Letter

Variability in the atmosphere of the hot giant planet HAT-P-7 b

  • Nature Astronomy 1, Article number: 0004 (2016)
  • doi:10.1038/s41550-016-0004
  • Download Citation
Received:
Accepted:
Published online:
  • Subscribe to Nature Astronomy for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , , , & The 3.6–8.0 μm broadband emission spectrum of HD 209458b: Evidence for an atmospheric temperature inversion. Astrophys. J. 673, 526–531 (2008).

  2. 2.

    , & The changing phases of extrasolar planet CoRoT-1b. Nature 459, 543–545 (2009).

  3. 3.

    , , & Photometric variability of the T2.5 brown dwarf SIMP J013656.5+093347: Evidence for evolving weather patterns. Astrophys. J. 701, 1534–1539 (2009).

  4. 4.

    et al. Large-amplitude variations of an L/T transition brown dwarf: Multi-wavelength observations of patchy, high-contrast cloud features. Astrophys. J. 750, 105 (2012).

  5. 5.

    , & Optical phase curves of Kepler exoplanets. Astrophys. J. 772, 51 (2013).

  6. 6.

    , & Changing phases of alien worlds: Probing atmospheres of Kepler planets with high-precision photometry. Astrophys. J. 804, 150 (2015).

  7. 7.

    et al. HAT-P-7b: An extremely hot massive planet transiting a bright star in the Kepler field. Astrophys. J. 680, 1450–1456 (2008).

  8. 8.

    et al. Kepler planet-detection mission: Introduction and first results. Science 327, 977–980 (2010).

  9. 9.

    et al. 3.6 and 4.5 μm Spitzer phase curves of the highly-irradiated hot Jupiters WASP-19b and HAT-P-7b. Astrophys. J. 823, 122 (2016).

  10. 10.

    et al. Studying the atmosphere of the exoplanet Hat-P-7b via secondary eclipse measurements with Epoxi, Spitzer, and Kepler. Astrophys. J. 710, 97–104 (2010).

  11. 11.

    et al. Kepler’s optical phase curve of the exoplanet HAT-P-7b. Science 325, 709–709 (2009).

  12. 12.

    et al. The discovery of ellipsoidal variations in the Kepler light curve of Hat-P-7. Astrophys. J. Lett. 713, L145–L149 (2010).

  13. 13.

    , , & Inferring heat recirculation and albedo for exoplanetary atmospheres: Comparing optical phase curves and secondary eclipse data. Astron. Astrophys. 587, A149 (2016).

  14. 14.

    & BEER analysis of Kepler and CoRoT light curves. II. Evidence for superrotation in the phase curves of three Kepler hot Jupiters. Astrophys. J. 800, 73 (2015).

  15. 15.

    & Equatorial superrotation on tidally locked exoplanets. Astrophys. J. 738, 71 (2011).

  16. 16.

    , & Shear-driven instabilities and shocks in the atmospheres of hot Jupiters. Astron. Astrophys. 591, A144 (2016).

  17. 17.

    et al. Effect of longitude-dependent cloud coverage on exoplanet visible wavelength reflected-light phase curves. Astrophys. J. 804, 94 (2015).

  18. 18.

    , , , & On signatures of atmospheric features in thermal phase curves of hot Jupiters. Astrophys. J. 681, 1646–1652 (2008).

  19. 19.

    et al. Atmospheric circulation of hot Jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J. 699, 564–584 (2009).

  20. 20.

    et al. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer. Astrophys. J. 721, 1861–1877 (2010).

  21. 21.

    et al. 3.6 and 4.5 mm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. Astrophys. J. 754, 22 (2012).

  22. 22.

    , , & Variability in the super-Earth 55 Cnc e. Mon. Not. R. Astron. Soc. 455, 2018–2027 (2015).

  23. 23.

    et al. Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b. Astron. Astrophys. 471, L51–L54 (2007).

  24. 24.

    , , , & A semi-analytical model of visible-wavelength phase curves of exoplanets and applications to Kepler-7 B and Kepler-10 B. Astrophys. J. 802, 51 (2015).

  25. 25.

    , , , & Transitions in the cloud composition of hot Jupiters. Preprint at (2016).

  26. 26.

    et al. The atmospheric circulation of a nine-hot-Jupiter sample: Probing circulation and chemistry over a wide phase space. Astrophys. J. 821, 9 (2016).

  27. 27.

    & Balancing the energy budget of short-period giant planets: Evidence for reflective clouds and optical absorbers. Mon. Not. R. Astron. Soc. 449, 4192–4203 (2015).

  28. 28.

    & PyKE: Reduction and analysis of Kepler simple aperture photometry data. Astrophys. Source Code Lib. 1208.004 (2012).

  29. 29.

    Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007).

  30. 30.

    , , & emcee: The MCMC hammer. Publ. Astron. Soc. Pacific 125, 306–312 (2013).

  31. 31.

    , , , & Investigation of systematic effects in Kepler data: Seasonal variations in the light curve of HAT-P-7b. Astrophys. J. Lett. 774, L19 (2013).

  32. 32.

    Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

  33. 33.

    Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835 (1982).

  34. 34.

    , & Stellar rotation periods of the Kepler objects of interest: A dearth of close-in planets around fast rotators. Astrophys. J. Lett. 775, L11 (2013).

  35. 35.

    , & Kepler’s optical secondary eclipse of HAT-P-7b and probable detection of planet-induced stellar gravity darkening. Astrophys. J. Lett. 764, L22 (2013).

  36. 36.

    et al. Asteroseismic inference on the spin-orbit misalignment and stellar parameters of HAT-P-7. Astron. Astrophys. 570, A54 (2014).

  37. 37.

    , , & Stellar granulation as the source of high-frequency flicker in Kepler light curves. Astrophys. J. 781, 124 (2014).

  38. 38.

    & A model for thermal phase variations of circular and eccentric exoplanets. Astrophys. J. 726, 82 (2010).

  39. 39.

    et al. High temperature condensate clouds in super-hot Jupiter atmospheres. Mon. Not. R. Astron. Soc. Preprint available at (2016).

  40. 40.

    in Formation and Evolution of Exoplanets Ch. 8 (Wiley, 2010).

Download references

Acknowledgements

D.J.A. acknowledges funding from the European Union Seventh Framework programme (FP7/2007–2013) under grant agreement No. 313014 (ETAEARTH). E.d.M. acknowledges support from the Michael West Fellowship. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. All of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts.

Author information

Affiliations

  1. Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK

    • D. J. Armstrong
    • , H. P. Osborn
    • , J. Blake
    •  & N. Fereshteh Saniee
  2. ARC, School of Mathematics & Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK

    • D. J. Armstrong
    •  & E. de Mooij
  3. Astrophysics Group, Department of Physics and Astronomy, University College London, London, NW1 2PS, UK

    • J. Barstow

Authors

  1. Search for D. J. Armstrong in:

  2. Search for E. de Mooij in:

  3. Search for J. Barstow in:

  4. Search for H. P. Osborn in:

  5. Search for J. Blake in:

  6. Search for N. Fereshteh Saniee in:

Contributions

D.J.A. obtained and detrended the data, developed and fit the phase curve models, implemented the atmospheric model, produced the figures and wrote the manuscript. E.d.M. developed the discussion, contributed to the tests performed to check the results, and tested the results with his own models. H.P.O. contributed to the phase curve model, and produced visual interpretations of the results. J.Ba. developed the discussion of the atmospheric processes behind the peak offset variations. J.Bl. provided the initial development of the phase curve model. N.F.S. contributed to development of the figures. All authors commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to D. J. Armstrong.

Supplementary information

PDF files

  1. 1.

    Supplementary Information Guide

    Captions for Supplementary Table 1, Supplementary Figures 1–9, Supplementary Video 1 and Dataset 1.

  2. 2.

    Supplementary Information

    Supplementary Table 1, Supplementary Figures 1–9 and description of phase curve model.

Videos

  1. 1.

    Supplementary Video 1

    HAT-P-7 b dayside visualization.

CSV files

  1. 1.

    Dataset 1

    Table with individual fit values.