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Effect of unboiled water consumption data on sensitivity
analysis in quantitative microbial risk assessment
Sadahiko Itoh1 and Liang Zhou2

Quantitative microbial risk assessment of drinking water is generally followed by sensitivity analysis for examining the relative
importance of variables of the simulation model on the outcome. This study investigated the effect of the statistical methods
applied to unboiled water consumption data on sensitivity analysis. The sensitivity analysis for concentration of Escherichia coli (E.
coli) in treated water showed completely different results from the analysis for E. coli dose. This was due to the application of a
Poisson model to the water consumption, which suggested that 27% of the people did not drink tap water. Our study then applied
a different model—an exponential distribution—to the water consumption data. In addition, incidental water intake was assigned
to non-consumers in the Poisson model. The results of sensitivity analyses for these cases were very different from the ones
obtained from the first analysis. This study therefore demonstrated that the statistical methods used to analyze water consumption
data have great impacts on sensitivity analysis, although they do not affect the yearly risk of infection. Specifically, statistical
methods may devalue sensitivity analysis. To avoid this problem, it is preferable to apply a continuous model such as the
exponential model, rather than a discrete one such as the Poisson model, to describe the variability in water consumption.
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INTRODUCTION
Since the 1980s, quantitative microbial risk assessment (QMRA)
has been increasingly used for quantifying the microbial safety of
drinking water.1,2 The microbial exposure (i.e., the dose) is
calculated from the pathogen concentration in drinking water
and the consumption of unboiled drinking water. The risk of
infection is calculated from the exposure to pathogens and the
relationship between dose and response. In many studies, the
variability of each parameter, such as the pathogen concentration
in the source water and the removal and inactivation efficacy of
the water treatment, is described by a probability density function
(PDF). The yearly risk of infection is quantitatively estimated by a
Monte Carlo simulation. QMRA methodology has been developed
and improved by many studies,2 and has demonstrated its
usefulness in designing water treatment processes.3–5

After conducting a QMRA, sensitivity analysis is performed for
examining the relative influence and importance of components
(i.e., variables) within the simulation model on the outcome (i.e.,
risk estimates). In general, the purposes of sensitivity analysis are:
prioritization of potential control points in the system; identifica-
tion of key sources of uncertainty and variability; refinement and
verification of the QMRA model; and conditional analysis of the
QMRA model (“what if” scenario analysis and identification of
factors contributing to high exposure or risk).5

In QMRA, two pivotal values—the pathogen concentration in
drinking water and the volume of unboiled water consumed
per day—are used for calculating the pathogen dose that the
consumers are exposed to. Mathematical models such as the
Poisson distribution and the lognormal distribution have been
proposed to account for the variability in water consumption
within a population. Among the Poisson, the exponential, the

gamma and the lognormal distribution, the Poisson distribution
has often been recommended for use in QMRA.6 Based on
datasets from different countries, the Poisson distribution was
found to be a better fit than the lognormal distribution suggested
by Roseberry and Burmaster.7 The Poisson distribution also has
the advantage of having only one parameter, and is more suited
for discrete datasets.
It is obvious that the variability in water consumption affects

risk estimates. Bastos et al.8 evaluated the impact of water
consumption on risk estimates. Six different models applied to
water consumption data were compared in their study. Conse-
quently, the sensitivity analyses demonstrated that the volume of
water consumed per day had a significant impact on risk
estimates.
In general, the fitting of statistical probability distribution

functions to the consumption data is examined. As a result, a
distribution that fits best to the data is chosen. However,
researchers have so far not discussed the effects of the statistical
methods used for describing the distribution of water consump-
tion. In particular, it should be noted that there are some non-
consumers (zero mL/day of consumption) within a population,
which has been always shown by questionnaire surveys. In
addition, in some analyses, consumption of less than, e.g., 20 mL/
day is considered to be zero.6 Among statistical distributions,
there are distributions that differentiate a fraction of non-
consumers and do not differentiate it.
This study investigated the effects of the statistical methods

used to analyze the water consumption data on the results of
sensitivity analysis. Even if the statistical methods do not affect the
yearly risk of infection, a statistical method that does not confuse
the consequence of sensitivity analysis needs to be used. Our
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study demonstrated that zero value of water consumption
resulted from a fraction of non-consumers had a great impact
on sensitivity analysis. This means that not analyzing the water
consumption data using an appropriate statistical method could
adversely influence sensitivity analysis. Our study suggests an
appropriate model to describe the variability in water consump-
tion for conducting a QMRA.

RESULTS
Statistical distribution of unboiled water consumption
To account for the variability in water consumption within a
population, a Poisson distribution has often been recommended
for conducting a QMRA.6 The continuous data in milliliters per day
obtained in Osaka City were translated into discrete values of
glasses per day, assuming a glass to be 250 mL. Figure 1 shows the
constructed Poisson distribution with a mean value (rate in the
Poisson model) of 1.31 glass/day (equivalent to 327 mL/day). This
Poisson model shows that 27% of people do not drink tap water,
although the fraction of non-consumers according to the
questionnaire survey was 8.2% as described in 'Methods'. The
other PDF—an exponential distribution, which was applied
instead of the Poisson distribution—will be discussed in the next
section.

Sensitivity analysis
Figure 2a shows the result of the sensitivity analysis performed on
the concentration of Escherichia coli (E. coli) in treated water. It
shows that the variable that has the highest impact on the
concentration of E. coli in treated water is the inactivation efficacy
of advanced oxidation process (AOP) with ozone and ultraviolet
light, while the variable that has the second highest impact is the
concentration of E. coli in source water. Among the six treatment
steps of coagulation and sedimentation, rapid sand filtration (RSF),
AOP, cation exchange, anion exchange, and chlorination, AOP
exhibited the highest impact, implying that the rank correlation
coefficient between the inactivation efficacy of AOP and the
concentration of E. coli was the highest because the inactivation
efficacy by AOP significantly varies from 2.49 to 8.59 log10 as
described in 'Removal efficacies of the treatment steps'. Thus, the
result of the sensitivity analysis indicated that reliable AOP
inactivation is imperative for the reliable production of water
with low concentrations of E. coli.
Figure 2b shows the result of sensitivity analysis performed on

the E. coli dose. It is obvious that water consumption has the
highest impact on the E. coli dose. Compared to the effect of water
consumption, the contributions of the other variables are low. The
E. coli dose is calculated just by multiplying the concentration of E.

coli in treated water by the water consumption; however, the
result of the sensitivity analysis was very different from Fig. 2a.
Another variable for calculating the yearly risk of infection is the
ratio of Campylobacter jejuni (C. jejuni) to E. coli (C/E ratio) that is
described by the lognormal distribution as explained in 'Ratio of C.
jejuni to E. coli (C/E ratio)'. It was found that water consumption
also affects the yearly risk of infection significantly, since the
impact of the C/E ratio was not so large (see Supplementary Figure
1).
A continuous distribution, instead of the Poisson distribution,

was applied to the unboiled water consumption data collected in
Osaka City. As a result, the exponential distribution showed an
adequate fit as shown in Fig. 3. The rate of the applied exponential
distribution was determined to be 3.06 × 10−3. The yearly risk of
infection was calculated to be 3.24 × 10−10 infection/person/year
as shown in Table 1, and this value was comparable to the value
obtained using the Poisson model (3.16 × 10−10 infection/person/
year in Table 1). It was found that the mean yearly risk of infection

Fig. 1 The Poisson distribution applied to the unboiled water
consumption data

Fig. 3 The exponential distribution applied to the unboiled water
consumption data

Fig. 2 Results of the sensitivity analyses. a Sensitivity analysis for the
concentration of E. coli in treated water. b Sensitivity analysis for the
E. coli dose. c Sensitivity analysis for the yearly risk of infection. The
exponential distribution was applied to the unboiled water
consumption data. d Sensitivity analysis for the yearly risk of
infection. The Poisson distribution was applied to the unboiled
water consumption data and 10mL of incidental water intake was
added to the consumption value
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did not change even if the PDF changed. Since the Poisson model
suggests that 27% of the people do not drink cold tap water, the
probability of infection for these non-consumers is zero. On the
other hand, the exponential model gives lower, non-zero limits, for
the E. coli dose and the yearly risk of infection. As a result, the 2.5
percentile of the yearly risk of infection was estimated to be
4.14 × 10−19 infection/person/year.
Figure 2c shows the result of the sensitivity analysis for the

yearly risk of infection. It is obvious that this result is very different
from Fig. 2b (and Supplementary Figure 1). AOP has the highest
contribution, and water consumption has the fourth highest
impact with just 6.0% of the contribution to variance. The same
result was obtained for the sensitivity analysis on E. coli dose,
which is the variable before multiplying by the C/E ratio (see
Supplementary Figure 2). Although the yearly risk of infection
does not change, it should be noted that the statistical methods
applied to the water consumption data significantly affect the
results of the sensitivity analysis.
The impact of water consumption data was further examined. In

real life it is difficult to consume absolutely no tap water; it could
happen incidentally, when taking a shower, brushing teeth, and so
on. In our study, we assumed that there was incidental water
intake during tooth brushing. The volume of incidental water
intake has been set for various activities, such as swimming in the
river or sea, diving, and playing golf (by touching a golf ball on a
lawn after it was irrigated with treated wastewater).5,9 Based on
the aforementioned study, the incidental water intake during
tooth brushing was assumed to be 1mL and 10mL. Therefore, it
was assumed that even non-consumers ingest 1 mL/day or 10 mL/
day of cold tap water, and these volumes were added to the water
consumption value in the Poisson model.
The results of calculating the yearly risk of infection with these

assumptions are summarized in Table 1. When the volume of
incidental intake was set to 1 mL, there was virtually no difference
in the mean value (3.17 × 10−10 infection/person/year) and the
97.5 percentile (1.38 × 10−10 infection/person/year). In contrast,
because there are lower limits for the E. coli dose and the yearly
risk of infection, the value for the 2.5 percentile was 5.02 × 10−20

infection/person/year and not zero. When the volume of
incidental intake was set to 10mL, both the mean value and the
97.5 percentile increased slightly to 3.27 × 10−10 infection/person/

year and 1.56 × 10−10 infection/person/year, respectively. The 2.5
percentile also increased to 2.65 × 10−19 infection/person/year.
The result of the sensitivity analysis for the yearly risk of

infection in the case of 1 mL (Supplementary Figure 3) showed
that the contribution of water consumption to the variance was
reduced to 20.2%, and it had the third highest impact, while water
consumption had the highest impact in Fig. 2b (and Supplemen-
tary Figure 1). Figure 2d shows the result of the sensitivity analysis
in the case of 10 mL. It indicates that the contribution of water
consumption had the fourth highest impact and was drastically
reduced to 9.8%. The same result was obtained for the sensitivity
analysis on E. coli dose, which is the variable before multiplying by
the C/E ratio (see Supplementary Figure 4).

DISCUSSION
A large difference was found between Fig. 2a and b. The reason
for this result is the statistical method applied to the water
consumption data. The distribution of water consumption is
described not by a continuous distribution but by the Poisson
distribution, which is a discrete distribution. According to this
Poisson model with a mean value of 1.31 glass/day, 27% of the
people do not drink tap water. For this reason, the 2.5 percentile
(lower 95% confidence interval (CI) boundary) of the yearly risk of
infection is zero as shown in Table 2. Because 27% of people do
not drink tap water at all, their E. coli dose is zero and the
probability of infection is also zero for this fraction of non-
consumers. This zero value of water consumption drastically
affects the variabilities in the E. coli dose. This result is
mathematically quite reasonable. As described above, a difference
in the inactivation efficacy by AOP is as large as 6.1 log10
(8.59–2.49 log10). However, a difference between zero and non-
zero is much larger than 6.1 log10. This is the reason that led to the
difference found in Fig. 2a and b.
If the fraction of non-consumers is large, so is the impact of

water consumption. The tap water consumption data obtained in
the Netherlands can be described by a Poisson distribution with a
mean value of 0.706 glass/day.6 According to this Poisson model,
48% of people do not drink tap water. In this case, it was found
that the water consumption has a higher contribution to the
variance of the E. coli dose and the yearly risk of infection when

Table 1. Yearly risk of infection (infection/person/year) estimated in the QMRA

Statistical distribution of unboiled water consumption Lower 95% CI boundary Median Mean Upper 95% CI boundary

Poisson distribution 0 1.99 × 10-15 3.16 × 10-10 1.37 × 10-10

Exponential distribution 4.14 × 10-19 1.02 × 10-14 3.24 × 10-10 1.59 × 10-10

Poisson distribution with an additional 1mL/day of incidental water
intake

5.02 × 10-20 4.75 × 10-15 3.17 × 10-10 1.38 × 10-11

Poisson distribution with an additional 10mL/day of incidental water
intake

2.65 × 10-19 8.26 × 10-15 3.27 × 10-10 1.56 × 10-10

Table 2. Statistics estimated in the QMRA

Lower 95% CI boundary Median Mean Upper 95% CI boundary

Overall log reduction 12.0 14.5 13.0 17.9

E. coli in the treated water (E. coli/100mL) 4.23 × 10-17 2.70 × 10-13 1.33 × 10-10 4.86 × 10-10

E. coli dose (E. coli/day) 0 1.46 × 10-13 5.49 × 10-10 1.44 × 10-9

C. jejuni dose (C. jejuni/day) 0 7.95 × 10-18 1.26 × 10-12 5.45 × 10-13

Daily risk of infection (infection/person/day) 0 5.46 × 10-18 8.66 × 10-13 3.74 × 10-13

Yearly risk of infection (infection/person/year) 0 1.99 × 10-15 3.16 × 10-10 1.37 × 10-10

The Poisson distribution was applied to the unboiled water consumption data
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compared to Fig. 2b and Supplementary Figure 1 (data are not
shown).
Sensitivity analyses therefore indicate that water consumption

has the highest contribution to the E. coli dose. The effects of the
statistical models applied to the water consumption data on the E.
coli dose and the yearly risk of infection were further examined
using a different distribution.
The properties of water consumption data and the choice of a

fitting statistical distribution have been discussed before by Mons
et al.6 For QMRA, they recommended that a Poisson distribution
be used rather than an exponential distribution to describe the
variability of consumption in the Netherlands or that the data
themselves be used. However, researchers have so far focused
only on selecting a distribution that shows an adequate fit to
consumption data. On the other hand, the above sensitivity
analysis indicated that water consumption including zero value
has the highest contribution to the E. coli dose. We need to realize
that a difference between zero and non-zero is larger than a
difference on logarithm scale.
Figure 2c obtained with applying the exponential distribution

was very different from Supplementary Figure 1 obtained with
applying the Poisson distribution. In addition, Supplementary
Figure 1 obtained with including non-consumers was very
different from Supplementary Figure 3 and Fig. 2d that were
obtained with adding 1 and 10mL, respectively, to the water
consumption value. These results demonstrate that zero value of
water consumption greatly affects the result of the sensitivity
analysis for the yearly risk of infection.
Consequently, from the sensitivity analysis for the yearly risk of

infection shown in Fig. 2c, AOP was identified as the process that
most affects the yearly risk of infection. On the other hand, if the
Poisson model was uncritically applied, it would lead to
misunderstanding that the treatment step of AOP is not so
important as compared to unboiled water consumption (as shown
in Supplementary Figure 1).
This study demonstrated that the statistical methods used to

analyze water consumption data greatly impact sensitivity
analysis, although they do not have large effects on the
probability of infection. The purpose of the sensitivity analysis is
to identify critical control points within the system and to
prioritize data collection and research in the future. It should be
noted that the reliability of sensitivity analysis can be compro-
mised if inappropriate statistical methods are used for analyzing
water consumption data. To avoid this problem, it is preferable to
apply a continuous model, such as the exponential model, rather
than a discrete model, such as the Poisson model, to describe the
variability in water consumption.
In this study, sensitivity analysis performed on the concentra-

tion of E. coli in treated water identified AOP (among the six
treatment steps) as the process that most affects the concentra-
tion of E. coli. In contrast, sensitivity analysis performed on the E.
coli dose showed that water consumption has the highest impact.
This result is due to the use of a Poisson model for describing the
distribution of water consumption, which suggests that 27% of
people do not drink tap water at all.
It was found that the statistical methods used to analyze the

water consumption data have a great impact on sensitivity
analysis. It should be noted that the statistical methods used may
devalue the results of the sensitivity analysis. To avoid this
problem, it is preferable to apply a continuous model, such as the
exponential model, rather than a discrete model, such as the
Poisson model, to describe the variability in water consumption.
This study confirmed that reliable AOP inactivation is imperative

for the reliable production of safe drinking water by the water
treatment process developed for reducing chlorinous odor.

METHODS
Developed water treatment process
Because of customers’ complaints about chlorinous odor in drinking water,
water utilities and researchers have started seeking new water treatment
processes to improve water quality. Echigo et al.10 have proposed a new
process for reducing chlorinous odor even after chlorination. The
treatment steps are as follows: coagulation and sedimentation, RSF, AOP
with ozone and ultraviolet light, ion exchange (cation and anion exchange
treatments), and chlorination. This process is a hypothetical one that has
been developed using a pilot-scale plant installed at the K Water
Purification Plant in the Kansai Region of Japan. The treated water can
meet the target threshold odor number of 4, which is acceptable to
consumers.11

Procedure of QMRA
Zhou et al.12 conducted a QMRA to estimate infection risk in the drinking
water treated with the above process. The following is the brief description
of the QMRA procedure employed.
C. jejuni was selected as the target pathogen for estimating consumers’

infection risk. E. coli was used as a surrogate for C. jejuni in the treatment
process. The validity of E. coli as a surrogate is discussed below in detail.
The procedures for estimating the removal and inactivation efficacies of
the six treatment steps are also described below. After estimating the
overall removal efficacy of the six-step process, the concentration of E. coli
in treated water was calculated by multiplying the overall removal efficacy
with the concentration of E. coli in source water. The daily exposure (or
dose, expressed as E. coli/day) was calculated by multiplying the estimated
concentration of E. coli in treated water with the amount of unboiled
drinking water consumed per day. Unboiled water consumption data were
provided by Osaka City Waterworks Bureau, Japan.13 Details of the data are
described in the next section. The calculated E. coli dose (E. coli/day) was
then converted to an estimated dose of the target pathogen C. jejuni
(Campylobacter/day) using the C/E ratio in surface water. The daily
probability of infection (Pd) was calculated from the C. jejuni dose using a
dose–response model. The dose–response relationship of C. jejuni used in
this study is explained below in detail. The individual health risk was
expressed by the average yearly risk of infection (Py). Assuming a binomial
distribution, the yearly risk of one or more infections was calculated as Py
=1–(1–Pd)

365.

Target pathogen and its indicator. A total of 86 enteric disease outbreaks
associated with EU public drinking water supplies for the years 1990 to
2004 were detected.14 The most predominant pathogen isolated in the
outbreaks was Cryptosporidium (46 outbreaks), and the second most
predominant pathogen was Campylobacter (9 outbreaks). Although the
greatest number of outbreaks implicated Cryptosporidium, Campylobacter
outbreaks had the highest mean number of cases per outbreak (1802 cases
per outbreak). Thus, Campylobacter is considered to be one of the most
important bacteria causing waterborne diseases in several European
countries. In Japan, data about health-related incidents caused by
microorganisms associated with drinking water, which occurred in the
last three decades (1983–2012), were collected.15 The results show that the
number of health-related incidents caused by diarrheagenic E. coli was the
maximum of 58 cases, the second largest number was 26 cases caused by
Cryptosporidium, and the third largest number was 25 cases caused by C.
jejuni. Thus, C. jejuni is the second most important pathogenic bacteria
after diarrheagenic E. coli in Japan. Based on the above information, C.
jejuni was selected as the target pathogen in this study.
In QMRA, stochastic methods are proposed for calculating the

concentrations of pathogen in treated water using monitored pathogen
concentrations in raw water and estimated treatment efficacy. A large
dataset of pathogen concentrations monitored before and after water
treatment would be ideal for assessing treatment efficacy. However, it is
not easy to measure the concentrations of C. jejuni, and often, the
concentrations of C. jejuni in source water are below detection limits. For
pathogenic bacteria such as C. jejuni, indicator bacteria such as E. coli and
enterococci have been proposed as process indicators for assessing the
elimination capacity of water treatment processes.16 In this study, E. coli is
present in source water at concentrations greater than that of C. jejuni. It
can be detected further down the treatment train. In addition, the fact that
E. coli is more frequently measured for legislative purposes makes the data
valuable for assessing treatment efficacy.
Also, E. coli was chosen because a water treatment process can both

inactivate E. coli and C. jejuni to a similar extent, as well as remove them. As

Effect of unboiled water consumption data…
S Itoh and L Zhou

4

npj Clean Water (2018)  18 Published in partnership with King Fahd University of Petroleum & Minerals



their sizes are similar, the same removal efficacy of
coagulation–sedimentation for these bacteria can be assumed. Hijnen
et al.17 have reported that the removal of E. coli is slightly more effective as
compared with that of Campylobacter in water environment by RSF.
Moreover, E. coli and C. jejuni are inactivated to a similar extent by
ozonation, while with UV disinfection, the inactivation rate of E. coli is
smaller than that of C. jejuni.18,19 Hence, it is sufficiently safe to use E. coli as
a surrogate for C. jejuni when assessing the inactivation efficacy of AOP (O3

and UV). For ion-exchange treatment, bacteria were considered to be
removed by ion exchange and adsorption on resin. As E. coli and C. jejuni
have similar cell sizes and negative surface charges,20,21 it may be
reasonable to assume the comparable removal efficacy of ion exchange for
these two bacterial species. Furthermore, Vidar et al.22 have reported that
E. coli and C. jejuni are inactivated to a similar extent by chlorination.
Hence, E. coli was selected as a surrogate for C. jejuni.

Application of the type of distribution. PDFs were selected for describing
distributions of the concentrations of E. coli in the source water; removal
and inactivation efficacies by coagulation–sedimentation, RSF, AOP, cation
exchange, anion exchange, and chlorination; the C/E ratio; and consump-
tion of unboiled drinking water. Typically, extreme events can dominate
the average health risk. Hence, the PDF should fit the extremes (tail) of the
observed variations. From the point of emphasizing the fit to rare events,
the results obtained from the Anderson–Darling test were more
pronounced as compared to those obtained from the chi-square test
and Kolmogorov–Smirnov test when selecting a distribution type. Crystal
Ball 7® (Oracle Corporation) was used for selecting parametric PDFs fitted
to variables. The selected PDFs and estimated parameters are summarized
in Table 3.

Removal efficacies of the treatment steps. Removal and inactivation
efficacies were estimated for the above six treatment steps. Table 3
summarizes the estimated treatment efficacies with the methods to
quantify such as a survey at the actual full-scale treatment plant, pilot-scale
experiments and laboratory-scale experiments.
For the first step of coagulation–sedimentation in the treatment train,

direct measurements of an indicator before and after treatment provided a
direct estimate of treatment efficacy. Hence, the concentrations of E. coli in
the source water, as well as the removal efficacy of
coagulation–sedimentation, were determined by a survey at an actual
water treatment plant (K Water Purification Plant). The source of this water
treatment plant is the Yodo River. From November 2009 to January 2014,
the concentrations of E. coli in the source water and in the water treated by
coagulation–sedimentation of the K Purification Plant were simultaneously
measured 35 times. Concentrations of E. coli in the source water (E. coli/
100mL) was described by the lognormal distribution with the parameters
of μ= 1526 and σ= 26650 as shown in Table 3.　The removal efficacy of
coagulation–sedimentation was calculated from the concentrations of E.
coli in the influent and effluent. As a result, the removal efficacy (log
reduction) of coagulation–sedimentation was described by the gamma
distribution with the parameters of α= 49.67, β= 0.06 and L= – 0.37 (see
Table 3).
The treatment process of the K Purification Plant consists of the

following steps: coagulation–sedimentation, primary ozonation, RSF,
secondary ozonation, granular activated carbon adsorption, and chlorina-
tion. Since almost all bacteria is inactivated by the primary ozonation, it is
not expectable that E. coli can be detected in the water treated with RSF. In
addition, as reported in literature, the removal efficacy of RSF is supposed
to be less than those of other treatment processes. For example, 12
experimental studies have indicated that the mean elimination capacity
(MEC) of bacteria such as E. coli, coliforms, and fecal streptococci is only 0.6
log10, with a range of 0.1 log10 to 1.5 log10.

2 Hence, in this study, the
removal efficacy of RSF was tentatively set according to a literature value.
Hijnen and Medema16 summarized removal efficacies of bacteria by full-
scale RSF. RSF can be applied under three different conditions, possibly
influencing the MEC: a filter bed without a preceding coagulation or a filter
bed in combination with a preceding coagulation/flocculation, either as a
secondary floc-removal process or with in-line coagulation. The decimal
elimination capacity (DEC) of RSF without a preceding coagulation was 0.5
log10, with a range of 0.2 log10 to 1.0 log10. With a preceding coagulation/
sedimentation process, the DEC of RSF increased to a value of 0.9 log10,
with a range of 0.4 log10 to 1.5 log10. With in-line coagulation, the removal
efficacy increased again with 0.5 log10 to 1.4 log10. The DEC-values of RSF
with a preceding coagulation/sedimentation were collected from five
studies. The variation in DEC of the different studies is not (only) caused by Ta
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the differences in conditions of these separate studies but (also) by the
accumulated variations in conditions of the processes, micro-organisms
and analytical methods. Based on the above background, in this study, the
triangular distribution was tentatively constructed with a maximum of 1.5
log10, an MEC of 0.9 log10, and a minimum of 0.4 log10 as shown in Table 3.
It is obvious that it is preferable to obtain the removal efficacy under the
actual conditions hereafter.
After one or more treatment processes, the concentrations of the

indicator in the treated water is typically too low to be determined by
routine microbiological measurement methods. In addition, typically,
dosing microorganisms to full-scale water treatment processes is not
allowed and feasible. An alternative involves conducting dosing experi-
ments at the pilot or laboratory scale under controlled conditions, which
mimic full-scale conditions. In this study, dosing tests were conducted for
treatment steps of cation exchange, anion exchange, and chlorination.
Regarding AOP, a series of pilot-scale experiments and numerical
simulation were performed.
With respect to AOP, E. coli dosing experiments were conducted 14

times in total using a pilot-scale AOP bubble-diffuser contactor.23 The
inactivation efficacies of AOP under full-scale conditions with an ozone
injection dose of 0.25mg/L were estimated by an axial dispersion reactor
model (ADR model). A simplified full-scale O3/UV contactor was assumed
based on an actual ozone bubble-diffuser contactor installed at the K
Purification Plant. The cylindrical reactor, where water with dissolved
ozone flows, was assumed to be 5.64m in diameter and 5.9 m in length. A
5.9 m long UV lamp was placed along the center axis of the reactor. The
operating conditions are as follows: water flow rate, 3090m3/h; mean
hydraulic residence time, 2.86min; gas flow rate, 464m3/h; and gas to
liquid ratio, 0.15. The reactor was designed to operate under continuous-
flow and counter-current conditions. UV fluence of 220mJ/cm2 was set to
the value of the UV lamp installed in the pilot-scale O3/UV contactor.
As a result, a maximum value of 8.59 log10, an MEC of 3.43 log10, and a

minimum value of 2.49 log10 were obtained as the inactivation efficacies.
Using these parameters, the triangular distribution was constructed as
shown in Table 3. A difference in the inactivation efficacy by AOP was 6.1
log10 (8.59–2.49 log10) that was much larger than those in other five
treatment steps as shown in Table 3.
The removal efficacies of ion exchange treatment were estimated by

experiments using a laboratory column. For cation exchange, a Na+ form
of a cation exchange resin (Mitsubishi Chemical, Tokyo, Japan; DIAION
UBK16) was used. For anion exchange, a Cl− form of an anion exchange
resin (Mitsubishi Chemical, Tokyo, Japan; DIAION PA308) was used.
Although the K Purification Plant has not installed ion exchange treatment
yet, the ion exchange resins used in our study have been widely employed
for water treatment. Each ion exchanger was packed in two glass columns
(φ40 × 500mm) in series with a total length of 1 m, corresponding to the
same length of a full-scale contactor. A water flow rate was 106mL/min,
and a contact time was 4.74 min. A linear velocity was 5.04m/h that
mimicked the one of ion exchange treatment under the normal full-scale
condition.
Cultured E. coli suspended in 5 L of RSF water (with a target

concentration of 103 CFU/mL) was continuously fed to the glass columns
packed with an ion exchanger. E. coli dosing tests were repeated for each
of 14 times for cation exchange and anion exchange. As a result, the
removal efficacies of cation exchange and anion exchange were described
by the triangular distributions with a maximum of 0.96 log10, an MEC of
0.13 log10, and a minimum of −0.39 log10, and with a maximum of 2.21
log10, an MEC of 1.62 log10, and a minimum of 1.06 log10, respectively (see
Table 3). As can be suggested from the above dosing test procedure, the
obtained removal efficacies indicate the maximum ones of freshly
regenerated ion exchange resins.
The inactivation efficacy of chlorination was determined by conducting

E. coli dosing tests in a pilot-scale chlorination reactor installed in the K
Purification Plant. The reactor has four contact chambers with a total
volume of 0.53 m3. At a flow rate of 0.035 m3/min, the average hydraulic
residence time is 15 min. The influent for this pilot plant was the water
after RSF treatment at the K Purification Plant. The E. coli spiking solution
was continuously injected into the influent water. As it is desirable to
decrease the concentrations of residual chlorine in the supplied water in
the future, the inactivation efficacy of chlorination was estimated for a
case where the residual chlorine level was minimized to approximately
0.1 mg/L. Spiking experiments were conducted nine times in total. As a
result, the triangular distribution with a maximum of 5.83 log10, an MEC of
4.03 log10, and a minimum of 3.44 log10 was constructed as shown in
Table 3.

Ratio of C. jejuni to E. coli (C/E ratio). E. coli and C. jejuni concentrations in
the river water were measured from December 2011 to January 2014 and
the ratio of C. jejuni to E. coli (C/E ratio) was calculated. A total of 24 C/E
ratios were obtained and no significant seasonal trend was observed. The
C/E ratio was described by the lognormal distribution with μ= 4.81 × 10−3

and σ= 0.394 as shown in Table 3.

Dose–response relationship of C. jejuni. The dose–response relationship of
C. jejuni has been proposed and discussed.24,25 Teunis et al.26 have
reported that a dose–response relationship of C. jejuni can be expressed by
the beta–Poisson model, where α= 0.024 and β= 0.011. Although the
beta–Poisson approximation should retain the criteria of β ≥ 1 and α ≤ β,
the above α and β values do not satisfy these criteria. Actually, when the
aforementioned beta–Poisson model was applied, notably, the
beta–Poisson model can exceed the maximum risk curve at low doses,2

implying that the dose–response model predicts a theoretically impossible
probability of infection. Hence, the beta–Poisson model is not appropriate
for calculation. Alternatively, the exact beta–Poisson model can be
approximated for low doses (<0.1 organisms/L) by setting the γ value of
the exponential model equal to the expected value of the beta distribution
(α/α+ β), thus avoiding this complication. Hence, the beta–Poisson model
is approximated by the exponential model (Pd= 1−exp(−0.686 × D),
where D is the dose) with γ= 0.686, which was used in this study. Itoh27

examined the impact of using the maximum risk curve or the Beta–Poisson
model by the uncertainty analysis.

Monte Carlo simulation and calculated risk. The parametric distributions of
the concentrations of E. coli in the source water, removal and inactivation
efficacies of each process, consumption of unboiled drinking water, and C/
E ratios in surface water were expressed by PDFs as summarized in Table 3.
A Monte Carlo simulation was performed by drawing random values from
each PDF for calculating the yearly infection risk (Py). Correlations between
the variables were not assumed in the simulation. Crystal Ball 7® (Oracle
Corporation) was used for performing Monte Carlo simulation.
By performing the simulation, the mean overall log reduction by the

water treatment and the mean yearly infection risk were estimated to be
13.0 log10 and 3.16 × 10−10 infection/person/year, respectively, as shown in
Table 2. This infection risk is far below the acceptable yearly risk of
infection of 10−4 infection/person/year proposed by the United States
Environmental Protection Agency.28 Thus, the newly developed water
treatment process for reducing chlorinous odor was demonstrated to
produce safe drinking water with respect to the elimination of C. jejuni,
even with a minimized dose of chlorine. On the other hand, the aim of this
study is to investigate the theoretical impact of the statistical methods
used to analyze the water consumption data.

Unboiled water consumption data
A water consumption of 2 L/day has been widely accepted when setting
standard and guideline values for toxic chemicals.3 It should be noted,
however, that only the consumption of cold tap water without heat
treatment should be considered for estimating microbial risk.
Early QMRAs had assumed a water consumption of 2 L/day.29,30 Other

cases have used the provisional value of 1 L/day, a constant volume, such
as in the WHO Guidelines for Drinking-water Quality.3 In Japan too, 1 L/day
had been recommended as a conservative value.31

It has since been understood that statistical distributions describing the
variability of water consumption within a population are preferable for
performing a QMRA.2,32 Mons et al.6 after reviewing the different studies
on tap water consumption conducted mainly in western countries,
demonstrated that the reported mean consumption of cold tap water
varies greatly—between 0.1 L/day and 1.55 L/day. Therefore, they recom-
mended that country-specific data and statistical distributions be used in
assessing water consumption for conducting QMRA.
Only a few studies in Japan have reported unboiled water consump-

tion.13,33 Our study used water consumption data obtained from the Osaka
City Waterworks Bureau in 2009.13 They conducted an internet ques-
tionnaire from Saturday, 19 December 2009 to Monday, 21 December 2009
that drew 600 respondents (297 males and 303 females) between ages 15
and 74, living in Osaka City. The respondents were asked to report their
water consumption for each of these four categories: (1) cold tap water/
Japanese tea prepared using cold tap water/powdered juice dissolved
using cold tap water (2) alcoholic drinks diluted using cold tap water/
medicines, etc. taken with cold tap water (3) ice cubes made using cold tap
water (4) cold tap water served with meals at restaurants.
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The participants recorded the volume of water (in milliliters) they
consumed each day, viewing several pictures of typical drinking vessels for
properly estimating the volume. Consumption data in milliliters for the
three days including Saturday and Sunday were converted to average
consumption in milliliters per day in a week.
The total average consumption was calculated to be 327mL/day with (1)

119mL/day, (2) 38 mL/day, (3) 14 mL/day, and (4) 156mL/day reported for
the above four categories. The maximum consumption was 2400mL/day.
The ratio of non-consumers (zero mL/day of consumption) to consumers
for the three days was 8.2% (49 persons).
According to a nationwide survey conducted in Japan from June to

August in 2000,33 the average consumption was 321mL/day, which is
comparable to the 327mL/day obtained from the above study. Cold tap
water consumption is expected to be higher in summer than in winter.
However, factors influencing water consumption, such as the seasons,
have not been analyzed in detail.

Sensitivity analysis
For the simulation model that contains a series of steps, sensitivity analysis
is performed for identifying components or variables within the simulation
model that are most important to the outcome. Hill34 and Frey and Patil35

have reviewed and summarized the methodologies of sensitivity analysis.
There are mathematical, statistical, and graphical methods available. In this
study, since the mean yearly infection risk (3.16 × 10−10 infection/person/
year) was sufficiently low, it is not necessary to find a critical control point
for producing safe drinking water. Therefore, the purpose of sensitivity
analysis is to examine the importance of variations in model variables.
Spearman’s rank correlation coefficients between the assumed and
predicted variables were computed. Contribution to variance was
calculated by taking the square of the rank correlation coefficients and
normalizing the values to 100%. Contribution to variance corresponds to
sensitivity, with values ranging from zero to 100%; this result indicates the
relative importance by demonstrating the percentage of the variance of
the predicted variable that each model variable contributes to.
The variables tested in the sensitivity analysis were the reduction

efficacies of the six treatment steps, concentration of E. coli in the source
water, C/E ratio, and unboiled water consumption. The different purposes
of sensitivity analysis were described in 'Introduction'. If the impact of a
certain step among the six treatment steps is great, it can be indicated that
the reliability of the treatment step should be improved. If the impact of
concentration of E. coli in the source water or C/E ratio is great, priority
should be given to data collection of E. coli or C. jejuni in the source water.
From a different point of view, source water protection might be stressed.
In general, there are few studies on unboiled water consumption. If no
country specific data are available, Mons et al.6 recommend to use the
Australian distribution data from the Melbourne study as a conservative
estimate. If the impact of unboiled water consumption is great, the result
would highlight the importance of obtaining country specific consumption
data and statistical distributions in order to develop sound local QMRA
models. In addition, a water consumption study should be properly
designed to estimate accurate consumption volume and account for the
variability in consumption within a population.
Sensitivity analysis in a QMRA would be normally performed only on

yearly risk of infection, the final estimate of the simulation. In this study,
however, the impact of the variables on each estimate in the simulation
model has to be discussed. Therefore, the sensitivity for the overall
removal efficacy of the six treatment steps, concentration of E. coli in
treated water, E. coli dose, and yearly risk of infection were analyzed.
Crystal Ball 7® (Oracle Corporation) was also used for performing sensitivity
analysis.

Data availability
Any raw data used in this manuscript can be freely obtained by contacting
the corresponding author.
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