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Mitigating non-genetic resistance to checkpoint inhibition
based on multiple states of immune exhaustion
Irina Kareva 1,2✉ and Jana L. Gevertz 3

Despite the revolutionary impact of immune checkpoint inhibition on cancer therapy, the lack of response in a subset of patients, as
well as the emergence of resistance, remain significant challenges. Here we explore the theoretical consequences of the existence
of multiple states of immune cell exhaustion on response to checkpoint inhibition therapy. In particular, we consider the emerging
understanding that T cells can exist in various states: fully functioning cytotoxic cells, reversibly exhausted cells with minimal
cytotoxicity, and terminally exhausted cells. We hypothesize that inflammation augmented by drug activity triggers transitions
between these phenotypes, which can lead to non-genetic resistance to checkpoint inhibitors. We introduce a conceptual
mathematical model, coupled with a standard 2-compartment pharmacometric (PK) model, that incorporates these mechanisms.
Simulations of the model reveal that, within this framework, the emergence of resistance to checkpoint inhibitors can be mitigated
through altering the dose and the frequency of administration. Our analysis also reveals that standard PK metrics do not correlate
with treatment outcome. However, we do find that levels of inflammation that we assume trigger the transition from the reversibly
to terminally exhausted states play a critical role in therapeutic outcome. A simulation of a population that has different values of
this transition threshold reveals that while the standard high-dose, low-frequency dosing strategy can be an effective therapeutic
design for some, it is likely to fail a significant fraction of the population. Conversely, a metronomic-like strategy that distributes a
fixed amount of drug over many doses given close together is predicted to be effective across the entire simulated population,
even at a relatively low cumulative drug dose. We also demonstrate that these predictions hold if the transitions between different
states of immune cell exhaustion are triggered by prolonged antigen exposure, an alternative mechanism that has been implicated
in this process. Our theoretical analyses demonstrate the potential of mitigating resistance to checkpoint inhibitors via dose
modulation.
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INTRODUCTION
The advent of immune checkpoint inhibition therapy has shown
the remarkable potential of harnessing the immune system to
provide much needed care to patients with multiple tumor types.
Within just a decade, drugs targeting programmed death-1 (PD-1)
and its ligands (PD-L1 and PD-L2) have been approved for over 20
different indications1–3. The mechanism of action of immune
checkpoint inhibitors (ICIs) is predicated on reversing the state of
immune cell “exhaustion”. Exhausted immune cells typically
exhibit a progressive loss of their effector functions, such as
ability to proliferate, produce cytokines, and effectively bind to
and destroy target cells. This dysfunction is often accompanied by
the expression of a checkpoint molecule, such as PD-1, CTLA4,
TIM3, LAG3, etc4. Checkpoint expression increases the recognition
time between an immune cell and its target, or between a
cytotoxic cell and an antigen-presenting cell, thereby protecting
the host from autoimmunity5. By interfering with native signaling
between a checkpoint on the immune cell (such as PD-1 on
CD8+ T cell) and its native ligand, an ICI prevents the cell from
receiving a signal to maintain tolerance and thereby allows it to
exercise its cytotoxic function.
Unfortunately, despite high initial rates of success for some

indications, a subset of patients become resistant to ICIs (acquired
resistance), while others do not respond from the beginning
(primary resistance). Although response rates as high as 70% have
been observed in melanoma and Hodgkin’s lymphoma, they are

often much lower for most other indications6, see also Fig. 1 in
Schoenfeld and Hellmann1. A number of hypotheses have been
proposed for mechanisms underlying both primary and acquired
therapeutic resistance to ICIs, including defects in antigen
presentation, defects in IFN-gamma signaling, depletion of neo-
antigens, among others. For excellent reviews of this topic see, for
instance1,6,
Another framework for classifying mechanisms of resistance is

to categorize them as genetic or non-genetic. Genetic resistance is
typically a result of natural selection, where a therapeutic agent, in
cancer typically a cytotoxic drug, depletes the population of
sensitive cells, leaving behind cells that are resistant to this
particular therapy. In such cases, one must switch therapies with
the hope of targeting remaining cells from a different angle. Non-
genetic resistance instead refers to induction of transient
adaptations that may be reversible, and this type of resistance
has the potential to be mitigated without switching therapeutic
agents.
One example of such a reversible adaptation is described in

Hopkins et al. 7, where mice treated with PI3K inhibitors
developed therapeutic resistance. Upon interrogation, the authors
found that administration of PI3K inhibitors evoked a transient
diabetic phenotype in the treated mice, producing both
hyperglycemia and more importantly hyperinsulinemia. The
authors showed that it was not elevated blood sugar that was
acting as an additional nutrient source for cancer cells, but high
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insulin that acted as a growth factor, overcoming the effects of the
drug. The authors then treated the mice for hyperinsulinemia
using several anti-diabetic drugs including metformin, which
reduces glucose production from the liver, and sodium-glucose
co-transporter 2 (SGLT2) inhibitors, which increase glucose
secretion through urine. A ketogenic diet was also tested as an
approach to normalize blood insulin levels. Remarkably, each of
these interventions targeting the transient diabetic phenotype
restored the animals’ sensitivity to PI3K inhibitors in every tested
cell line, including breast, pancreatic, and colorectal cancers,
among others7. While this example is specific to the metabolism-
based mode of action of PI3K inhibitors, it does highlight the
existence of reversible phenotypic adaptations that may underlie
non-genetic resistance. It also demonstrates how such non-
genetic resistance may be mitigated through better under-
standing of the underlying biology.
Returning to ICIs, growing evidence suggests that immune

exhaustion is not a single state. Instead, a T cell can exist in a
number of states (likely determined, at least in part, by non-
genetic mechanisms), only some of which are susceptible to
checkpoint inhibition. In Miller et al. 8, both chronic viral infection
and tumors were shown to elicit analogous subsets of exhausted
CD8+ T cells. The authors described “progenitor exhausted” cells
that express checkpoints, such as PD-1, and are thus responsive to
checkpoint inhibitor therapy9,10, and “terminally exhausted”
T cells, which are not susceptible to therapy. In subsequent work,
Beltra et al. 11 expanded on this framework and proposed a four-
cell-stage developmental framework for exhausted CD8+ T cells:
quiescent resident, proliferative circulating, circulating mildly
cytotoxic, and terminally exhausted resident cells, with each
subset defined by specific molecular, transcriptional, and epige-
netic characteristics. As such, it appears that the process of T cell
exhaustion can broadly be functionally described as T cells
transitioning from an active cytotoxic state to a reversible
intermediate exhausted state characterized by increased check-
point expression, to an irreversible terminally exhausted state.
It is not entirely clear what specific factor or likely combination

of factors trigger the transition between states. However, if one
looks at exhaustion as being an adaptive immune mechanism
during chronic infection that most likely evolved to mitigate the
development of autoimmunity, it is possible that one such trigger
would be the overall inflammatory response that results from
cytotoxic activity of the immune cells. In this case, inflammatory
cytokines, such as interferons, interleukins, tumor necrosis factors,

among others12, may accumulate as a result of cytotoxic activity.
These cytokines could act as a signal that the costs of prolonged
cytotoxic activity are becoming too great, prompting transitions
between different states of CD8+ T cell exhaustion.
Within this framework, the following scenario is possible: as the

tumor grows and elicits an immune response, it can either be
eliminated, controlled, or can progress13–15. Due to inflammation
triggered by interactions between the tumor and the immune
system, some threshold level of tolerance may be surpassed. This
threshold is likely determined by a combination of both the levels
of inflammatory cytokines and possibly the duration of exposure
to them. The surpassing of the threshold is similar to the signaling
seen in chronic infections, where an increase in the expression of
checkpoints like PD-1 increases recognition time between
immune cells and their targets. This process establishes a state
of non-genetic and reversible exhaustion. While this can serve the
purpose of mitigating autoimmune damage, in the case of cancer
it can allow a tumor to continue growing. This further increases
inflammation, thereby triggering T cell transition to terminal
exhaustion. These mechanisms are summarized in Fig. 1.
Checkpoint inhibitors appear to target only the intermediate

reversibly exhausted pool of immune cells8. However, if the pool
of these cells cannot replenish in time for the next dose, or if the
ongoing inflammatory response continues, then it is possible that
the newly exhausted immune cells might spend very little time in
the intermediate state of reversible exhaustion and rapidly
transition to the terminally exhausted state. Consequently,
checkpoint inhibitors would lose efficacy not because of genetic
resistance, but as a result of incorrect timing of the therapy that
does not take into account the broader underlying dynamics of
immune cell exhaustion.
Here, we explore this hypothesis using a conceptual mathema-

tical model of inflammation-mediated multi-stage immune cell
exhaustion. We use this model to study the effects of altering the
timing and dosing of a simulated non-specific checkpoint inhibitor
on the outcome of tumor-immune interactions. We show that
more frequently administered doses of the same drug can be
more efficacious than larger less frequent doses because of the
effect on the composition of the immune cell population with
respect to state of exhaustion. We conclude with a description of
experiments needed to parametrize and validate such a model,
and with a discussion of possible implications of this mechanism
for mediating non-genetic resistance to immunotherapy.

Fig. 1 A schematic representation of the impact of inflammation on triggering transitions between different states of immune cell
exhaustion. Tumor-immune interactions contribute to an increase in overall state of inflammation F. If the tumor is not eliminated by actively
cytotoxic T cells, inflammation may surpass a theoretical threshold F1, triggering transition to reversible exhaustion. If inflammation continues
to increase, surpassing a second theoretical threshold F2, T cells enter a state of terminal exhaustion, which is not susceptible to checkpoint
inhibition therapy. As a result, a high degree of inflammation may deplete the pool of reversibly exhausted immune cells, resulting in non-
genetic resistance to therapy.
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RESULTS
In this section, we use the models described in Systems (1) and (2)
and parametrized using values in Table 1 to test the hypothesis
that changing the treatment protocol (dose and schedule) of the
same ICI could mitigate treatment efficacy in a population that is
initially ICI-responsive (i.e., does not have primary resistance). We
simulate the outputs that would typically be obtained during a
mouse experiment, specifically tumor volume and corresponding
PK. MATLAB code necessary to reproduce the key results of this
paper is available at https://github.com/jgevertz/
T_Cell_Exhaustion.
In Fig. 2a, we confirm that with this model parametrization, in

the absence of treatment the tumor grows to a steady state value
that is approximately half of its carrying capacity (a fact
attributable to the activity of the immune system). For this same
parametrization, we show that a dose of 6 units of the simulated
drug given 25 times every 6 days (Q6D) is ineffective (Fig. 2c).
However, when the same dose and dose number is administered
Q7D, the tumor is eliminated (Fig. 2b). This example demonstrates
the importance that the timing of dose administration has on
treatment response.

PK metrics do not predict treatment outcome
To interrogate the mechanism that may underlie the profound
impact of such a small change in the timing of dose

administration, we first conducted a thorough sweep of the
protocol space. We fixed the total drug dose (arbitrarily at 50) and
assessed the impact of dose fractionation (that is, the number of
doses administered, and the spacing between them) on treatment
outcome. For each protocol considered, we also computed the
values of three standard PK metrics: area under the drug
concentration curve (AUC0�τ , where τ represents spacing between
doses), minimum drug concentration at steady state (Cmin) and
the average drug concentration at steady state Cavg (Cavg).
The impact of ICI fractionation on treatment response is shown

in Fig. 3a. Interestingly, three protocol designs emerge that can
lead to tumor eradication. The first region, labeled with a ‘1’ in Fig.
3a, only administers a small number of doses (two to four doses,
with one exception). As the cumulative drug dose is fixed, this
means the dose administered each time is large. This “large dose,
low dose number” protocol is effective only when the doses are
spaced out by a week or more. Interestingly, giving the large
doses too close together is not an effective treatment protocol.
In the region labeled with a ‘2’ in Fig. 3a, an intermediate

number of doses (three to nine doses) are administered, which
results in administering an intermediate drug dose. For this
“intermediate dose, intermediate dose number” protocol to be
effective, the doses must be administered at least two days apart,
but less than 8 days apart. If the doses are too close together, or
too far apart, the protocol loses efficacy.

Table 1. A summary of parameters used to simulate the model in Systems (1) and (2).

Parameter Description Value

λ Tumor growth rate (d−1) 0.025

K Tumor carrying capacity (vol) 3000

b Rate of tumor cell kill by y1 (d−1vol−1) 0.09

c Rate of tumor cell kill by y3 (d−1vol−1) 0.01

ξ1 Half-maximal rate of tumor cell kill by y1 1

ξ3 Half-maximal rate of tumor cell kill by y3 1

b1 Rate of y1 expansion as a result of tumor cell kill by y1 (d−1 vol−1) 0.1

c1 Rate of y1 expansion as a result of tumor cell kill by y3 (d−1 vol−1) 0.001

d1 Natural clearance rate of y1 (d−1) 0.044

g1 Rate of transition from active immune cell phenotype y1 to reversibly exhausted immune phenotype y2 (d−1 vol−1) 0.045

F1 Threshold of inflammatory signaling for transition between active immune cell phenotype y1 to reversibly exhausted immune
phenotype y2 ; F1>F2 (vol)

10

F2 Threshold of inflammatory signaling from reversibly exhausted phenotype y2 to terminally exhausted immune phenotype y3 ;
F1>F2 (vol)

25

kd Rate of drug-mediated transition from reversibly exhausted immune cell phenotype y2 to active immune cell phenotype y1
(d−1vol−1)

0.001

g2 Rate of transition from reversibly exhausted immune cell phenotype y2 back to active immune cell phenotype y1(d
−1vol−1) 0.01

g3 Rate of transition from reversibly exhausted immune cell phenotype y2 to terminally exhausted phenotype y3(d
−1vol−1) 0.05

d3 Natural death rate of terminally exhausted immune cells y3 (d−1) 0.01

b2 Rate of increase of inflammatory factors F in response to cytotoxic activity of y1 and y3 0.02

d4 Natural clearance rate of inflammatory factors F (d−1) 0.01

V1 Volume of distribution, central compartment (mL/kg) 70

V2 Volume of distribution, peripheral compartment (mL/kg) 33

Cl1 Clearance, central compartment (mL/kg/d) 20

Cl2 Clearance, peripheral compartment (mL/kg/d) 22

k01 Drug absorption rate for subcutaneous (sc) administration (d−1) 0.11

k10 Rate of drug clearance from the central compartment (d−1) computed as Cl1/V1 Cl1=V1

k12 Rate constant for drug distribution from central to peripheral compartment (d−1) computed as Cl2/V1 Cl2=V1

k21 Rate constant for drug distribution from peripheral to central compartment (d−1) computed as Cl2/V2 Cl2=V2

xð0Þ Initial condition for tumor size (vol) 50

y1ð0Þ Initial condition for active immune cell phenotype (vol) 0.1
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Finally, in the region labeled with a ‘3’ in Fig. 3a, a large number
of doses (seven to twelve doses) are administered, which results in
administering a small drug dose. For this “low dose, large dose
number” protocol to be effective, the doses must be administered
sufficiently close together. In particular, the spacing between
doses can be no larger than five days. If the doses are given any
less frequently, the protocol loses efficacy.
We next asked whether treatment efficacy can be correlated to

a standard PK metric, or if it is necessary to consider the output of
the entire model to predict treatment efficacy. Somewhat
surprisingly, we found that none of the standard PK metrics
correlate with efficacy (Fig. 3b–d). For instance, Fig. 3b shows that
an AUC0�τ value of ~1200, the maximum value achieved, can
correspond to both treatment success (for instance, at 2 doses
spaced out by 10 days) or treatment failure (for instance, at 2
doses spaced out by 5 days). Similarly, an AUC0�τ value of 208, the
minimum value achieved, can correspond to both treatment
success (for instance, at 11 doses spaced out by 5 days) or
treatment failure (for instance, at 11 doses spaced out by 8 days).
Figure 3c similarly demonstrates the value of Cmin does not
correlate with treatment efficacy, and Fig. 3d shows how the value
of Cavg also has no meaningful correlation with efficacy. The
absence of any correlation between the various PK metrics and
treatment response is further verified in the following cases where
the cumulative dose is allowed to vary: 1) the number of doses is
fixed, dose and spacing varies (Supplementary Fig. 1) the dose is
fixed, number of doses and spacing varies (Supplementary Fig. 2).
We also evaluated the impact of drug half-life on the model

predictions. In particular, we repeated the simulations for a drug
with a half-life of 9 days rather than the initially simulated 2.6 days.
Our results confirm that the three distinct strategies emerge in this
model regardless of half-life (albeit the specific projected
efficacious dose range is different), and that for a drug with a
longer half-life, there remains no meaningful correlation between
efficacy and standard PK metrics (Supplementary Fig. 3). Taken
together, these results indicate that PK metrics alone are
insufficient to predict treatment efficacy.

Inflammation can play a key role in the effectiveness of
checkpoint inhibitors
Given that standard PK metrics cannot predict tumor response in
this model, we next selected two representative cases of
treatment success and treatment failure to further evaluate the
underlying immune dynamics that may affect treatment efficacy.
As can be seen in Fig. 4, treatment outcome predictably

depends on the immune cell composition, and specifically, on
whether the immune system composition can maintain a
sufficient proportion of actively cytotoxic (y1) and reversibly
exhausted (y2) immune cells. This in turn depends on the
inflammatory signals that trigger transition particularly from y2
to y3 (i.e., from reversibly exhausted to terminally exhausted
phenotype), which in this model is represented by the value of
parameter F2. Specifically, if the inflammatory signal is too great
(i.e., F > F2), then most immune cells transition to the terminally
exhausted state. As a result, the drug has too few T cells upon
which to act, rendering the treatment ineffective. This phenom-
enon is shown in Fig. 4, when a dose of 3 is administered 8 times,
either Q4D (top panel) or Q1D (bottom panel). Interestingly, the
efficacy of the Q1D protocol can be restored through increasing
the number of doses, though the same is not true for the Q4D
scenario (Supplementary Fig. 2a). On the other hand, if the
treatment is timed such that some of the inflammation subsides
before the next dose is administered, inflammation F remains
largely below F2. In this case (shown in the middle panel of Fig. 4
at a dose of 3 administered 8 times Q2D), the pool of T cells
susceptible to treatment is not depleted, and the treatment is
effective. Therefore, within the framework of this model, it is the
ability to control inflammation and prevent the ongoing transition
to the terminally exhausted phenotype that determines treatment
success or failure.
To evaluate whether F < F2 is indeed necessary to ensure

efficacy, we computed the area above the F2 threshold for the
doses and schedules evaluated in Fig. 3. The results, shown in Fig.
5, demonstrate that there is a perfect correlation between the area
above the F2 threshold (which represents a combination of how
significantly the threshold was passed, and for how long) and

Fig. 2 Baseline model behavior. Model simulations predict tumor volume for (a) no drug, (b) when a dose of 6 units is administered every
6 days (Q6D) for a total of 25 doses, and (c) when a dose of 6 units is administered Q7D for a total of 25 doses. Corresponding PK profiles are
shown in (d) no drug, (e) dose of 6 given Q6D, 25 total doses, and (f) dose of 6 given Q7D, for 25 total doses.
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treatment success/failure as shown in Fig. 3a. In particular, all
successful treatments have an area over the F2 threshold of 1976
or less, whereas all ineffective treatments have an area of the F2
threshold of 53863 or more. Interestingly, for many of the
successful protocols that constitute treatment strategies 2 and 3
(intermediate and metronomic-like), the area above F2 is
negligible, meaning that most cells remain in the reversibly
exhausted state with little transition to terminal exhaustion. For
the borderline protocols and the maximally tolerated dose (MTD)-
like strategy, F can surpass F2 but only transiently; otherwise,
protocols lose efficacy.

Population simulation
We previously saw that three protocol designs can lead to
treatment success. The first such design is the maximum tolerated
dose (MTD)-like strategy shown in Fig. 3a (region ‘1’), in which a
small number of large doses is administered at a low frequency
(that is, spaced far apart). The second such design, shown in Fig.
3a (region ‘2’) administers an intermediate number of an
intermediate dose of the drug at an intermediate frequency. The
third such design is the metronomic-like strategy shown in Fig. 3a
(region ‘3’) in which a large number of small doses is administered
at a high frequency (that is, they are administered close together).
Now, we turn our focus to evaluating treatment effectiveness at
the population level, rather than for single model parametrization.
We choose to focus this population analysis on the F2 parameter,
as it is likely to be specific to each individual, yet we have

demonstrated (Fig. 5) that this parameter (particularly, time spent
above this threshold) is predictive of treatment response.
To conduct our population-level analysis, we record treatment

efficacy across protocol space at each integer value of F2 in the
range [15, 35]. This mimics the assumption that F2 is uniformly
distributed over [15, 35], with the mean of the distribution equal
to the value of F2 in Table 1. We think of each value of F2 as
representing a “simulated patient”, and in Fig. 6 we show the
probability of treatment success across this F2 distribution as a
function of the cumulative dose administered, and the fractiona-
tion of that total dose. As expected, as the cumulative dose
increases, a larger set of protocols are associated with treatment
efficacy across the simulated patients.
Focusing first on the lowest total dose considered (cumulative

dose of 40, Fig. 6a), we find that a metronomic-like protocol (lower
doses administered more frequently) maximizes treatment effec-
tiveness across the simulated patients. This particular protocol
divides the cumulative dose of the drug over nine doses and
spaces the doses out by a single day. It is predicted that nearly
90% of simulated patients are effectively treated by this protocol.
Metronomic protocols that divide the cumulative dose over more
doses, and keep the spacing fixed at a single day, also achieve
over 80% efficacy. Although, it is quite interesting that these more
“extreme” metronomic protocols are actually less effective.
Metronomic protocols that divide the cumulative dose over less
than nine doses can also be effective in 70-80% of simulated
patients, but this requires spacing the doses out by two days. A set
of “intermediate” protocols (region ‘2’ in Fig. 3a) are also predicted
to be effective in around 80% of the simulated population.

Fig. 3 Impact of dose fractionation strategies on treatment outcome. Here the total dose is fixed (arbitrarily at 50), and the effect of
fractionating this cumulative dose by number of doses and spacing between them is evaluated. a Binary outcome of whether the tumor is
eliminated (green) or not (red). b Area under the curve (AUC0�τ , where τ represents spacing between doses), (c) Minimum concentration at
steady state (Cmin) and (d) average concentration at steady state (Cavg), corresponding to each dose number-dose spacing combination.
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When the cumulative dose is increased to 50 (Fig. 6b), there
exist protocols that are 100% effective across the simulated
population. These protocols are all metronomic-like, dividing the
cumulative dose over 8-12 doses, with the doses spaced by a
single day. A set of intermediate protocols (larger than the set
found at a total dose of 40) is also more than 90% effective at the
cumulative dose of 50. The trend observed as we increased from a
cumulative dose of 40–50 continues if we consider a total dose of
60 (Fig. 6c) and 70 (Fig. 6d). Some of these more successful
protocols are metronomic-like, dividing the cumulative dose into
7-12 doses administered 1–2 days apart. The remainder are
“intermediate”, dividing the cumulative dose into 2–7 doses
administered 2–4 days apart.

Taken together, these results suggest that the strategy that is
most effective for the largest number of individuals is a
metronomic-like protocol in which the total drug is administered
over a sufficiently large number of doses, with a small spacing
between those doses. However, this metronomic-like strategy
cannot be taken to an extreme, at least at lower cumulative doses:
distributing the cumulative dose over too many doses (as shown
in Fig. 6a in the case of 10–12 doses) can actually reduce the
probability of treatment efficacy across the population. Non-
metronomic-like protocols were also found to be equally effective
to metronomic-like protocols at sufficiently high cumulative drug
concentrations, though these higher total doses also carry a
higher risk of toxicity.

Sensitivity to model assumptions and parameters
The model analyzed thus far assumes that inflammation levels
trigger the transitions between different stages of exhaustion.
Another plausible assumption is that excessive and sustained
levels of antigen stimulation drive T cell exhaustion, as is seen in
some chronic viral infections11,16,17. To evaluate whether this
alternative mechanism of exhaustion impacts treatment efficacy,
we studied a modified version of System (1), where the factor F
that drives the transition between T cell phenotypes is instead
assumed to represent the level of tumor antigens (see System (3)
in the “Methods” section).
To ensure consistency of comparison with the original case we

studied, we calibrated the b2 parameter to get inflammatory
response on same scale in control case as we saw when cytokines
stimulated inflammation (we used b2 ¼ 2:7027 ´ 10�4Þ. We then
re-ran the population analysis to assess whether predictions
change. Interestingly, while the antigen version of the model has
fewer “high-dose, low-frequency” (MTD-like) protocols that are
effective (Supplementary Fig. 4), this modification preserved the
feature that “low-dose, high-frequency” strategy is still predicted
to be successful for the largest proportion of individuals.
Observing this robustness to the underlying assumption of

what drives the transition between T cell phenotypes, we next
conducted a parameter sensitivity analysis on the model in
Systems (1) and (2) to rigorously quantify the impact of each
parameter on treatment efficacy. Specifically, we ask the question:
what is the minimal parameter variation (either up or down) that
changes the model-predicted efficacy of a specific treatment
protocol? In Fig. 7, we answered this question over the full range

Fig. 4 Underlying immune dynamics that determine treatment success or failure. Success is shown in the middle row, where a dose of 3 is
given Q2D for a total of 8 doses. Failure is shown when a dose of 3 is given 8 times, either Q4D (top row) or Q1D (bottom row).

Fig. 5 Accumulated inflammation F above the threshold for
terminal exhaustion, F2. The dose-schedule protocol sweep
considered here is the same as in Fig. 3 (total cumulative dose of
50). Very large values (yellow) indicate that the area accumulated
above the F2 threshold is large, whereas very small values (dark
blue) indicate that the area accumulated above the F2 threshold is
small. The red boundary separates the effective protocols (within
the boundary) and the ineffective protocols (outside the boundary),
as determined in Fig. 3.
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of treatment protocols considered in Fig. 3. The results are
displayed in a set of 18 heatmaps, one for each non-PK model
parameter.
A heatmap element in Fig. 7 that is dark blue is indicative of a

highly sensitive parameter for a specific protocol: changing the
parameter by a small percent reverses the model predictions
regarding treatment efficacy (either from success to failure, or vice
versa). Figure 7 indicates that there are a number of parameters
that the model is highly sensitive across all protocols. Expectedly,
the tumor growth rate λ is one of these highly sensitive
parameters. The other highly sensitive parameters all relate to
the behavior of the cytotoxic T cells. These sensitive parameters
are their rate of tumor cell kill b, their half maximal kill rate ξ1, their
rate of expansion in response to tumor kill by cytotoxic T cells b1,
the rate at which they transition to a reversibly exhausted state g1,
and their natural clearance rate d1.
In Fig. 7, a heatmap element that is yellow is indicative of a

highly insensitive parameter for a specific protocol. We note that
the maximum parameter variation considered in our sensitivity
analysis is 100%, so any bright yellow value in Fig. 7 is indicative of
a parameter that can be varied by at least 100% without changing
the model-predicted treatment response. Figure 7 demonstrates
that g2 (transition rate from reversibility exhausted to cytotoxic
state) is the only parameter whose value is unimportant in
determining treatment response across the effectively all of
protocol space (with the exception of 7 doses administered Q1D).
Several parameters stand out as sensitively impacting response

in some regions of protocol space, but not in others. These
parameters are the cytotoxic capacity of terminally exhausted

T cells c, the rate of expansion of cytotoxic cells due to cell kill by
terminally exhausted cells c1, the half maximal tumor kill rate by
terminally exhausted T cells ξ3, the rate of transition from
reversible to terminal exhausted g3, the rate of drug-mediated
reversion of the exhausted phenotype kd , and the natural death
rate of terminally exhausted cells d3. Interestingly, the inflamma-
tory threshold for transitioning to terminal exhaustion, F2, is
sensitive over the entirety of protocol space except for when a
small number of doses are given close together. Varying F2 by
100% cannot flip these protocols from ineffective to effective,
consistent with what we saw in the population-level analysis in
Fig. 6. While F2 emerges in this analysis as a parameter of
intermediate sensitivity, we do note that Fig. 5 demonstrated that
the time spent above this threshold perfectly correlates with
treatment efficacy.

DISCUSSION
While genetic (primary or acquired) therapeutic resistance may
present an unsurmountable challenge to a particular therapeutic
modality, non-genetic resistance has the potential to be mitigated
and even reversed if the underlying physiological adaptations are
understood18–20. Here, we explore a possible mechanism of non-
genetic resistance to immune checkpoint inhibition therapy which
targets exhausted immune cells. We base our analysis on the
emerging understanding that immune cell exhaustion is not a
single state but is instead a series of states, only some of which are
reversible and therefore targetable by ICIs8.

Fig. 6 Population-level analysis of immune checkpoint inhibitor efficacy. The proportion of simulated patients that achieve tumor
elimination (ranging from 0% eliminated in blue to 100% eliminated in yellow) across a simulated population. This population considers F2,
the inflammatory threshold for transitioning between reversible to terminal exhaustion, taking on integer values [15, 35] with equal
probability. Each heatmap shows a fixed cumulative drug dose and fractionates the dose over the specified number of doses (horizontal axis),
with variable spacing between doses (vertical axis). Cumulative dose of (a) 40, (b) 50, (c) 60, (d) 70.
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Fig. 7 Sensitivity analysis of non-PK model parameters across protocol space. In each heatmap, the horizontal axis indicates the number of
doses administered, and the vertical axis is the spacing of the doses (in days). Yellow color represents low sensitivity, blue represents high
sensitivity. The cumulative dose administered is fixed at 50, as was used in Figs. 3, 5, and 6b. The heatmap color scale is indicative of the
minimal fractional change in the parameter value that “flips” the model prediction on treatment efficacy. The largest fractional change
considered was 1 (meaning, a 100% increase and decrease in the default parameter). Thus, any bright yellow value in the heatmap is
indicative of the parameter being able to change by at least 100% without flipping the predicting treatment efficacy.
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We propose a model that considers transitions between three
general immune states: actively cytotoxic, reversibly exhausted,
and terminally exhausted, where only reversibly exhausted cells
can be targeted by ICIs. We hypothesize that the transition
between different states of exhaustion is mitigated by a systemic
inflammatory response, since the existence of different states of
immune cell exhaustion is most likely an evolutionary adaptation
to prevent autoimmunity in chronic infections21. We do also
evaluate the impact of an alternative mechanism (chronic antigen
stimulation) on our predictions. In our analysis, we show that
within the framework of this model, none of the standard PK
metrics (Cmin and Cavg at steady state, or AUC0�τ ) correlate with
efficacy. Instead, effectiveness of ICIs is predicated on the level of
inflammation, and whether it is maintained beyond the threshold
F2 that signals the transition from the reversibly to the terminally
exhausted phenotype. That is, an effective protocol is the one that
ensures that inflammation is allowed to fall below F2 before the
next dose is administered, thereby replenishing the pool of
reversibly exhausted cells that are susceptible to therapy. This is
summarized in Fig. 1. Model simulations at a fixed value of this
threshold F2 suggest that, for a fixed cumulative drug concentra-
tion, three types of treatment protocols can result in tumor
eradication. The first such design is an MTD-like strategy that
divides the total drug into a small number of large doses,
administered at a low frequency. The second design divides the
total cumulative dose into an intermediate number of doses,
administered at an intermediate frequency. The third design is a
metronomic-like strategy that divides the total cumulative drug
dose into a large number of small doses administered at a high
frequency.
Given that these distinct therapeutic designs were effective for

a single model parametrization, coupled with the perfect
correlation observed between the area above the F2 threshold
and efficacy, we next evaluated whether there is a therapeutic
strategy that is predicted to be effective across a population in
which the threshold F2 varies. Interestingly, an MTD-like strategy
does not emerge as the optimal treatment design. At the lowest
cumulative drug dose that was considered, the most extreme
MTD-like strategy is never effective (Fig. 6a, 2 doses spaced
10 days apart). At the highest cumulative drug dose that was
considered, this extreme MTD-like protocol is predicted to be
nearly 80% effective across the simulated population (Fig. 6d),
though the high cumulative dose administered would likely be
associated with an increased risk of toxicity.
The lack of optimality of an MTD-like therapy is quite surprising,

given that typically ICIs are administered at higher doses every
several weeks. For instance, for unresectable or metastatic
melanoma, the approved dose of pembrolizumab (Keytruda®) is
200mg IV Q3W, or 400 mg Q6W22. Nivolumab (Opdivo®) is
typically administered at 240 mg Q2W or 480mg Q4W, depending
on indication and population23. Moreover, re-evaluation of dosing
regimens for standard ICIs is typically based on finding regimens
that would enable increasing periods between dose administra-
tions, rather than shortening them24. Dose selection for these
drugs is often directed both by efficacy and by logistics, since it is
less disruptive to the patient to receive treatment on a more
spaced-out schedule (given acceptable toxicity), and that in turn is
enabled by longer half-lives of biologics.
However, based on the underlying mechanism of immune cell

exhaustion, our simulations instead indicate the optimality of
strategies that give lower doses of the drug more frequently. At all
cumulative drug concentrations, except the lowest one consid-
ered, such a set of metronomic-like strategies is predicted to be
effective across the entire simulated population (Fig. 6b–d). Even
at the lowest cumulative drug concentration considered (Fig. 6a),
the protocol with the highest probability of success across
simulated patients is metronomic-like. Interestingly, a more
“extreme” metronomic therapy, where a drug is given daily, is

not necessarily better. The model predicts a sweet spot rather
than distributing the drug over very many or very few doses.
Clinically, any changes to a dosing strategy must first prove to

be non-inferior to existing ones. During the development stage,
the highly selective mechanism of action of anti-PD-1 checkpoint
inhibitors made it challenging to identify an MTD dose. Therefore,
optimal dosing regimens for pembrolizumab, for instance, were
determined based on a combination of animal studies, in vitro
assays and PK-PD translational models25,26. Further analysis of the
emergent PK-PD properties of the drug through extensive
simulation of anticipated scenarios for potency and PK non-
linearity (particularly via target-mediated drug disposition, or
TMDD, when the target is not fully saturated) supported the
selected dose of 2 mg/kg given Q3W for pembrolizumab27. Such a
target-engagement-based assessment is typically used as a no
regrets strategy, where it is important to ensure that if no efficacy
is observed, it is not because the mechanism was not fully
engaged through underdosing the patient.
Interestingly, however, in recent years several retrospective

analyses were conducted in which a cohort of patients was
administered lower than recommended doses of either pembro-
lizumab or nivolumab for financial reasons. These studies showed
that lower doses can be at least as efficacious as MTD. For
instance, Chang et al. 28 compared the safety and effectiveness of
standard (≥ 2 mg/kg) versus low dose (< 2mg/kg) pembrolizumab
with non-small cell lung cancer (NSCLC) in a cohort of 147
patients. They found that both median overall survival (OS) and
rate of all classes of immune-related adverse events (irAEs) were
similar in both the standard-dose and low-dose pembrolizumab
groups. In another retrospective analysis, Low et al. 29 evaluated
the impact of reducing the dose of pembrolizumab from a 200 to
100mg flat dose and found no significant difference in response
rate or grade 3–4 (severe or life-threatening) irAEs.
Similarly, for nivolumab, Zhao et al. 30 recently published a

study in which they reviewed the impact of administering low
doses of nivolumab to renal cell carcinoma patients. The authors
showed that the overall response rate (ORR) was similar in both
cohorts, and among the patients in the low dose cohort, one
patient had complete response (CR), while no patients had CR in
the high-dose cohort. Furthermore, no differences in the number
of patients experiencing all-grade or the grade 3–4 irAEs were
noted between the two cohorts. While this study has numerous
limitations (it was again a retrospective study with a small sample
size), it does suggest that lower doses can be at least as efficacious
as higher doses in addition to being more affordable31,32.
Another important consideration of using lower doses is

whether one might be able to mitigate toxicity. In Hurkmans
et al. 33, the authors analyzed factors that affect PK and its
relationship to clinical outcomes in real world patients. They
analyzed 588 serum samples derived from 122 advanced-stage
cancer patients with several types of cancer, including NSCLC,
melanoma and urothelial cell cancer. All patients were treated
with pembrolizumab monotherapy either at 2 mg/kg Q3W or
200mg flat Q3W. The authors evaluated whether individual PK
parameters were related to overall survival and irAEs. They
reported that severe irAEs (grade 3 or above) were observed in
17% of patients, with the most common ones including
gastrointestinal toxicity (8%), immune-related endocrinopathies
(3%), hepatotoxicity (3%), pneumonitis (3%), and skin toxicity
(3%)33. No association was found between pembrolizumab PK and
irAEs, with most severe irAEs occurring generally with a notable
delay after start of treatment (up to 2 years). These results are
consistent with other analyses reporting a lack of statistically
significant associations between irAE rates and dose/exposure of
anti-PD-1 agents34.
Of the reported side effects, delayed hepatic toxicity has been

increasingly reported in several case studies35,36, including after
single-dose administration37. While these individual reports
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require a more thorough investigation, they do suggest that
administering some anti-PD-1 checkpoint inhibitors at lower doses
might not compromise efficacy but could hold the potential to
mitigate both some adverse events, as well as ease the financial
burden for patients. In addition, our analysis suggests that altering
dosing and scheduling may have the potential additional benefit
of mitigating emergence of non-genetic resistance by maintaining
a pool of reversibly exhausted T cells that can be targeted by ICIs.
While it may be possible to reduce the doses, there do exist

significant logistical challenges to reducing the spacing between
them, as this requires increased hospital visits and thus greater
demands both on the patient and the hospital staff. While our
analysis suggests that a low dose high-frequency strategy would
be more likely to work for an ICI given as monotherapy, it may be
possible to mitigate such logistical challenges in combination
therapy. Specifically, it may be possible to select combination
agents that mitigate factors that trigger the transition of T cells
from reversible to terminal exhaustion. One approach to do so
could be to leverage the sensitivity analysis that has been
conducted (Fig. 7), identifying parameters that could contribute
most strongly towards changing the treatment outcome (turning
an efficacious protocol ineffective and vice versa), and selecting
therapeutic agent that may exhibit the properties of altering these
sensitive parameters. Then, an optimally synergistic combination
strategy can be designed38 that preserves the beneficial proper-
ties of the spaced out ICI administration schedule while mitigating
emergence of non-genetic resistance.
The proposed theory remains to be rigorously validated

experimentally, specifically with respect to what triggers the
transition between immune phenotypes. Here we propose that it
is systemic inflammation, though we also showed robustness in
model predictions if the trigger is instead antigen exposure. To
assess the assumption that inflammation triggers this transition, a
critical experiment would be to find a reasonable range of values
for the threshold to terminal exhaustion parameter F2. This could
possibly be done through a standard in vitro co-incubation
experiment, where cytotoxic immune cells are co-cultured with
different concentrations of a cytokine cocktail, similar to matura-
tion cocktails used for dendritic cells39. The expression of specific
receptors, such as Ly108 and CD69 reported in Beltra et al. 11 as
correlated with different states of exhaustion would be assessed
to identify typical levels of inflammatory cytokines that function-
ally trigger a transition between exhaustion phenotypes, thereby
benchmarking the level of systemic inflammation that can
critically affect therapeutic outcome. Notably, it is possible that
there are other factors that trigger this transition, and a more
systemic analysis should be conducted to identify such biomar-
kers, since they may shape the course of treatment. However, if
inflammation is indeed an important factor for this transition, it
could provide a mechanistic explanation for why high inflamma-
tion can be adversely associated with disease outcome40–43, with
high inflammation potentially weakening the immune response
through accelerating the transition of T cells to the state of
terminal exhaustion.
An in vivo approach may be more challenging due to limitations

of xenograft mouse models, which may develop anti-drug-antibodies
(ADA) prior to development of different exhaustion phenotypes. One
approach may nevertheless involve conducting parallel experiments,
with some animals being treated using the standard MTD-like
protocol and others being treated using the proposed metronomic-
like protocol and evaluating whether non-genetic resistance
emerges, and perhaps whether it can be reversed through change
in protocol. To use this experimental setup to parameterize our
model, we would require 1) a drug-free control to establish baseline
tumor growth, 2) at least two sets of experiments to determine dose-
response relationships, and if available, 3) information about immune
cell profiling with respect to markers of reversible versus terminal
exhaustion, such as CD69 and Ly108, as was shown by Beltra et al. 11

Given the likely costs and challenges associated with collecting such
detailed information, one could use methodology for minimally
sufficient experimental design44 to determine at which time points
data should be collected for sufficiently informing the mathematical
model. However, even in the absence of this level of detail, the
proposed in vivo experiments can nevertheless be conducted,
although the mathematical model would need to be simplified to
eliminate sources of error if some parameters cannot be reasonably
estimated. Even in this case, the model-based analysis developed
herein revealed a testable hypothesis to be evaluated experimentally.
It should also be noted that while the metronomic-like low dose

high frequency approach suggested by this analysis is similar to
metronomic therapy for chemotherapeutic agents45,46, the under-
lying mechanism of action is different. Chemotherapy targets
cancer cells directly but can also have off-site effects on the
immune system, both by ablating cytotoxic cells (thereby
hindering therapeutic efficacy), and by acting in an immunogenic
manner46–48. Other arguments have also been made for reducing
the likelihood of genetic resistance emerging through killing
therapy-sensitive cells49,50, as well as lowering toxicity, which
dramatically improves patient quality of life. In contrast,
metronomic-like immunotherapy is proposed here to mitigate
emergence of non-genetic resistance by allowing for continuous
replenishment of therapy-sensitive cells through understanding
the impact of collateral inflammation.
More broadly, this reflects an expanding approach to treating

cancer as a systemic disease. Chemotherapeutic treatments are
geared towards targeting cancer cells directly, with variable
efficacy and high toxicity. Changing the timing and scheduling of
chemotherapy has allowed mitigating some of the unintended
effects46–48,51, increasing its effectiveness in some cases. Immu-
notherapy steps back to augment the power of immune cells that
then target cancer, a possibility that has finally been unlocked
through the discovery of immune checkpoints52. While transfor-
mational, it is unfortunately still effective in only a subset of
patients53. A combination of these two modalities provides an
exciting avenue for further improvement of patient outcomes54,55.
However, perhaps it is now time to step even further back to
factor in the systemic effect of therapy on treatment strategy
design, where a true combination treatment affects not only
cancer cells and its natural immune predator but also other
indirect factors that may hinder efficacy.

METHODS
We first describe the dynamics of immune cell exhaustion
resulting from interactions with a tumor in the absence of therapy.
We assume the existence of three types of immune cells: fully

functional cells y1, reversibly exhausted cells y2, and terminally
exhausted cells y3. We also assume that there exists some external
factor or combination of factors F, which signals the degree of
inflammation. If this signal is sufficiently high (when F is greater than
some threshold F1), it triggers the transition from y1 to y2. An even
higher signal (when F is greater than some threshold F2 > F1) triggers
the transition from y2 to y3. We assume that these thresholds signal a
potential transition to autoimmunity, and thereby exist to slow down
the immune response to mitigate this risk. We also assume that y2
can transition back to y1 due to the reversible nature of this state of
exhaustion, but that terminally exhausted phenotype y3 cannot
transition back to y2 and is only cleared naturally. A schematic
representation of these processes is given in Fig. 1.
We assume that tumor x grows logistically and can be killed by

cytotoxic T cells y1 in a ratio-dependent way (i.e., proportionally to
the ratio of immune to cancer cells56–58). Further, we assume that,
to a lesser extent, tumor cells can be killed by terminally
exhausted T cells y3, while reversibly exhausted cells y2 have
been shown to contribute kill cancer cells “no more efficiently
than did naive CD8+ T cells, indicating that they contribute little
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or no direct cytotoxicity in the TME”8. A checkpoint inhibitor,
whose dynamics are described using a standard pharmacometrics
(PK) model, is assumed to only act on y2, since, as suggested by8,
ICIs are only effective against reversibly exhausted immune cells
Finally, the inflammatory factor (or combination of factors) F is

assumed to increase proportionally to cancer cell kill by immune
cells and undergo natural clearance. The resulting system of
equations is as follows:

In System (1), the operation xþ is defined as follows:

xþ ¼ x; x � 0

0; x < 0:

�

An implicit assumption of the model proposed in System (1) is that
the tumor and immune cells are well-mixed. However, it is very likely
that the tumor vasculature will impact both immune infiltration and
drug access, and that reality deviates from the assumption of well-
mixed populations. Such considerations could be built into a spatial
model, though constructing such a model would necessitate knowl-
edge of the spatial distribution of different cell types with respect to
the tumor geometry. In the absence of such data, we instead propose
a model of well-mixed populations. Previous modeling work59

suggests that models that assume uniform mixing typically result in
more optimistic predictions than models that account for spatial
effects. For this reason, it is likely that the inclusion of spatial effects
would further restrict the set of protocols classified as effective in our
theoretical model that assumes well-mixed populations.
We also consider a standard PK model with subcutaneous ICI

administration. In this PK model, Dsc is the drug concentration in
the subcutaneous compartment, Dp is the drug concentration in
the plasma (central) compartment, and Dt is the drug concentra-
tion in the peripheral (tissue) compartment. Intravenous admin-
istration can be described if needed by setting k01 ¼ 0.

dDSC

dt
¼ �k01DSC

dDp

dt
¼ k01DSC � k10Dp � k12Dp þ k21

V2

V1
Dt

dDt

dt
¼ k12

V1

V2
Dp � k21Dt

(2)

Parameters and nonzero initial conditions used for simulations
are summarized in Table 1. It should be noted that while PK values
were taken to reflect typical mouse anti-PD1 values with a half-life
of approximately 2.6 days60, the PK-PD relationships and the

values of other parameters are not calibrated to any actual
experimental data. They are provided to enable a qualitative study
of the projected treatment response based on the proposed
description of the underlying biology of T cell exhaustion.
Finally, for the model modification, where antigen levels F

increase at a rate proportional to the tumor volume, rather than to
the cell kill by y1 and y3, last equation in System (1) is modified to be:

dF
dt

¼ b2x|{z}
increase proportional

to tumor volume

as proxy for antigen stimulation

�d4F:|fflffl{zfflffl}
natural

clearance

(3)

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

CODE AVAILABILITY
The codes for performing all model simulations are available at Github and can be
accessed via this link: https://github.com/jgevertz/T_Cell_Exhaustion.
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