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An integrated study to decipher immunosuppressive cellular
communication in the PDAC environment
Gülben AVŞAR 1,2✉ and Pınar PİR1

Pancreatic ductal adenocarcinoma (PDAC) is one the most aggressive cancers and characterized by a highly rigid and
immunosuppressive tumor microenvironment (TME). The extensive cellular interactions are known to play key roles in the immune
evasion, chemoresistance, and poor prognosis. Here, we used the spatial transcriptomics, scRNA-seq, and bulk RNA-seq datasets to
enhance the insights obtained from each to decipher the cellular communication in the TME. The complex crosstalk in PDAC
samples was revealed by the single-cell and spatial transcriptomics profiles of the samples. We show that tumor-associated
macrophages (TAMs) are the central cell types in the regulation of microenvironment in PDAC. They colocalize with the cancer cells
and tumor-suppressor immune cells and take roles to provide an immunosuppressive environment. LGALS9 gene which is
upregulated in PDAC tumor samples in comparison to healthy samples was also found to be upregulated in TAMs compared to
tumor-suppressor immune cells in cancer samples. Additionally, LGALS9 was found to be the primary component in the crosstalk
between TAMs and the other cells. The widespread expression of P4HB gene and its interaction with LGALS9 was also notable. Our
findings point to a profound role of TAMs via LGALS9 and its interaction with P4HB that should be considered for further
elucidation as target in the combinatory immunotherapies for PDAC.
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INTRODUCTION
Pancreatic ductal adenocarcinoma with its <10% 5-year survival
rate is one the most devastating cancer types. The poor prognosis
is mainly associated with the lack of reliable diagnostic and
prognostic biomarkers, low surgical resections rate, rigid stroma
structure and high immunosuppressive infiltrate1–4. These factors
play significant roles in promoting resistance to therapies, making
it challenging to overcome immune checkpoint blockade and
penetrate the solid stroma5–7. The clinical trials of the immune
checkpoint inhibitors as programmed cell death protein 1 (PD-1)
and cytotoxic T lymphocyte-associated protein 4 (CTLA4) have
promising results with other cancer types, whereas they have
been unsuccessful in PDAC6,8. Hence, the existing therapy
strategies cannot provide complete treatment of PDAC, more
effective approaches are urgently needed. Recently, the need to
understand the tumor microenvironment (TME) and immunosup-
pressive infiltration have gained more and more importance to
reveal the new agents and therapies for the treatment of PDAC
and increased survival rates.
The transcriptomics technologies have been widely used to

discover and understand the cellular compositions in the
microenvironment, cellular response to the perturbations, and
cellular states of each cell9,10. Integrated analysis of the
transcriptomics datasets which have been produced by different
strategies such as bulk RNA-seq, scRNA-seq (SC) and spatially
resolved transcriptomics (spatial transcriptomics, ST) may lead to
more systematic and holistic knowledge discovery by overcoming
the limitations of each. Several challenges such as the missing
value problem in SC and ST datasets, the lack of cell type
detection with bulk RNA-seq and ST technologies, the lack of
locational information in bulk RNA-seq and SC datasets hinder
their potential to reveal the profile of the samples. Additionally,
the stress which is generated on the cells during the experimental
steps may cause variations in the transcriptional profiles.

Therefore, the analysis for the individual cell, the effect of
locational properties of cells, and the impact of the cell in the
bulk can be studied by using scRNA-seq, spatial transcriptomics
and bulk RNA-seq integratively2,10,11.
LGALS9 which encodes galectin-9 (Gal-9) is a member of

galectin family of animal lectins and is found in cytosol, nucleus,
plasma membrane and extracellular regions12. It is suggested to
be an immune checkpoint which binds to PDCD1 (PD-1), HAVCR2
(TIM-3), CLEC7A (dectin-1) and CD44 that regulates the immuno-
logical response by driving T cells to apoptosis and tolerogenic
macrophage programming13–16. The overexpression of LGALS9 is
associated with the tumor development, metastasis and poor
prognosis17. It is also proposed as a marker, reported to be
upregulated in PDAC samples and to be associated with the poor
prognosis3,18. A recent study suggested that the co-inhibition of
LGALS9 and CD274 (PDL-1) resulted with a more effective tumor
growth inhibition in PDAC19. The disruption of LAGLS9-CLEC7A
axis was reported to enhance the survival rate and decreased the
tumor growth. However, the neutralization of LGALS9 alone failed
to suppress the tumor in PDAC15. Therefore, the interactions of
LGALS9 in the TME has gained much attention to elucidate
efficient immunotherapy strategies. LGALS9 also binds P4HB
(PDIA1) which results in cell migration and T cell inhibition20–23.
P4HB is a protein disulfide isomerase and a chaperone that is
found in cytosol, mitochondria, extracellular space, and on the cell
surface21. P4HB was found to be overexpressed in various cancer
types including bladder cancer, renal clear cell carcinoma,
hepatocellular carcinoma, and glioblastoma24–27. Although, sev-
eral transcriptome studies showed that P4HB is downregulated in
PDAC, only one study reported the upregulation of P4HB for
PDAC28–31. On the other hand, the expression of this gene was
indicated to be related with the stage of the cancer; in the first
and fourth stages it is downregulated while upregulation is
reported in the second and third stages of PDAC32. The cell
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surface P4HB is associated with the adhesion and migration of
T cells, cancer cells and endothelial cells, HIV infectivity, and
chemoresistance22,23,33.
In the present study, we aimed to discover the cellular

interactions in PDAC using an integrative approach for the
different transcriptional states that are potentially associated with
immunosuppressive TME. Cellular heterogeneity in PDAC was
discovered by using paired ST and SC datasets which were derived
from the same tissue of the same patients. A colligation strategy
was taken on to discover the cellular heterogeneity and cell-to-cell
interactions in the TME (Supplementary Fig. 1). The SC and ST
datasets were processed separately, the communication results
were analyzed by assessing the number of interactions and most
frequent pairs which was constructed between and within the cell
types in SC and domains in ST. The most frequent partner which
was used in communication pairs was also discovered and further
analyzed to reveal the interplay of cells in PDAC. Cellular
communication analysis revealed the tumor-promoting immune
cells, especially TAMs, as the key cell type to generate an
immunosuppressive TME with cancer cells. LGALS9 was detected
as the most used constituent in the connections between the cells
after excluding the putative ECM-bound interactions. Additionally,
the LGALS9 interaction with P4HB was widely detected which is
mostly associated with the cell migration. Although the down-
regulation of P4HB in bulk datasets was observed, its upregulation
and high abundance on throughout the tissue samples were
shown by ST and SC datasets for PDAC. The outcomes suggested
the need for further analysis for the combinatory therapies which
will target LGALS9 and its interaction with P4HB to provide
increase in the efficacy in PDAC treatments.

RESULTS
Cellular composition in PDAC
The cell types were identified using SC datasets by inquiring the
cell type specific marker genes (Fig. 1a, b). In scA and scB, we
detected 5 ductal cell subclusters in both datasets. There were two
cancer clusters in scA, while only one cancer cluster in scB.
Additionally, we could not detect the clusters for T cells and NK-
cells, RBCs, and pDCs in scB. On the other hand, gene markers for
fibroblast were obvious in only scB. Besides the T cells and NK-
cells, the clusters which consist of TAMs, mast cells and Tregs were
also detected as the immunological cell types. While T cells and
NK cells were indicated as the tumor-suppressor immune cells, the
other immune cell types were defined as the tumor-promoting
immune cells34,35. The defined cell types were also validated with
an independent study (named as scC in this study) in which data
was collected from 14 PDAC patients (Supplementary Fig. 2).
To characterize the ductal cell clusters, functional enrichment

analysis was performed on the differentially expressed genes of
each cluster (Supplementary Fig. 3). The analysis resulted in the
cell survival against the apoptosis and regulation of cellular
communication processes for Ductal-1. The Ductal-2 cells were
defined with the GO terms of developmental, tube morphogen-
esis and cell motility processes. The GO terms related to cellular
respiration and adhesion, the epithelial cell differentiation, and
cytokine-mediated signaling pathway were associated to Ductal-3
cells. The immune responses, homeostatic process, and lipid
metabolic process were enriched in the cluster of Ductal-4 cells.
And finally, high mitotic cell activities accompanying the transcript
regulation were detected for Ductal-5 cell cluster. Further, the
subpopulations for the ductal cells were identified: CRISP3 and
CFTR expressing centroacinar ductal cells36; TFF1, TFF2 and TFF3
expressing terminal ductal cells; APOL1 expressing mobile ductal
cells; SPP1, SERPING1 and MHC class II genes (CD74, HLA-DRB1
and HLA-DRB5) expressing antigen-presenting ductal cells37; and
TUBA1B and HMGB1 expressing proliferative ductal cells. In scA

and scB, Ductal-1, Ductal-2, Ductal-3, Ductal-4 and Ductal-5 cell
clusters were defined as the centroacinar, mobile, terminal,
antigen-presenting, and proliferative ductal cells, respectively.

Cellular distribution in spatial design
The domains which are defined as the genetically and histologi-
cally coherent regions in the tissue were identified using ST
datasets. By integrating the gene expression profiles and the
histological image pixel intensities of each spot, SpaGCN
determined the domains on the tissue sample. ST and SC datasets
were expected to have similar cell types as they were obtained
from the same tissue of the same patients. Therefore, the marker
genes of each cell type which were detected in SC datasets were
plotted to detect the cell types in the domains (Fig. 1c, d). Due to
the lack of expression of cell type specific genes, the clusters for
CAFs and T & NK cells were not detected in the scA and scB,
respectively. On the other hand, the cell-type specific marker
genes of these cell types were observed in ST datasets. PDAC
tissues are characterized by having a dense stroma which is called
desmoplasia with a substantial fibroblast accumulation1. Even
though CAFs were not found in the SC dataset of patient A (scA),
they were detected in ST datasets both in stA and stB samples. As
expected, fibroblasts, being one of the main constituents of the
stroma38, were located almost everywhere in the tissues. Also, the
marker genes of CAFs were high in the domains where the cancer-
specific marker genes are overexpressed (see stA2, stA3, stB1, and
stB3 in Fig. 1c, d). Compared to SC, the ST may be more effective
in identifying the cell types that are truly present in the tissue,
because RNA is extracted from the cells which have still been
connected to both the ECM and to one another. Additionally,
since there is no tissue dissociation step, the spatial context of the
cells is preserved. However, it is not possible to label the spots
with a specific cell type due to the possibility of co-localization of
several cell types in the spots. Indeed, the marker genes of several
cell types (i.e., CAFs, ductal cells, cancer cells, and TAMs) were
observed in the spots of all domains, as expected. To study the co-
localization of specific cell types, each domain was analyzed for
the abundance of cell type specific marker genes in the same
domain in each dataset. Because each domain has its own
characteristics in all datasets, the domains with the same label do
not refer to the same profile in different datasets (i.e., D1 does not
represent the same biological profile in different datasets). The
detection of domains was carried out with dataset-based
approach which generated unmatched domains with same labels
in different datasets. Therefore, the analysis of domains was
performed independently by ignoring the domain label.
Ligand-receptor (L-R) pairs are the main components of the

cellular crosstalk complex. The pairs in the datasets were detected
by using CellPhoneDB based on their gene expression profiles.
The domains in which the cancer cell marker genes are highest
expressed were detected. The ligand and receptors in self-
interaction in each domain were subjected to functional enrich-
ment analysis. It was found that the domains in which the cancer
marker genes are highly expressed are involved mainly in
vascularization, cell migration, and ECM reorganization (Supple-
mentary Fig. 4). If the T & NK cell marker genes are also abundant
besides the cancer marker genes in a domain, T-cell activation and
negative regulation of cytokine production have also been found
as enriched GO terms. Similarly, cell motility, blood vessel
formation, and ECM reorganization to confer tensile strength
processes were included in the interactions of domains with
highest fibroblast marker genes and cancer marker genes. The
ECM organization GO term contains genes taking part both in the
degradation and in the strengthening of ECM. The degradation is
required to form blood vessels and provide permissibility for
cellular migration. Additionally, strengthening of ECM to maintain
the tensile strength is important for a dense stroma1. The
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Fig. 1 Cellular heterogeneity in PDAC tissues. The cell clusters and cell type specific marker genes in a scA and b scB. The domains and cell
type specific genes in c stA and d stB.

G. AVŞAR and P. PİR

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)    56 



observed processes were supported by the literature of the known
PDAC characteristics such as immunosuppression, ECM remodel-
ing, angiogenesis, and desmoplasia1,2,38,39.

Cellular interaction profiles
scRNA-seq technologies enables profiling of the tissue samples at
single cell resolution. Hence, inference of cell-cell communication
is possible besides revealing the cellular heterogeneity, detection
of rare cells and elucidation of gene regulatory networks in
individual cells. The analysis of the expression values of ligand
and/or receptor coding genes facilitates the discovery of
constructed L-R pairs between and within the cell types40,41. L-R
analysis with scRNA-seq datasets using CellPhoneDB provided the
interpretation of cell-to-cell communication in PDAC. In addition
to ductal cells, the interactions with cancer cells, CAFs, endothelial
and TAMs were observed in considerable numbers in all SC
datasets (Fig. 2a, b and Supplementary Fig. 2b). In scA and scC,
cancer cells were found to mostly interact with other cancer cells
and ductal cells, as the highest number of interactions were
obtained between these cell types (Fig. 2a and Supplementary Fig.
2b). And also, cancer cells were observed to have a large number
of interactions with TAMs and endothelial cells, in scA. In scB, the
cancer cells were found to mostly interact with CAFs, endothelial
cells and TAMs based on number of interactions, respectively (Fig.
2b). Both ductal cells and acinar cells have potential to develop
PDAC42. Because the number of interactions of acinar cells are
lower compared to others, we focused on ductal cells to reveal the
interactions that may be important for PDAC progression. The
number of interactions showed that ductal cells were found to be
mostly interact with TAMs and cancer cells in scA, respectively
(Supplementary Fig. 5). In scB sample, CAFs, endothelial cells and
TAMs mostly interacted with ductal cells, respectively. TAMs were
found as one of the top interactors of ductal cells in both datasets
which may point out the roles of TAMs in cancer progression and
control43.
Similar to scRNA-seq, the communication profiles were also

revealed for the domains in ST datasets by using CellPhoneDB
(Fig. 2c, d). If the acinar cell specific marker genes are high in a
domain, the number of interactions were observed to be the
lowest compared to other domains in the same dataset. When we
focused on the domains with larger number of interactions, it was
seen that if there was a clear ductal cell domination (see stA1, stB2
and stB3 in Fig. 1c, d), these domains were one of the partners of
these interactions (D3-D4, D3-D5, and D1-D4 in stA1, stB2, and
stB3, respectively). The other partner domain for these interactions
were observed to contain genes of CAFs, TAMs and endothelial
cells in the majority of the cases. An addition to outcomes for
ductal cells in ST datasets, they were also found to be interacting
with TAMs in both scA and scB, as indicated above. The number of
interactions between ductal cells and TAMs were found to be
significantly higher than the average total number of interactions
in all datasets (Supplementary Fig. 5). This may indicate that the
role of ductal cells in the immune infiltration is significant. Thus,
the 15 cell-cell interactions with highest scores (top 15 interac-
tions) between the ductal cells and TAMs were investigated
further (Fig. 2e). These interactions were found to be associated
with the processes of cell adhesion and immune regulation.
However, contradictory terms were obtained for the immune
system activation which may refer to the effort of ductal cells to
activate immune response while tumor-promoting immune cells
work to negatively regulate the immune system (Fig. 2f).
It is worth to note that the possible presence of multiple cell

types in each spot may give rise to a lower number of interactions
compared to SC datasets, because each spot gives only one gene
expression profile (analogous to data from a mini bulk sample) in
which we may not be able to detect the interactions within spots.
The transcriptomics are collected from the cells which have still

been attached to both the ECM and other cells in ST datasets.
Therefore, the collagen and integrin involved interactions were
expected to be overrepresented in these datasets. Not surpris-
ingly, the interactions between the collagen proteins (i.e., COL1A1,
COL1A2, COL3A1, and COL4A1) and integrin complexes (i.e., a1b1,
a2b1, a3b1 and a4b1) were the most common interactions in the
ST datasets.
The most frequent 15 L-R pairs were detected after excluding

the integrin-involved interactions in ST datasets to eliminate the
interactions which cannot be classified to be cell-to-ECM or cell-to-
cell (Fig. 3a). The elements of the pairs were found to be
associated with the cellular reactions of protein and ECM
organization, homeostasis, attachment to the blood vessel for
the nutrition, cell viability, and cellular growth (Fig. 3b) The pairs
between CD74 - APP, CD74 - COPA, SPP1 - CD44, SCGB3A1 -
NOTCH3, and LGALS9 - P4HB were the top 5 in the mostly
observed L-R pairs within and between the domains. These pairs
take part in angiogenesis and immune regulation in the tumor
microenvironment44 via their association with immune checkpoint
inhibitors45. APP and COPA are suggested to play promoting roles
in tumor progression and metastasis39,46,47. The binding of the
ligands to CD74 on immune cells is associated with the
immunosuppressive context48,49. SPP1 was shown to have critical
roles in cancer progression, metastasis and therapy resistance, and
was suggested to be a T-cell activation inhibitor50–53. CD44 is a
cellular adhesion molecule and highly associated with the cancer
stem cell population and mesenchymal phenotype49,52,54. In
PDAC, the cancer stem cell population of the tumors was found
to be induced by CAFs via SPP1-CD44 interaction. The over-
expression of SPP1 and CD44 is associated with poor prognosis in
PDAC patients52. Besides the regulation of epithelial cell prolifera-
tion and differentiation, SCGB3A1 has a role in cellular membrane
organization and in the local immune response in the lung55.
NOTCH3 is formerly implicated in angiogenesis, and recent
findings indicated its roles in tumorigenesis, tumor maintenance
and resistance to therapies. The expression of NOTCH3 is
increased in hypoxic conditions and associated with poor
prognosis in several cancers56,57. In PDAC, NOTCH3 is over-
expressed and strongly associated with the vascular invasion,
metastasis, and resistance to chemotherapy57. P4HB is associated
with the adhesion and migration of cancer cells and platelets by
the PDI reduction of disulfide bonds in β-integrins20,58. The
interaction of LGALS9 and P4HB was shown to increase T cell
migration and viral entry20. Hence, it may be concluded with that
cellular communication in PDAC tissue is highly associated with
the cancer survival via immunosuppression and cellular reorgani-
zation to accompany hypoxia and desmoplasia. The expression
patterns of the related genes were expressed in a large range of
levels throughout the ST domains (Supplementary Fig. 7).
Our results (Fig. 3d, Supplementary Fig. 2d, and Supplementary

Fig. 6) suggest that TAMs were suppressed via activation of the
CD74 axis which also induced the expression of hypoxia-related
genes to promote cell survival. The localization of the tumor-
promoting immune cells might be supported with the interaction
of SPP1 and CD44 in the tumorous ECM. SPP1-induced CD44
cleavage results in the expression of hypoxia-related gene49,
therefore maintenance of the cellular vitality might be provided
by SPP1 and CD44 interaction in the hypoxic environment of the
PDAC tissue.
SCGB3A1 is a surfactant protein which reduces the cell surface

tension, so the collective cell movement is induced from
aggregate surface region to aggregate core region59. The
interaction we find between the SCGB3A1 and NOTCH3 might
provide the inward vascular invasion into the rigid tumorous
tissue in PDAC. Treg differentiation and inhibition of T cells might
be done by the secretion of LGALS9 into the microenvironment13.
Also, the interaction of LGALS9 with P4HB might contribute to
cellular motility and the angiogenesis21–23.
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Fig. 2 Communication profiles in the datasets. The number of interactions between and within the cell types in a scA and b scB, and the
domains in c stA and d stB (The color intensity in the heatmaps shows the number of observed pairs in the corresponding dataset). e The
most frequent 15 L-R pairs (the x-axis refers to the percentage of the corresponding L-R pair in the complete list of interactions), f The
enriched GO terms for the proteins with interactions between ductal cells and TAMs.
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The immunoregulation identified by ST datasets were also
supported by the SC datasets. The most common 25 L-R pairs
showed that the top 3 pairs were CD74-COPA, CD74-APP, and
HLA-C-FAM3C in both scA and scB (Fig. 3d, and Supplementary
Fig. 6). Interestingly, cancer cells do not prefer to construct
interactions as a sender cell type with other cells using these pairs.
On the contrary, these pairs were highly observed in the
interactions of cancer cells as a receiver cell type. As an addition
to CD74, COPA, and APP which were mentioned above, FAM3C
which was observed to be expressed by cancer cells in the HLA-C-

FAM3C interaction is identified as a specific gene for the epithelial-
to-mesenchymal transition (EMT) and correlated with poor
prognosis60,61. It is highly expressed in malignant cells including
in PDAC5. We found that FAM3C interacted with several other
receptors such as PDCD1, CLEC2D, FFAR2, CXADR, LAMP1, and
KIR2DL3 which are associated with immune response, tissue
homeostasis, organ development and lysosome62–64. In addition,
the interactions of KIR2DL3 and FAM3C, and KLRB1 and CLEC2D
were detected between cancer cells and T & NK cells (Fig. 3c).

Fig. 3 The observed cellular interactions. a The top 15 L-R pairs in ST datasets (the color intensity shows the score of the interaction in the
corresponding dataset), b the associated processes of top 15 L-R pair elements in ST datasets, c the communication between cancer cells,
tumor-promoting immune cells and tumor-suppressor immune cells, d the top 25 L-R pairs in scA.
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KIR2DL3 and KLBR1 are known as the receptors which inhibit the
NK cell-mediated killing65.
In almost all datasets, the interaction of cancer cell types with

the TAMs clusters has a high number of significant L-R pairs which
indicates the high immunological activity in the tissue (Fig. 3d,
Supplementary Fig. 2c, and Supplementary Fig. 6). Because the
mentioned three L-R pairs (CD74-COPA, CD74-APP and HLA-C-
FAM3C) were observed extensively in the interactions from TAMs
to cancer cells, it can be suggested that CD74 and HLA-C are
highly active in TAMs.
Additionally, the CD47-SIRPA interaction is known as the ‘don’t

eat me’ signal which healthy cells send to macrophages to avoid
from phagocytosis66,67. CD47-SIRPA pair was observed between
cancer cells and TAMs in our analysis. Thus, cancer cells
manipulated the environment by regulating the phagocytosis
for the evasion of immune surveillance. These results suggested
that the mentioned interactions were highly effective to escape
from the immune system by inhibiting the T cells and NK cells
in PDAC.
For their ability of traveling more efficiently in TME, presenting

the antigens and generating endogenous responses, targeting of

myeloid cells were suggested for the adoptive cell therapies by
several studies68–70. Similarly, the cell type distribution profiles
(Fig. 1) and the cellular communication profiles (Fig. 2) showed
that the tumor-promoting immune cells, especially TAMs, have a
critical role in the tumor ECM. We find that TAMs are colocalized
with T & NK cells and cancerous cells which may indicate the
inhibition of tumor-suppressor immune cells and tumor promot-
ing activity, respectively. These outcomes suggested that the
macrophage targeted combinatorial strategies may provide more
effective results for the treatment of PDAC patients.
When we excluded the integrin-included components to

eliminate the probability of interaction to be constructed with
ECM, LGALS9 was found to be the ligand that is mostly used in the
interacted pairs in ST datasets. Likewise, it was one of the most
preferred ligands in SC datasets. We showed the upregulation of
LGALS9 in PDAC patients using bulk RNA-seq datasets (TCGA and
GTEx datasets) (Fig. 4a) as reported previously by the several
studies3,18. Also, LGALS9 was upregulated in TAMs compared to T
& NK cells in both scA and scC datasets (Fig. 4b and
Supplementary Fig. 2d). Twelve LGALS9-included pairs were
found, four of them were observed only in SC datasets (Fig. 4c).

Fig. 4 LGALS9 in TME. a LAGLS9 overexpression in TCGA-PAAD compared to GTEX datasets. b LGALS9 overexpression in PDAC patients with
the comparison of TAMs and T & NK cells. c the LGALS9-participated interactions in SC and ST datasets. d The distribution of LGALS9
interactions within TAMs and the other cell types (the number between the parentheses indicates the number of interactions with TAMs).
e PPI network of LGALS9 and its receptors which were found in SC and ST datasets. (The color intensity in the heatmaps shows the score of
the pair in the corresponding dataset).
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These interactions have been suggested to be associated with the
ECM remodeling, cellular adhesion, cell migration, and cellular
uptake of LGALS920,71–77. Additionally, LGALS9-HAVCR2 interac-
tion which is associated with the T-cell inhibition78 was one of the
observed 12 pairs. The analysis of cellular communication with SC
datasets showed that the L-R pairs of LGALS9 are highly abundant
in the communication of the TAMs with mostly cancer cells, ductal
cells, and TAMs themselves (Fig. 4d). Thus, we hypothesized that
TAMs may act as a main regulator in TME with the cell-cell
interactions via LGALS9.
The 12 LGALS9-binding proteins were incorporated into one PPI

network in which the color intensity of edges associated with the
confidence score (Fig. 4e). Within the 12 interactions, only the
interactions of LGALS9 with P4HB, CD44 and HAVCR2 have a
confidence score that is higher than 0.9. The spatial distribution of
the 4 genes have been visualized on the H&E-stained images
which the mRNA molecules have been collected for ST datasets
(Fig. 5a–d). While LGALS9, HAVCR2 and CD44 have been observed
in a few spots and at the low level of expression counts, P4HB was
found to be widely expressed in most regions of the tissue
samples. As mentioned before, the LGALS9-P4HB was the most
frequent interaction among interactions of LGALS9 in ST datasets
(Fig. 3a). This interaction was reported to increase the cellular
migration by regulation of cell membrane redox status of T cells20.
Similarly, the cell surface P4HB was associated with the migration
of cancer cells and endothelial cells and also the chemoresis-
tance21–23. Interaction with LGALS9 might lead P4HB to exchange
the exofacial properties by regulation of the membrane redox
status to provide cellular migration.
P4HB was reported to be downregulated in PDAC using

microarray and TCGA datasets28–30. Here, we also showed its
decrease in tumor samples via comparison of TCGA-PAAD and
GTEx bulk RNAseq datasets (Fig. 5e). On the other hand, the
upregulation of P4HB has been reported by a few studies at the
proteomics level in pancreatic cancer and pancreatic islets of type
I diabetes patients79. While the expression level of LGALS9 was
high mostly in TAMs, and also cancer cells and ductal cells, P4HB
was found to be widely expressed by cancer cells, ductal cells and
TAMs, respectively in our SC datasets (Fig. 5f–h). To reveal the
regulation of P4HB in cell type level, we compared PDAC tumors
(scC) with its adjacent normal samples (adj). In the adj dataset, two
ductal clusters were identified. One cluster expresses TFF1-3 genes
at a high level, while the other cluster expresses other ductal-
specific genes (Fig. 6a). We concatenated all ductal cell clusters
into one cluster in scA and scB, the differential expression was
elucidated for P4HB in these clusters. In the tumor samples, the
expression of P4HB was significantly higher than the ductal
clusters of adjacent normal samples (Fig. 6b–e). As mentioned
before, the different technologies can be integrated to eliminate
the limitations of each other. Here, we showed that although
downregulation of P4HB was observed via bulk RNA-seq datasets,
its upregulation in SC datasets and ubiquitous expression pattern
of the gene throughout the tissue sample with ST datasets is
evident. When expression profile of LGALS9 and P4HB and their
highly active interaction are taken into consideration, it can be
concluded that they have crucial roles in PDAC. These findings
suggest that a multi-target strategy which targets both the
immune checkpoint LGALS9 and protein disulfide isomerase P4HB
may offer more effective immunotherapy in PDAC treatment.

DISCUSSION
In this study, we examined the cellular communication in the
PDAC tumor microenvironment to reveal the underlying mechan-
ism of cellular interactions. Reanalysis of the spatial transcrip-
tomics and single cell RNA sequencing datasets which were
retrieved from the same tissue of same patients, showed that the
combinative analysis of transcriptomics generated by different

technologies can address the challenges of each technology.
scRNA-seq offers single-cell resolution profiles, however it lacks
the locational information, and some cell types cannot be
identified due to the missing value problem in marker genes.
Spatial transcriptomics provide gene expression profiles with the
locational details, but because the size of spots on which the RNAs
are captured is larger than the size of a single cell, each profile
comes from multiple cells. As an addition, both scRNA-seq and ST
technologies produce sparse matrices. The integration of these
two technologies can help to eliminate the limitations of each
other. Here, we deciphered the cellular heterogeneity landscape in
PDAC tumor samples that the SC and ST datasets were derived in
parallel. The domains on the tissue samples were revealed using
ST datasets. Additionally, the communication profiles between
and within the domains in ST datasets were revealed, and the
detailed investigation which is based on the cell types was
supported with SC dataset.
The CAFs, cancer cells, and TAMs were found to be spread

throughout the tissue samples. The interactions of cells with the
ECM were the mostly observed interaction type, as expected.
Besides the ECM-bound interactions, the pairs which were
associated with the inhibition of tumor-suppressor immune cells,
expression of hypoxia-related genes, angiogenesis, and vascular
permeability to sustain cellular viability were frequently observed
(Fig. 7). The cancer cells manipulate TAMs by sending ‘don’t eat
me’ messages and cooperate with TAMs to suppress the T cells
and NK cells. Additionally, TAMs were identified to be the key
constituents in the TME by interacting both cancerous cells,
healthy cells, tumor-suppressor immune cells, the tumor-
promoting immune cells (TAMs, mast cells, Tregs, and pDCs),
and by ability of infiltrating throughout the TME. After filtering out
the ECM-bound interactions, LGALS9 was found to be the most
preferred molecule to construct the interactions. The interactions
of LGALS9 showed that TAMs used LGALS9 ligand to commu-
nicate with cancer cells, ductal cells, and tumor-suppressor
immune cells. Also, our analysis showed that the processes which
are linked to ECM remodeling, cell migration, and cellular
adhesion might be activated via the interactions of LGALS9. The
LGALS9-P4HB interaction which may direct the P4HB-mediated
cellular migration was found to be highly active in our analysis.
Also, P4HB, as reported to be downregulated gene in PDAC in
previous studies, was shown to be upregulated in tumorous
samples.
To conclude, we presented the immunosuppressive TME which

is derived by the cellular communication in PDAC by using an
integrative approach. Each transcriptomics method comes with its
own advantages, so integration of data from these methods
provided us to interpret the tumor environment in a holistic
manner. We explored the immunosuppressive role of TAMs in
PDAC and LGALS9 as a key factor in communication of TAMs. To
the best of our knowledge, this study is one of the premise works
which shows upregulation of P4HB via SC and ST datasets in
PDAC. Thus, we suggest that the combinatorial therapies which
target LGALS9 and its interaction with P4HB may offer promising
outcomes for the treatment of PDAC patients. As an addition, the
role of P4HB and LGALS9-P4HB interaction needs to be further
investigated in cancer.

METHODS
Dataset retrieval
The bulk RNAseq data from primary tumor TCGA-PAAD samples
were downloaded using TCGAbiolinks R package80. The gene
expression data of normal pancreatic samples were obtained from
the GTEx database81. Thus, 178 tumor samples and 332 normal
samples (4 from TCGA-PAAD and 328 from GTEx) were acquired.
PDAC datasets of scRNA-seq (SC) and ST were downloaded from
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Fig. 5 Spatial distribution of the genes. The expression profiles of a LGALS9, b HAVCR2, c CD44, and d P4HB gene on tissue samples (The
color intensity refers to the expression value of the corresponding gene in the dataset.). e The regulation of P4HB in bulk datasets. The
expression profiles of LGALS9 and P4HB in f scA, g scB, and h scC.
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NCBI database with an accession number of GSE111672 and
GSE1556988,82. The PDAC-A (scA) and PDAC-B (scB) datasets were
obtained from two untreated patients (A and B) with pancreatic
ductal adenocarcinoma (PDAC). The tissue samples used for
scRNA-seq and ST analysis were taken from the same tumor.
scRNA-seq and ST data were processed in parallel82. The PDAC-C
(scC) which is also downloaded from NCBI database with an
accession number of GSE155698 contains scRNA-seq datasets
from 14 untreated patients8. This dataset has also 3 adjacent
normal samples which were also downloaded using the same
accession number.

scRNA-seq preprocess and cell-type annotation
The cell type annotation was performed by using scRNA-seq
datasets. Firstly, the genes which were not expressed in any cell
were removed. Then, the count values were normalized to the
median of total counts of each cell and log transformation was
performed. To increase the efficiency of the unsupervised
dimension reduction, we detected the highly variable genes in
Seurat83. In Seurat, a dispersion coefficient is calculated for each
gene, and the genes are placed into 20 bins based on their
average expression. The dispersion coefficient of each gene is z-
normalized, hence the genes with highly variable expression are
identified when compared to genes with similar average
expression. The method detected 1604, 1567, and 4541 genes
as the highly variable in scA, scB, and scC, respectively. Principal

component analysis (PCA) was performed on highly variable
genes. We than carried out unsupervised clustering with Leiden
algorithm, following the non-linear dimensional reduction method
UMAP.
The cell type annotation for each cluster were done with the

known cell marker genes in scRNA-seq datasets. The cell type
marker genes were collected from the previous studies2,82,84–90,
and databases CellMarker (http://biocc.hrbmu.edu.cn/CellMarker/),
Human Protein Atlas (https://www.proteinatlas.org/) and Pan-
glaoDB (https://panglaodb.se). The known signature genes were
SLC4A4, FXYD2, SPP1, TFF1, TFF2 and TFF3 (ductal cells);
CEACAM5, MSLN, KRT17, LAMC2 and KRT16 (cancer cells); PRSS1,
CTRB2 and REG1A (acinar cells); HEPACAM2 and DKK3 (beta cells);
HBB and HBA2 (red blood cells, RBCs); TPSAB1 and CPA3 (mast
cells); PLVAP and VWF (endothelial cells); IRF7 and GZMB
(plasmacytoid dendritic cells, pDCs); ACTA2, FAP, DCN, DKK1 and
PDPN (cancer associated fibroblasts, CAFs); CD68 and CD163
(tumor associated macrophages, TAMs); AREG and IL1RL1
(regulatory T cells, Tregs).

Spatial domain identification
ST datasets were preprocessed by removing the genes with no
expression value. Then, the count values were normalized to the
median of total counts of each spot before the log transformation.
SpaGCN (v.1.2.5) was used to define the spatial domains in each ST
datasets. SpaGCN is a graph-based method which integrates gene

Fig. 6 P4HB profile in SC datasets. a The ductal cell clusters in adj dataset. The regulation of P4HB in comparison of b, c adj with scA, and
d, e adj with scB.
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expression matrix with the spatial location information91. The
method clusters the spots into the domain by using their gene
count profiles and the histological relatedness (spatial location
and pixel color intensities). In SpaGCN, the resolution value must
be supplied by the user as a hyper-parameter. Optimal resolution
parameter for each ST dataset was found by assuming that marker
genes should be expressed homogenously within a domain, but
differential to other domains. Hence, the marker genes were
plotted on the discovered domains at each resolution level, and
the resolution level that leads to domains with most homogenous
marker gene expression was chosen.

Analysis of bulk RNA-seq datasets
The bulk datasets (TCGA-PAAD and GTEx pancreas) were retrieved
where the gene expression values are given in TPMs. The samples
which were labeled as primary solid tumor were selected to be
used as the tumor samples, ignoring the other tumor samples. The
differentially expressed genes (DEGs) in tumor samples compared
to normal samples were identified with the Wilcoxon rank sum
test with the p-value adjustment using Benjamini-Hochberg
approach. The cut-off p-value was 0.01 for the significance of
DEGs which resulted with 9822 genes with −1.5<fold change<1.5.

Functional analysis
One-vs-all DEG analysis was conducted to assign a cell type to
each cluster with Wilcoxon rank sum test, and p-value correction
was carried out by Benjamini-Hochberg approach as done for bulk
RNA-seq datasets. The genes with p-value smaller than 0.05 was
accepted as significant DEGs. The functional analysis was
performed to reveal the biological process variations between
the clusters by gProfiler. The protein-protein interaction (PPI)
network was constructed using Cytoscape 3.9.1 with STRING
database92,93. The edges were weighted with respect to the
STRING confidence scores of the connections.

L-R pair revealing
One of the most important cellular communication methods is
the ligand-receptor (L-R) complexes. The crosstalk via L-R pairs in
PDAC samples with scRNA-seq and ST datasets was investigated
using CellPhoneDB v3 with its default parameters, permutation
analysis was applied for calculating the p-values. The tool
retrieves the interacting pairs satisfying the criteria that at least
10% of the cells in the cluster expressed gene of the
corresponding ligand or receptor. The interactions with a
p-value smaller than 0.05 were selected for further analysis. To
combine the information from SC and ST datasets, we detected
the top pairs and the top partners of the pairs in both dataset
types. The number of interactions between and within the cell
types were inspected and the significance of the constructed
number of pairs against the whole data were analyzed by
permutation test with 1000 iterations. The permutation test was
applied to detect if the number of interactions between a pair of
cell types was significantly different than the mean of total
interactions. A p-value smaller than 0.05 was assumed to indicate
the statistical significance. A triangular heat map was generated
by annotating if the total number of interactions is larger or
smaller than the mean of total interactions.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Fig. 7 The overview of the study. The observed landscape for the immunosuppressive PDAC TME.
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