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Gene regulatory network reconstruction: harnessing the power
of single-cell multi-omic data
Daniel Kim1,2,3,5, Andy Tran1,3,4,5, Hani Jieun Kim2,3, Yingxin Lin1,3,4, Jean Yee Hwa Yang 1,3,4✉ and Pengyi Yang 1,2,3,4✉

Inferring gene regulatory networks (GRNs) is a fundamental challenge in biology that aims to unravel the complex relationships
between genes and their regulators. Deciphering these networks plays a critical role in understanding the underlying regulatory
crosstalk that drives many cellular processes and diseases. Recent advances in sequencing technology have led to the development
of state-of-the-art GRN inference methods that exploit matched single-cell multi-omic data. By employing diverse mathematical
and statistical methodologies, these methods aim to reconstruct more comprehensive and precise gene regulatory networks. In this
review, we give a brief overview on the statistical and methodological foundations commonly used in GRN inference methods. We
then compare and contrast the latest state-of-the-art GRN inference methods for single-cell matched multi-omics data, and discuss
their assumptions, limitations and opportunities. Finally, we discuss the challenges and future directions that hold promise for
further advancements in this rapidly developing field.
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INTRODUCTION
The transcriptional regulation of genes underpins all essential
cellular processes and is orchestrated by the intricate interplay of
many molecular regulators1. At the forefront of gene regulation
are transcription factors (TFs), which interact with specific regions
of DNA called cis-regulatory elements (CREs), such as promoters
and enhancers2,3. Together, the interactions between TFs, CREs,
and genes form gene regulatory networks (GRNs), which govern
cell identity and cell fate decisions4 and play an important role in
the development and progression of various diseases5. With the
advancement of high-throughput omics technologies, it has
become possible to profile the many molecular features involved
in gene regulation. However, the reconstruction of these networks
possess significant challenges that necessitate the development of
powerful and efficient computational tools to unravel the
regulatory interactions of GRNs.
The earliest computational GRN inference methods were

developed to leverage data from microarray and RNA-
sequencing (RNA-seq) technologies, which quantitatively measure
the RNA expression of whole cell populations (Fig. 1)6. These
methods identified potential regulatory relationships by identify-
ing co-expressed genes using measures of association, such as
mutual information and correlation7,8. However, these methods
were unable to incorporate information of the epigenetic changes
that drive gene regulation, restricting their ability to assess the
accessibility of regulatory binding sites, including those of TFs.
These limitations were alleviated by the expansion from bulk
transcriptomics to bulk multi-omics (Fig. 1) sequencing technol-
ogies such as ATAC-seq, which can be employed to identify
accessible regions of chromatin that may be bound by TFs either
upstream or downstream of target genes;9 Hi-C, a technique for
measuring genome-wide chromatin conformation to capture
structural changes and chromatin interactions;10 and ChIP-seq,
which captures genome-wide protein to DNA interactions,
including TF binding sites of enhancers and promoters11. Yet,

despite their ability to uncover mechanistic insights to capture
regulatory relationships more reliably, bulk sequencing technol-
ogies lack the ability to capture cell type and/or state-specific
information.
The advent of single-cell omics technologies has revolutionized

our ability to uncover cellular heterogeneity at the single-cell
resolution (Fig. 1)12. Data generated by techniques such as single-
cell RNA-seq (scRNA-seq)13, single-cell ATAC-seq (scATAC-seq)9,
single-cell Hi-C (scHi-C)14, and single-cell ChIP-seq (scChIP-seq)15

have led to a renewed interest in developing a new generation of
computational methods that can now infer regulatory relation-
ships between regulators and their target genes at the cell type,
cell state, and single-cell level16–18. Additionally, single-cell omics
technologies have evolved from profiling single modalities (e.g.,
scRNA-seq, scATAC-seq) towards capturing multiple modalities at
the single-cell resolution (i.e., “single-cell multi-omics”)19. In
particular, a range of novel sequencing platforms have the ability
to simultaneously profile RNA and CRE accessibility within a single
cell, such as SHARE-seq and 10x Multiome20,21. Consequently,
these technologies have led to the development of new GRN
inference methods that exploit these data to further comprehen-
sively recapitulate regulatory networks at the cell type and cell
state level22,23.
However, navigating through the multitude of GRN inference

methods and understanding how they infer regulatory connec-
tions can be a challenging task, particularly for researchers who
may not have a quantitative background. Furthermore, the sheer
number of available GRN inference methods can make it difficult
to determine the most suitable method for a given research
question of interest. To this end, we aim to assist both researchers
and method developers by reviewing the methodological under-
pinning of GRN inference by categorizing the latest GRN inference
methods developed for paired scRNA-seq and scATAC-seq data.
We start by briefly describing the history of GRN inference
methods and their evolution from bulk to single-cell sequencing
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technologies, including the underlying theoretical foundations for
GRN inference that are commonly employed. For a more
comprehensive overview, readers are encouraged to read
previous reviews that have extensively covered earlier GRN
inference methods5,24–26. Thus, we provide a detailed review of
recent methods that reconstruct GRNs using single-cell paired
multi-omic data, including their strengths and potential limita-
tions. Finally, we discuss the current challenges of GRN inference
methods and the potential directions that we hope will inspire
future method development in this field.

METHODOLOGICAL FOUNDATIONS OF GRN INFERENCE
GRN inference relies on statistical and algorithmic principles to
uncover regulatory connections between genes and their
regulators. By leveraging various techniques such as correlation,
regression, probabilistic models, dynamical systems and deep
learning (Fig. 2), researchers can effectively model and infer
regulatory architectures underlying biological systems. Here, we
briefly discuss the frequently used statistical approaches and the
underlying assumptions of the current GRN inference methods for
paired multi-omic data.

Correlation-based approaches
One of the most common approaches for reconstructing GRNs is
motivated by the concept of “guilt by association”. In other words,
genes that are co-expressed are assumed to be functionally
related or co-regulated. For example, the co-expression of a TF
and its putative target gene may suggest a regulatory relationship
between the two. Similarly, CREs and their target genes can be

determined by correlating the accessibility of CREs and expression
levels of putative target genes. Commonly used measures of
association include the parametric Pearson’s correlation and the
non-parametric Spearman’s correlation, which can capture linear
and nonlinear associations respectively (Fig. 2). Linear correlation
can effectively detect relationships where an increase in TF
expression or CRE accessibility leads to a proportional change in
gene expression. However, nonlinear correlation can capture more
complex relationships, which may better recapitulate the regula-
tory interactions between TFs, CREs and genes27. Other
approaches include mutual information, a non-parametric method
based on information theory, which measures the dependence
between two variables8.
While correlation analysis may provide valuable insights into

potential regulatory relationships, it is important to note that
correlation alone has clear limitations. For example, correlation
cannot identify which is the regulator and target if the expression
levels of two TFs are correlated, nor exclude the possibility of their
regulation by a third TF. Furthermore, the correlation measure will
have difficulty in distinguishing direct or indirect relationships,
including when confounders may be present. However, incorpor-
ating information from other modalities, such as ATAC-seq, holds
the potential to alleviate these limitations as they provide
additional evidence that a directional relationship between a
regulator and downstream target gene exists, i.e., TF must bind to
an accessible region of chromatin to regulate its target gene.

Regression models
Regression offers an approach to capture the relationship
between a response variable with multiple predictor variables. In
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Fig. 1 Schematic illustration of the parallel development and evolution of GRN inference and sequencing technologies. Initially, bulk
sequencing technologies provided insights into regulatory interactions at the tissue level but were limited in capturing cellular heterogeneity.
The emergence of single-cell technologies revolutionized the field, enabling the inference and reconstruction of cell type-specific gene
regulatory networks. The advancements in sequencing technologies now allows for the multi-omic profiling of cells, offering a remarkable
opportunity to precisely capture and integrate diverse molecular signals within the same cell, as shown in the cell furthest to the right of
Fig. 1. Importantly, each sequencing technology possesses its own unique data structure and characteristics. For example, data of unmatched
modalities do not share identical dimensions, as the cells and features, including their respective numbers, differ between each modality.
Consequently, integration methods are required to map cells and features into a common space prior to GRN inference. In contrast, matched
multi-modal data do not require data integration as the different modalities are captured within the same cell, which minimizes noise and
thus improves the quality and accuracy of GRN inference. As a result of the developments in sequencing technologies and data structures,
more accurate and comprehensive regulatory networks may be reconstructed. It is important to note that not all single-cell GRN methods
reconstruct cell type or state-specific regulatory networks but instead take advantage of additional omics layers to better represent regulatory
network architectures.
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the context of GRN inference, the response variable could be the
expression of a gene, regressed on the expression or accessibility
of multiple TFs and CREs, respectively (Fig. 2). By explicitly
estimating the effect of each predictor onto the response (e.g.,
gene expression), the coefficients (e.g., TFs or CREs) from the
regression model may be interpretable as strength of the
association, while the sign of the coefficient can be used to infer
the direction of the regulatory interactions.
In the context of inferring a GRN with ordinary least squares

regression, the data can contain thousands of TFs or CREs,
depending on the distance that is searched from the target gene’s
transcription start site28. Importantly, the inclusion of a large
number of predictors can often lead to overfitting, where the
model becomes overly complex and generalizes poorly. Moreover,
regression models can become unstable if there are correlated
predictors, which is likely in a biological context given TFs can
regulate each other. To address these concerns, more modern
penalized regression methods such as LASSO introduces an
additional penalty term based on the absolute size of the
coefficients, that effectively shinks selected coefficients towards
zero and thus reduces the complexity of the final estimated
regulatory network. Furthermore, non-parametric approaches,
such as tree-based regression, do not assume any fixed structure
in the data but can be less interpretable and more computation-
ally intensive to construct.

Probabilistic models
Probabilistic models for GRN inference generally take the form of a
graphical model, which captures the dependence between
variables, such as TFs and their target genes. These approaches
generally aim to model the existence and/or strength of a
regulatory relationship between each TF and their putative target
genes, which is estimated by finding the most probable relation-
ships that could explain the given training data. These probabil-
istic measures allow for filtering and prioritization of regulatory
interactions before downstream analyses, enabling more targeted
investigations. However, these methods often assume that gene
expression follows a specific distribution, such as a Gaussian
distribution, which may not be an appropriate assumption for all
genes29.

Dynamical systems
While regression and probabilistic-based approaches model a
response variable directly from predictor variables, dynamical
systems-based approaches attempt to model the behavior of
systems that evolve over time. In the case of GRN inference, one
may be interested in estimating the expression of a gene with
respect to various factors such as the regulatory effect of TFs, basal
transcription, and general stochasticity over time (Fig. 2). These
effects can be modeled as parameters in a differential equation
which can be estimated from the data or literature30.
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Fig. 2 The major classes of methods for paired single-cell multi-omics GRN inference methods. Correlation-based methods seek to identify
pairs of variables (i.e., TF expression, gene expression or CRE accessibility) that vary similarly. Regression-based approaches model the gene
expression based on multiple predictor variables (i.e., TF expression and/or CRE accessibility). Probabilistic models aim to identify the most
likely regulators for a gene. Dynamical systems-based approaches model changes in gene expression based on biological factors (e.g., TF
expression, cell cycle stage, general stochasticity). Deep learning-based approaches use neural networks to infer complex relationships
between TFs, CREs, genes and cells.
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Dynamical-systems models carry a distinct advantage com-
pared to previously discussed methods as they capture a diverse
range of factors that can affect gene expression and its
stochasticity. The estimated models are interpretable, where each
parameter corresponds to a specific property. However, the
complexity of larger networks and dependence on prior domain
specific knowledge can make these models less scalable and
prone to publication bias31,32.

Deep learning models
Deep learning models are a class of machine learning techniques
that have gained significant attention in recent years across a
wide array of subjects, including bioinformatics33. These models
are based on artificial neural networks which can be used in
versatile architectures to perform various tasks (Fig. 2)33–35. For
example, a multi-layer perceptron can solve regression-style
problems to estimate a function, while an autoencoder can be
used for dimension reduction. In particular, autoencoders can
have multiple types of inputs and learn the common connections
between them, representing potential regulatory relationships36.
However, the flexibility of deep learning approaches comes at a

cost, often requiring very large training data sets as they make
minimal modeling assumptions. Additionally, the constructed
models can often consist of a large number of parameters, which
require a substantial amount of computational resources to be
estimated. Deep learning approaches are also generally consid-
ered less interpretable compared to traditional statistical models,
as the fitted coefficients typically do not have a clear interpreta-
tion37. However, a range of recent approaches, such as saliency,
aim to rectify this by identifying the important features in the
overall model, which can be used to identify candidate TF
regulators38.

GRN INFERENCE IN BULK OMICS ERA
Bulk transcriptomics
High-throughput profiling methods such as microarray and RNA
sequencing (RNA-seq) were among the first experimental
methods to capture the global transcriptomic profile of a
sample39. In response, computational methods were developed
to unravel the potential regulatory connections between tran-
scription factors and their target genes by analyzing the
expression patterns of thousands of genes40. Notable examples
include ARCANE, CLR, and MRNet, which leverage association
metrics like mutual information to quantify the relationship
between a TF and its target gene41–43. However, a key constraint
of these methods lies in their pairwise calculation of association,
failing to model gene expression as a function of multiple
regulators. Regression-based methods, such as GENIE3, address
this constraint by modeling gene expression as a function of
multiple regulators, which may model regulatory relationships
between regulators and target genes more accurately44,45. Never-
theless, an important limitation of these methods is their sole
reliance on transcriptomics data, thus overlooking epigenetic
modifications which are known to play a crucial role in gene
regulation.

Bulk multi-omics
The process of gene regulation and transcription has many
molecular mechanisms and players, such as epigenetic modifiers,
which engage in complex interactions to regulate gene expres-
sion. These molecular regulators play important roles in initiating,
promoting, enhancing, and modulating gene transcription. Thus,
to construct more comprehensive GRNs, it is important to include
additional regulatory factors and DNA elements, such as
enhancers and silencers, and structural information including

chromatin conformation. For example, ATAC-seq can be used to
generate more comprehensive GRNs, as used by GRaNIE, PECA,
and TimeReg46–48. Methods such as DISTILLER and ChIP-Array 2
integrate both RNA and ChIP-seq data to identify the TFs and
regulatory sequences of target genes46,47,49–51. Hi-C can also be
used to capture the conformation of DNA and be integrated with
both ATAC-seq and RNA-seq data to construct multi-omic
GRNs11,52. Overall, the integration of various multi-omic datasets
and the use of statistical models have the potential to enhance
our understanding of gene regulation and uncover the dynamic
interactions between TFs and their target genes in different
biological contexts30,53,54.
Despite their advantages, both bulk transcriptomics and bulk

multi-omics GRN inference methods share common limitations.
Any analysis based on bulk data alone makes it challenging to
infer cell type-specific information, as the omics profiles are
averaged across a population of cells, thereby eliminating any
signals of cellular heterogeneity55. However, it is well-established
that various diseases, such as diabetes and cancers, are wholly or
partly driven by specific cell type populations56,57.

GRN INFERENCE IN THE SINGLE-CELL ERA
Single-cell omics
Many of the limitations in GRN inference from bulk omics
technologies were alleviated by the birth of single-cell omics
technologies. These techniques have provided a detailed glimpse
into the cellular and molecular composition of diverse tissues,
surpassing the capabilities of bulk sequencing methods13,58–60.
Transcriptomics was the first to move to the single-cell level with
scRNA-sequencing. Many popular GRN methods have been
designed to leverage scRNA-seq data including approaches based
on regression (SCENIC, scTenifoldNet), dynamical systems (SCODE)
and information theory (PIDC)22,61–63.
Today, sequencing technologies enable the quantification of

other modalities via scATAC-seq, scHi-C, and scChIP-seq, facilitat-
ing a comprehensive capture of the inter-molecular dynamics
within cells9,15,59. Methods, such as DeepTFni, have been
developed to independently leverage these additional modalities
to provide an alternate approach to GRN inference64. Other
methods aim to combine information from multiple modalities.
For example, CellOracle, MICA, and IReNA use scRNA-seq and
scATAC-seq separately in two stages which involves filtering
putative regulatory links and then constructing the final GRN or
vice versa65–67. Alternatively, separate GRNs can be constructed
from different modalities and then combined to produce a single
integrated GRN68.
A range of other approaches have been developed to integrate

multi-omic data profiled from different cells and simultaneously
learn the shared relationships between the different modalities to
reconstruct regulatory networks. This includes DC3, scREG and
scAI that use matrix factorization techniques to project the
unmatched multi-omics data into a low-dimensional representa-
tion, thus integrating them together69–71. Similarly, GLUE and
scTIE integrate multi-omics data by projecting the different
modalities to a low-dimensional embedding, but they use an
autoencoder, a deep learning-based technique that can infer
complex structures from the data72,73. Once the low-dimensional
representation that captures the shared patterns between the
omics layers has been learnt, these methods use the mapping to
extract multi-omic features to infer interactions (e.g., between
CREs and genes), which can be used to reconstruct a GRN. These
methods can also be applied to matched scRNA-seq and scATAC-
seq data, by treating them as separate cell populations. However,
as their main purpose is not for GRN inference, we do not review
them in this article.
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Towards matched single-cell multi-omics
As the evolution from bulk RNA to bulk multi-omics involved the
development and integration of additional modalities, multimodal
single-cell omics technologies have led to new a wave of
technologies that can profile different modalities within the same
cell, often referred to as matched or paired data74. These
technologies include SNARE-seq, which allows for the joint
profiling of the transcriptome and chromatin accessibility75;
CITE-seq, a method for capturing the transcriptome and cell
surface protein markers21; Paired-tag, a high-throughput method
for the simultaneous profiling of histone modifications and the
transcriptomes76; and ASAP-seq, which captures the transcrip-
tome, chromatin landscape, and protein marker expression at the
single-cell resolution77. Importantly, these advances in sequencing
technologies provide an opportunity to harness the information
embedded in multimodal data that may be unattainable when
integrating unmatched multi-omic data. Nevertheless, a range of
computational techniques have been developed to match single
cells from different modalities, or impute missing modalities,
thereby increasing the availability and accessibility of multimodal
single-cell data78,79.
The latest GRN inference methods are designed to exploit these

new data to build a more holistic model of gene regulation, thus
inferring more robust and sophisticated regulatory networks.
However, they vary in their approaches and complexity and not
all single-cell multi-omic GRN inference methods reconstruct cell
type or state -specific regulatory networks. As a result, it may be
difficult to understand their differences and applicability for various
contexts. Here, we categorize the latest GRN methods for paired
multi-omic data into five main classes (correlation, regression,
probabilistic models, dynamical systems, and deep learning) and
discuss their common and distinct features. It is important to
acknowledge that the categorizations do not fully encapsulate the
entire statistical and methodological frameworks employed by each
method, as many approaches combine multiple techniques to
reconstruct GRNs. Nevertheless, by simplifying the categorizations,
we intend to provide readers with a broad and accessible
understanding of the underlying principles guiding these methods.
A list of the methods is presented in Fig. 3. We hope that this
comprehensive overview will aid researchers in navigating the
current GRN inference methodological developments and facilitate
informed decision-making regarding their applications.

Correlation-based methods
These methods use correlation to infer potential regulatory
relationships between pairs of regulatory elements, such as CRE
vs genes or TF vs CREs (Fig. 4). Only CREs within a user-specified
distance from the TSS of putative target genes are considered and
inference of TF-CRE connections often include TF motif enrichment
analysis (Fig. 4). While the correlation-based methods may seem
similar at a glance, they have some key differences with respect to
their choice of correlation metric, and implementation. For
example, STREAM and scMEGA use Pearson’s correlation to capture
linear relationships, whereas FigR and TRIPOD use Spearman’s
correlation to capture non-linear relationships33,59,80,81.
FigR and STREAM aim to identify regulatory modules, which

capture the key processes in a cell type or state. Briefly, FigR filters
for genes with domains of regulatory chromatin (DORCs), defined
as genes with a user-defined number of significantly associated
CREs. Thus, FigR produces GRNs specifically composed of DORCs.
Similarly, STREAM constructs networks where the modules are
composed of co-expressed genes and co-accessible CREs. The
most likely regulatory TF for these modules are then identified via
motif enrichment analysis.
Alternatively, scMEGA and TRIPOD aim to identify individual

regulatory links that make up the overall GRN. scMEGA uses TF
motif enrichment and Pearson’s correlation between CRE

accessibility and gene expression, including TF expression and
gene expression, to select candidate TF-gene regulatory pairs.
TRIPOD however, aims to find regulatory trios of TF-CRE-genes.
The trios are determined by calculating the correlation of gene
expression with both TF expression and CRE accessibility, while
conditioning the identified CRE-gene and TF-gene associations on
the other component. More precisely, CRE-gene relationships are
conditioned on TF expression by matching pairs of cells with the
closest TF expression values, and the differences in CRE
accessibility and gene expression are used for the correlation
analysis. As a result, the detected CRE-gene links will not be
confounded by TF expression. Likewise, TF-gene relationships are
conditioned on CRE accessibility to account for the effect that
different CRE accessibilities would vary the ability for a TF to bind
and thus regulate gene expression52.

Regression-based methods
Accounting for the fact that genes may have multiple TF
regulators and vice versa, DIRECT-NET, SCENIC+ , Pando, scRE-
MOTE, and RENIN utilize regression to model gene expression as a
function of multiple regulators. These methods can be further split
into those that employ parametric (Pando, scREMOTE, RENIN) and
non-parametric regression, such as tree-based regression (DIRECT-
NET and SCENIC+ ) (Fig. 5).
One approach is ordinary least squares regression, which in its

simplest form assumes a linear relationship between genes and
their regulators. Pando and scREMOTE model gene expression as a
linear function of TF expression and CRE accessibility23,82. Pando
estimates the regulatory effect of each TF on a gene by regressing
gene expression directly on the product of CRE accessibility and
TF expression while scREMOTE includes a regulation potential as a
weight in the regression which is estimated from TF motif
enrichment, CRE accessibility and chromatin conformation. Alter-
natively, RENIN uses two models with an adaptive elastic-net
estimator, a regularization technique which penalizes large
coefficients, resulting in a sparser regulatory network and fewer
false positives83. The first model captures the relationship
between CRE accessibility and gene expression to identify CREs
that may be regulating target genes. The second models TF
expression and gene expression, which incorporates the results of
the first model to identify TF-gene links. In all cases, the inferred
coefficients of the linear model can be interpreted as the
regulatory effect of a TF on a target gene, constituting the GRN.
Importantly, a clear disadvantage of Pando, scREMOTE, and RENIN
is that they are limited to identifying linear relationships between
regulators such as TFs and CREs and their target genes.
DIRECT-NET and SCENIC+ may mitigate this limitation as they

can capture non-linear relationships by using a tree-based
regression algorithm called gradient tree boosting17,22,52.
DIRECT-NET offers a valuable functionality as it calculates the
importance of each CRE’s accessibility in predicting gene
expression and subsequently labels them as high, medium, or
low confidence CREs before inferring TF-gene links. This allows for
greater control, as only CREs of high-confidence may be kept for
further downstream analyses. While both DIRECT-NET and SCENIC
+ use TF motif enrichment to establish the TF-gene pairs, SCENIC
+ uses an in-house generated motif compendium containing over
30,000 unique position weight matrices, where each TF has an
average of 5 assigned motifs. This may have a distinct advantage
in predicting TF binding sites compared to collapsing them into
consensus sequences such as those used in typical motif
enrichment analysis, as it may capture a broader range of TFs.

Probabilistic models
Unlike the methods discussed thus far, which consider target
genes independently of others, probabilistic models can model
the covariance between genes. To this end, Single-cell Multi-Task
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Network Inference (scMTNI), aims to reconstruct cell type- or
condition-specific GRNs by employing a Bayesian framework and
incorporating prior knowledge of the regulatory relationships
when estimating cell type-specific regulatory networks (Fig. 6)84.
scMTNI uses a cell lineage tree to incorporate the assumption

that related cell types should have similar GRNs, as well as
corresponding scATAC-seq data to prioritize TF regulators that
have a motif in an accessible promoter region of the target gene.
The TF-gene network is inferred with a probabilistic graphical
model, considering the expression of each gene as a random
variable, conditioned on a set of TF regulators. The model is
estimated by starting with an empty list of TF-gene regulations
and iteratively adding in regulatory connections that most likely
explains the expression of the target gene. Two tunable
parameters allow users to constrain the number of edges in the
inferred GRN and weight the importance of a TF motif in the
promoter region of the gene. The final output is a GRN for each
cell type in the user provided cell lineage tree. It is important to

note that scMTNI assumes that gene expressions follow a Gaussian
distribution, which may not be representative of biological
reality85. Furthermore, the output of Bayesian-based approaches
can be sensitive to the choice of priors, potentially limiting the
robustness of the inferred GRNs86.

Dynamical system-based methods
The GRN inference methods discussed so far generally assume
that the cell population of interest is sufficiently homogenous, and
any variation is due to noise. However, variation among individual
cells may be biologically meaningful and influenced by cell cycle
and their environment. Incorporating these factors in the GRN
inference process could have distinct advantages as it accounts
for the dynamic nature of gene regulation and environmental
interactions. In this context, Dictys is designed to capture both
static and time-resolved GRNs over a trajectory using pseudo-time
analysis (Fig. 7)80.
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As opposed to the previous methods discussed so far, Dictys
targets both TF footprints and motifs to establish TF-CRE links80,
where TF footprints are smaller and thus less prone to being
detected as false positives80. The potential regulators for each
gene are then filtered to the TFs that can bind to a nearby CRE.
The relationship between TFs and putative target genes are then
modeled by an empirical linear model as a stochastic differential
equation, where the final fitted coefficients represent the
regulatory effect of the TFs on their target genes. Notably, Dictys
recovers both differential regulation (logFC) and differential
expression (CPM). Using differential regulation can help model
changes in regulatory activity between TFs and their target genes
that are not solely dependent on gene expression levels.
Consequently, as Dictys models the expression over time, it may
be better suited for studying differential regulatory changes
within GRNs, particularly in continuous processes like cell
differentiation. Additionally, Dictys may be robust to high
variability due to low number of observations as it uses kernel
smoothing to construct its regulatory models. However, it is
important to note that like linear regression, Dictys estimates the
total regulatory effect as a linear combination of individual TF
expressions, which may be an oversimplification of true biological
relationships, which are often more complex81.

Deep learning-based methods
Deep learning models have gained significant attention due to their
ability to learn complex non-linear patterns and shown great
success in diverse domains, such as biomedical imaging, protein
structure prediction, and protein function prediction33,34. Recent
works employ deep learning models to leverage the recently
available single-cell paired multi-omic data to infer regulatory
networks, including DeepMAPS, MTLRank and LINGER (Fig. 8)38,87,88.

In contrast to the other reviewed GRN inference methods,
DeepMAPS and MTLRank incorporate RNA velocity, defined as the
ratio of spliced and unspliced messenger RNA, which estimates the
rate of change of gene expression for a given gene at the time of
sequencing89. The regulatory impact of TFs on their target genes is
rarely instantaneous and involves a cascade of regulatory events
(recruitment of co-regulatory proteins and chromatin remodeling)
that eventually lead to changes in gene expression. Thus,
incorporating RNA velocity as a proxy for changes in gene
expression over time can provide a more accurate approximation
when estimating and establishing the regulatory effect of TFs on
their target genes.
DeepMAPS estimates a regulatory potential for each gene in

each cell by aggregating the accessibility of CREs and their
proximity to the gene’s transcription start site. The regulatory
potential and RNA velocity are then summarized into a gene
activity matrix that captures the dynamic nature of each gene in
each cell. A graph autoencoder is then used to learn a lower-
dimensional embedding of both the genes and cells which is used
to group clusters of cells and genes with similar gene activities.
Regulatory links between genes are then established for each
cluster of cells. Like most methods discussed so far, DeepMAPS
uses TF motif enrichment across the CREs to infer the regulatory
TFs for these clusters. In contrast, MTLRank calculates a TF activity
score from ChIP-seq and scATAC-seq data to estimate the
regulatory effect between each TF and gene in a cell. The TF
activity is then combined with TF expression to predict the RNA
velocity using a multi-layer neural network. MTLRank then ranks
the TFs based on their impact on its putative target gene’s RNA
velocity, which can be used to infer regulatory relationships and
thus reconstruct the GRN.
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Alternatively, LINGER directly uses TF expression and CRE
accessibility to predict gene expression using a multi-layer neural
network, incorporating TF motif enrichment. LINGER first trains the
network on bulk data, which has the advantage of leveraging
knowledge from atlas-scale data across many contexts. The

network is then refined using the matched scRNA-seq and
scATAC-seq data. Similarly to MTLRank, the regulatory importance
of TFs and CREs is estimated by their impact on their putative
target gene’s expression levels. Furthermore, the TF-CRE links can
be inferred by the correlation between their weights in the first
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layer of the neural network, which enables LINGER to construct all
TF-CRE, CRE-gene and TF-gene links to reconstruct the GRN.

CHALLENGES AND OPPORTUNITIES
In spite of the significant advancements in GRN inference
algorithms, several key limitations remain. Here, we discuss these
challenges and potential opportunities for future improvements.

Data sparsity
Single-cell data are often characterized by pronounced sparsity
and noise compared to bulk data, which may impact the
construction of robust GRNs90. For example, while the proportion
of zeros in bulk data has been estimated to be around 10%-40%91,
the proportion of zeros in single-cell data can be as high as 90%92.
The sparsity in single-cell data can be partially attributed to
technical reasons such as inefficient library preparation and

sequence amplification93. Additionally, single-cell technologies
aim to capture the expression profiles of individual cells which
often exhibit low expression levels for many genes, resulting in a
limited number of captured RNA transcripts. In contrast, bulk
sequencing technologies aggregate the molecular expression
profiles of many cells, allowing them to capture more counts but
at the expense of losing heterogeneous information at the cell
type level. Importantly, the presence of a high proportion of zeros
in single-cell data can lead to biased and unstable estimations of
gene expression correlations, further complicating the accurate
inference of GRNs94. Many GRN inference methods aim to address
these issues by aggregating multiple similar cells into metacells
(averaged expression profile of multiple similar cells). However,
this can lead to inflated correlations, potentially resulting in the
inference of erroneous regulatory relationships95,96. Other strate-
gies include imputation, where missing values are estimated using
various approaches, including probabilistic models and latent
space embeddings. Yet, most existing imputation approaches
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have been largely designed for imputation of scRNA-seq data,
with limited options available for other data modalities97. Never-
theless, we expect significant developments in this area with the
continued advancement of sequencing technologies, resulting in
improved sequencing depths. Additionally, many statistical and
bioinformatics methods have emerged specifically designed to
handle sparse data, demonstrating the methodological advance-
ments to manage data sparsity in GRN inference38,98.

Establishing causality
Another significant challenge in GRN inference is establishing
causal relationships between regulators and their target genes. A
majority of methods infer regulatory relationships by some
measure of association, such as correlation99. Similarly, regression
and probabilistic approaches model the strength and direction of
associations between variables100. Yet these metrics and models
alone are insufficient to establish causal regulatory relationships
due to possible confounding factors. However, integrating multi-
ple modalities that capture different aspects of gene regulation,
such as chromatin accessibility and conformation, can provide
further evidence for true regulatory links. For instance, the
presence of a chromatin loop between a TF binding site and its
target gene suggests a regulatory relationship as it indicates that
the TF can physically bind with the target gene’s regulatory
regions, such as the promoter or enhancer region54. Additionally,
experimental methods, such as perturbation or time-series
experiments, offer a more direct approach for inferring regulatory
links by perturbing regulators and observing changes in their
respective target gene expression levels over time101,102. For
example, it is more likely that a regulatory relationship between a
TF and its target gene exists if perturbing the TF results in the
repression or activation of its target gene’s expression levels.
Capturing these signals within the same cells highlights the
advantages of matched multi-omic data, as the relationships
between the different modalities are drawn from the same
biological context, enhancing the quality and accuracy of
regulatory connections made.

Validation
The validation of GRNs is a critical and open challenge given that
the reconstructed GRNs aim to recapitulate biological processes of
interest. Thus, GRN validation requires a thorough investigation of
the concordance between the reconstructed GRNs and ‘ground
truth’. To achieve this, ground truth regulatory networks inferred
from wet lab experiments, such as functional perturbation
experiments, are critical103. Loss and gain of function experiments
are approaches typically used to more confidently establish
regulatory connections by observing whether changes in the
expression levels of a regulator results in the activation or
repression of its putative target gene101,104. The advent of CRISPR-
cas9 technologies has allowed for high-throughput screening of
these regulatory interactions, significantly improving the efficiency
and output of perturbation experiments105. Non-coding regions,
such as enhancers, can also be targeted to quantify how changes
in CREs might impact downstream target genes using CRISPRi
enhancer tiled screens, thereby providing a means to establishing
true regulatory links between CREs and target genes106. It is
important to note that experimental validation can be costly and
time consuming, and this is particularly true for matched profiling
technologies. Nevertheless, advances in sequencing technologies,
such as ISSAAC-seq, provide more affordable options for the joint
profiling of single-cell modalities and pave the way for improved
access to matched profiling technologies107. Thus, we expect the
experimental validation of reconstructed GRNs to become more
commonplace as the cost of sequencing decreases as a result of
improved efficiency and sensitivity.

Benchmarking
In the same vein, there is a need to validate and benchmark GRN
inference methods to improve current limitations. GRN inference
methods show considerable diversity in their reconstructed
regulatory networks which is particularly evident in methods
designed for single-cell data. For example, benchmarking studies
of single-cell GRN inference methods have highlighted their poor
accuracy and consensus on both experimental and in silico
(simulated) data, particularly when increasing the number of genes
considered in the inference process24,108,109. Not surprisingly, some
methods perform better when applied to in silico compared to
experimental datasets, which may be explained by the fact that in
silico networks have simpler network architectures compared to true
biological GRNs110. However, given the lack of gold standard
experiments for establishing the ground truth, the use of in silico
GRNs is a good intermediary option and currently a popular strategy
for validating and benchmarking GRN inference methods.
The efficacy of in silico GRNs as surrogates for ground truth

models is dependent on their ability to accurately model the
complex direct and indirect relationships between TFs, CREs, and
genes23. This remains a significant challenge as the underlying
assumptions used to generate in silico GRNs are often over-
simplifications of the underlying regulatory connections in true
biological networks110. In silico multi-omic GRNs are also lacking, with
the exception of some recent work by Li and colleagues who
proposed a multi-omic GRN simulation method (scMultiSim), which
aims to capture regulatory interactions between different omics
layers (RNA and ATAC). While this is a significant step towards
constructing more biologically accurate in silico GRNs, there are some
important limitations, including the lack of output for accessible
regions of chromatin. As such, there are no links between genes and
regulatory domains that can act as ground truths when benchmark-
ing multi-omic GRN inference methods. Additionally, given the
absence of accessible regulatory regions and their respective
sequences, it is not possible to perform TF motif enrichment analysis
to infer and validate TF-CRE interactions in a reconstructed GRN.
From another perspective, evaluating reconstructed GRNs and

benchmarking GRN inference methods are closely intertwined. A
reliable model is one that effectively captures the characteristics of
the observed data and should thus be able to produce simulated
data that closely approximates the ground truth. Thus, in the
context of GRN inference, an effective model should be able to
generate data that accurately models the regulatory relationships
between TFs, CREs, and genes. Put simply, generating a robust in
silico GRN hinges on the capacity of GRN inference methods to
faithfully model the ground truth, which can also be guided by
experimentally validated knowledge. The current inability to achieve
this suggests that the assumptions and approaches in GRN inference
are not yet adequate for capturing the true complexity of GRNs.
While all models inherently entail limitations and assumptions, we
recommend researchers consider whether the assumptions driving
the inference process of their methods are necessary and make
biologically sense. This will not only improve the generalizability and
accuracy of future GRN inference methods but enhance our capacity
to accurately simulate the structure of single-cell multi-omic data.

CONCLUSION
The parallel development of single-cell multi-omic technologies
and GRN inference methods has resulted in a unique opportunity
to comprehensively characterize cell type and cell-state gene
regulatory relationships. As the complexity of available data
increases, more powerful GRN inference methods have been
developed to harness this data. In this review, we have
categorized and summarized the latest state-of-the-art GRN
inference methods. Correlation-based methods capture linear
(scMEGA, STREAM) or nonlinear (FigR, TRIPOD) pairwise regulatory
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relationships. Similarly, regression-based methods identify the key
TFs that explain the expression of a target gene, using linear
(Pando, scREMOTE, RENIN) or nonlinear (DIRECT-NET, SCENIC+ )
models. Probabilistic models (scMTNI) can incorporate prior
information to identify the most likely regulators for each gene.
Dynamical systems-based approaches (Dictys) incorporate exter-
nal factors to model changes in gene expression over time. Finally,
deep learning methods use artificial neural networks to discover
complex regulatory relationships between different omics layers
(DeepMAPS, MTLRank, LINGER).
GRN inference is a dynamic and rapidly evolving research field, as

evidenced by the recent surge of new single-cell multi-omic GRN
inference methods. Both technological advancements and algorith-
mic innovations will continue to drive the development of more
powerful tools, leading to the discovery of novel regulatory
interactions which play a crucial role in understanding the regulatory
networks driving cellular identity and disease. However, while the
current GRN inference methods are more advanced than previous
methods, there is still work that must be done to mitigate the
current limitations and improve the robustness and accuracy of
inferred GRNs. Nevertheless, it is clear that both single-cell
sequencing technologies and GRN inference methods have made
great advances and will continue to develop to further accurately
reconstruct multi-modal regulatory relationships, which will have
implications for broad research areas, including health and disease.
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