 (2014).

    Article  Google Scholar 

  70. Santini, P. et al. Stellar masses from the CANDELS survey: the GOODS-South and UDS fields. Astrophys. J. 801, 97 (2015).

    Article  ADS  Google Scholar 

  71. Laigle, C. et al. The COSMOS2015 catalog: exploring the 1&lt;z&lt;6 universe with half a million galaxies. Astrophys. J. Suppl. S. 224, 24 (2016).

    Article  ADS  Google Scholar 

  72. Chabrier, G. Galactic stellar and substellar initial mass function. Public Astron. Soc. Pac. 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  73. Schaerer, D. & de Barros, S. The impact of nebular emission on the ages of z≈ 6 galaxies. Astron. Astrophys. 502, 423–426 (2009).

    Article  ADS  Google Scholar 

  74. Schaerer, D. & Vacca, W. D. New models for Wolf-Rayet and O star populations in young starbursts. Astrophys. J. 497, 618–644 (1998).

    Article  ADS  Google Scholar 

  75. Anders, P. & Fritze-v. Alvensleben, U. Spectral and photometric evolution of young stellar populations: the impact of gaseous emission at various metallicities. Astron. Astrophys. 401, 1063–1070 (2003).

    Article  ADS  Google Scholar 

  76. Ilbert O. et al. Cosmos photometric redshifts with 30-bands for 2-deg2. Astrophys. J. 690, 1236–1249 (2009).

    Article  ADS  Google Scholar 

  77. Thomas, R. et al. The VIMOS Ultra-Deep Survey (VUDS): IGM transmission towards galaxies with 2.5&lt;z&lt;5.5 and the colour selection of high redshift galaxies. Astron. Astrophys. 597, A88 (2017).

    Article  Google Scholar 

  78. Hathi, N. et al. The VIMOS Ultra Deep Survey: Lyα emission and stellar populations of star-forming galaxies at 2&lt;z&lt;2.5. Astron. Astrophys. 588, A26 (2016).

    Article  Google Scholar 

  79. Talia, M. et al. The star formation rate cookbook at 1 &lt; z &lt; 3: Extinction-corrected relations for UV and [O ii]λ3727 luminosities. Astron. Astrophys. 582, A80 (2015).

    Article  Google Scholar 

  80. Kennicutt, R. C. Jr. Star formation in galaxies along the Hubble sequence. Ann. Rev. Astron. Astrophys. 36, 189 (1998).

    Article  ADS  Google Scholar 

  81. Ferland, G. J. et al. The 2013 release of Cloudy. Rev. Mex. Astron. Astrof. 49, 137–163 (2013).

    ADS  Google Scholar 

  82. Luridiana, V., Morrisett, C. & Shaw, R. A. in Planetary Nebulae: An Eye to the Future, Proc. International Astronomical Union Symp. 283, 422–423 (2012).

    ADS  Google Scholar 

  83. Garnett, D. et al. The evolution of C/O in dwarf galaxies from Hubble Space Telescope FOS observations. Astrophys. J. 443, 64–76 (1995).

    Article  ADS  Google Scholar 

  84. Villar-Martín, M., Cerviño, M. & González-Delgado, R. Nebular and stellar properties of a metal-poor H ii galaxy at z= 3.36. Mon. Not. R. Astron. Soc. 355, 1132–1142 (2004).

    Article  ADS  Google Scholar 

  85. Ribeiro, B. et al. Size evolution of star-forming galaxies with 2 &lt; z &lt; 4.5 in the VIMOS Ultra-Deep Survey. Astron. Astrophys. 593, A22 (2016).

    Article  Google Scholar 

  86. Peng, C. Y. et al. Detailed structural decomposition of galaxy images. Astron J. 124, 266–293 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by funding from the European Research Council Advanced Grant ERC-2010-AdG-268107-EARLY and by INAF Grants PRIN 2010, PRIN 2012 and PICS 2013.This work is based on data products made available at the CESAM data center, Laboratoire d’Astrophysique de Marseille, France. This research leading to these results has received funding from the European Union Seventh Framework Programme ASTRODEEP (FP7 2007/2013) under grant agreement no. 312725. R.A. acknowledges support from the ERC Advanced Grant 695671 ‘QUENCH’. E.P.M. acknowledges support from Spanish MICINN grants AYA2010-21887-C04-01 and AYA2013-47742-C4-1-P. We thank V. Sommariva for her contribution to the initial steps of this work.

Author information

Authors and Affiliations

Authors

Contributions

R.A. discovered the described objects and analysed the spectroscopic data, contributed to designing the methodology for abundance determinations, and wrote the manuscript. A.F. contributed to the photometric analysis and assisted in writing the manuscript. E.P.M. contributed to designing the methodology and wrote the code for abundance determination. L.G. performed the stacking analysis. M.C., A.G., O.LF., B.R., D.S., L.A.M.T., R.T., S.B., L.C., A.C., T.C., S.DB., B.G., M.G., N.H., A.K., V.LB., B.C.L., D.M., L.P., J.P., M.T., L.T., E.V, D.V., G.Z. and E.Z., contributed to the data survey design, observations and data reduction and redshift measurements. B.R. also produced Fig. 2. E.M. assisted the photometric analysis. All the authors contributed to the interpretation of the data and provided comments and corrections on the original manuscript.

Corresponding author

Correspondence to Ricardo Amorín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Figures 1–4 and Supplementary References. (PDF 3704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorín, R., Fontana, A., Pérez-Montero, E. et al. Analogues of primeval galaxies two billion years after the Big Bang. Nat Astron 1, 0052 (2017). https://doi.org/10.1038/s41550-017-0052

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-017-0052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing