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Experiment-based computational model predicts that IL-6
classic and trans-signaling exhibit similar potency in inducing
downstream signaling in endothelial cells
Min Song 1✉, Youli Wang2, Brian H. Annex 2 and Aleksander S. Popel 1

Inflammatory cytokine mediated responses are important in the development of many diseases that are associated with
angiogenesis. Targeting angiogenesis as a prominent strategy has shown limited effects in many contexts such as cardiovascular
diseases and cancer. One potential reason for the unsuccessful outcome is the mutual dependent role between inflammation and
angiogenesis. Inflammation-based therapies primarily target inflammatory cytokines such as interleukin-6 (IL-6) in T cells,
macrophages, cancer cells, and muscle cells, and there is a limited understanding of how these cytokines act on endothelial cells.
Thus, we focus on one of the major inflammatory cytokines, IL-6, mediated intracellular signaling in endothelial cells by developing
a detailed computational model. Our model quantitatively characterized the effects of IL-6 classic and trans-signaling in activating
the signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and
mitogen-activated protein kinase (MAPK) signaling to phosphorylate STAT3, extracellular regulated kinase (ERK) and Akt,
respectively. We applied the trained and validated experiment-based computational model to characterize the dynamics of
phosphorylated STAT3 (pSTAT3), Akt (pAkt), and ERK (pERK) in response to IL-6 classic and/or trans-signaling. The model predicts
that IL-6 classic and trans-signaling induced responses are IL-6 and soluble IL-6 receptor (sIL-6R) dose-dependent. Also, IL-6 classic
and trans-signaling showed similar potency in inducing downstream signaling; however, trans-signaling induces stronger
downstream responses and plays a dominant role in the overall effects from IL-6 due to the in vitro experimental setting of
abundant sIL-6R. In addition, both IL-6 and sIL-6R levels regulate signaling strength. Moreover, our model identifies the influential
species and kinetic parameters that specifically modulate the downstream inflammatory and/or angiogenic signals, pSTAT3, pAkt,
and pERK responses. Overall, the model predicts the effects of IL-6 classic and/or trans-signaling stimulation quantitatively and
provides a framework for analyzing and integrating experimental data. More broadly, this model can be utilized to identify potential
targets that influence IL-6 mediated signaling in endothelial cells and to study their effects quantitatively in modulating STAT3, Akt,
and ERK activation.
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INTRODUCTION
Angiogenesis is the formation of new blood capillaries from pre-
existing blood vessels1. Inflammatory cytokine mediated
responses and angiogenesis play an important role in many
diseases, such as cardiovascular diseases2,3, cancer1,4, and ocular
diseases5–7, as well as regenerative medicine8,9 and tissue
engineering10,11. The essential role of blood vessels in delivering
nutrients makes angiogenesis important in the survival of cells
within tissues, including tumor growth. Targeting angiogenesis is
an important strategy in many contexts, for example, tissue
engineering12 and cancer treatment13; however, it has not always
been successful14–16. At least one potential explanation for the
ineffectiveness of modulating angiogenesis is that this process
triggers severe inflammatory responses17,18. Specifically, endothe-
lial cells in response to inflammatory cytokines, such as IL-6, get
activated and lead to increased vascular leakage, leukocyte
recruitment, and further accumulation of plaques, which blocks
blood flow19,20. On the other hand, inflammation can promote
angiogenesis in many ways as well. Specifically, inflammatory
tissues are often hypoxic which induces angiogenesis21. Also, cells
involved in inflammatory processes such as macrophages and
fibroblasts secrete angiogenic factors that promote vessel

formation21. In addition, there is evidence that pro-inflammatory
cytokines such as interleukin-6 (IL-6) and tumor necrosis factor
alpha (TNFα) promote angiogenesis21–23. Thus, inflammation is
often associated with angiogenesis21 and it plays an important
role in the development of many diseases, such as cancer and
cardiovascular diseases. Thus, the goal of this study is to
investigate, in mechanistic detail using a computational model,
IL-6 mediated signaling in vascular endothelial cells.
Numerous experimental and computational studies have

investigated the array of responses to inflammatory cytokines in
different cell types such as macrophages24,25, T cells26,27, and
cancer cells28,29. Also, recent reviews focused on computational
models and analysis of angiogenic signaling30,31. However, there is
limited quantitative analysis of inflammatory together with
angiogenic responses in endothelial cells to inform potential
treatments that target inflammation and angiogenesis. Therefore,
we aim to focus on inflammatory signaling in endothelial cells to
characterize endothelial inflammatory and angiogenic responses.
The role of many circulating biomarkers, such as selectins and
interleukins in peripheral arterial disease has been reviewed19,32.
Also, potential anti-inflammatory strategies are reviewed for
cardiovascular disease33,34. In this study, we will focus on the
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intracellular signaling mediated by one of the major inflammatory
cytokines, IL-6, as it has been identified as an important biomarker
in inflammation in many diseases such as cardiovascular disease
and cancer19,32,33,35. In addition, elevated levels of IL-636–41 and
soluble IL-6 receptors (sIL-6R)41,42 have been demonstrated in
pathological conditions, including peripheral arterial disease and
cancer.
Interestingly, IL-6 can act as a both pro- and anti-inflammatory

factor35. IL-6 signaling transduces via binding to its membrane
bound receptor (IL-6R) is referred to as classic signaling. When IL-6
binds to its soluble receptor sIL-6R, and then recruits glycoprotein
130 (gp130) and initiates downstream signaling, this is referred to
as trans-signaling35. It has been shown that IL-6 classic signaling is
associated with anti-inflammatory and regenerative responses,
while IL-6 trans-signaling is involved in pro-inflammatory
responses35,43. Specifically, IL-6 binds to its receptors (IL-6R and/
or sIL-6R) and gp130 and initiates signaling through the signal
transducer and activator of transcription 3 (STAT3), mitogen-
activated protein kinase (MAPK) and phosphatidylinositol 3-
kinase/protein kinase B (PI3K/Akt) pathways to phosphorylate
STAT3, extracellular regulated kinase (ERK) and Akt, respectively.
The phosphorylated STAT3 (pSTAT3) and Akt (pAkt) are important
signaling species in the inflammatory responses44, while pAkt is
believed to play an important role in cell survival45–49 and
phosphorylated ERK (pERK) is critical in cell proliferation50,51,
which are important processes involved in angiogenesis. Thus, we
mainly focus on IL-6 trans-signaling mediated pSTAT3 and pAkt
responses as indicators for pro-inflammatory signaling, and IL-6
classic signaling mediated Akt and ERK activation as signaling
species for pro-angiogenic responses.
Given the complexity of biochemical reactions comprising

inflammatory signaling networks, a better understanding of the
dynamics of these networks quantitatively is beneficial for current
anti-inflammatory strategies targeting endothelial cells. Computa-
tional modeling serves as a powerful tool to investigate molecular
responses systematically. For example, Reeh et al. developed a
mathematical model to investigate IL-6 trans- and classic signaling
in human hepatoma cells on a molecular level52. In addition,
Mitchell et al. constructed a mathematical model of nuclear factor
kappa B (NF-κB) activity and investigated the effects of
interferons53. Furthermore, Zhao et al. developed a large-scale
mechanistic model which focused on seven driving pathways

including interferon gamma (IFNγ), IL-1β, IL-10, IL-4, TNFα,
hypoxia, and VEGF to characterize macrophage polarization54.
Later, Zhao et al. constructed a multiscale model that considers
inflammatory signaling and includes intracellular, cellular, and
tissue-level features to study the dynamic reconstitution of
perfusion during post hindlimb ischemia55.
Therefore, we constructed a computational model to character-

ize the intracellular signaling mediated by IL-6 in endothelial cells.
Our work is the first model that focuses on IL-6 mediated signaling
in endothelial cells to characterize endothelial inflammatory and
angiogenic responses. The model predicts the dynamics of
pSTAT3, pAkt, and pERK in response to IL-6 classic and/or trans-
signaling. The model predicts that IL-6 classic and trans-signaling
show similar potency in inducing downstream responses. How-
ever, due to the in vitro experimental setting of abundant sIL-6R,
IL-6 trans-signaling induces stronger downstream signaling and
promotes inflammatory responses, and it plays a dominate role in
the overall effects under this condition. In addition, both IL-6 and
sIL-6R levels regulate signaling strength. Using this model, we also
identified the influential species and kinetic parameters that
specifically modulate the downstream inflammatory and/or
angiogenic signals, pSTAT3, pAkt, and pERK responses, and
investigated their efficacy. The model predictions provide
mechanistic insight into IL-6 signaling in endothelial cells. More
broadly, this model provides a framework to study the efficacy of
inflammation- and angiogenesis-based therapies for
endothelial cells.

RESULTS
The fitted and validated molecular-detailed computational
model captures the major characteristics of IL-6 induced
STAT3, Akt, and ERK phosphorylation dynamics
For model training, we first identified the model variables (kinetic
rates, initial concentrations, and factor ratio4) that significantly
influence the model outputs, pSTAT3, pAkt, and pERK (Fig. 1). To
do so, we performed a sensitivity analysis using PRCC (see
Methods for more details) and analyzed the PRCC values for all the
species concentrations and kinetic rates. The highest PRCC values
across all of the outputs and time points for a total of 65 species,
68 parameters, and 1 factor that affect initial concentrations, were

Fig. 1 Schematic of IL-6 signaling network. IL-6 classic and trans-signaling is induced by IL-6 binding to membrane-bound and soluble IL-6
receptors, respectively, and recruiting gp130, which activates PI3K/Akt, MAPK, and STAT3 pathways and phosphorylates Akt, ERK, and STAT3,
respectively.

M. Song et al.

2

npj Systems Biology and Applications (2023)    45 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



compared, and 35 of them (Supplementary Table 4 and
Supplementary Fig. 1) were identified as influential to pSTAT3,
pAkt, and pERK induced by 0–50 ng/ml IL-6 alone and/or with
additional 100 ng/ml sIL-6R, which are the same concentrations
applied experimentally52. Of these, 28 of them were not correlated
(highlighted in red, Supplementary Table 4 and Supplementary
Fig. 2), and we then estimated their values by fitting the model to
experimental measurements52 using PSO56 (see Methods for more
details).
The fitted model shows a good agreement with experimental

results (Fig. 2A–E). It quantitatively captures the dynamics of
pSTAT3, ppAkt, and pERK by the stimulation of 50 ng/ml IL-6
alone (Fig. 2A–C, light gray) and in combination with an
additional 100 ng/ml sIL-6R (Fig. 2A–C, dark gray)44. In addition,
varying concentrations of IL-6 alone (Fig. 2D) and in combina-
tion with an additional 100 ng/ml sIL-6R (Fig. 2E) induced-
pSTAT3 dose responses have a good agreement with experi-
mental measurements44.
In addition to model fitting, the model predictions are

consistent with independent experimental observations that are
not used in the model training (Fig. 2F–H). To validate the model,
we compared the model predictions to three independent sets of
experimental data57. Specifically, STAT3, Akt, and ERK phosphor-
ylation by the stimulation of 10 ng/ml IL-6 alone (Fig. 2F–H, light

gray) and in combination with 10 ng/ml sIL-6R (Fig. 2F–H, dark
gray) matched the additional experimental measurements57. A
total of 12 parameter sets were taken to be the “best” sets based
on the model fitting (Fig. 2A–E) and validation (Fig. 2F–H) and
were used for all model simulations; the smallest weighted errors
ranged from 26.53 to 33.80 and p-values greater than 0.05 by
performing the runs test (Supplementary Table 6).
It is noteworthy that we compared the predicted doubly

phosphorylated Akt (ppAkt) to experimental data for model fitting
and validation44,57 (see Methods for more details). However, since
both Akt T308 and S473 phosphorylation have been shown to
play an important role in the downstream signaling58, we
considered both singly and doubly phosphorylated forms of Akt
to study its activation in the remainder of this work.
We performed Monte Carlo simulations (see Methods for more

details) to study the predicted pSTAT3, pAkt, and pERK levels
given the variability in the initial concentrations and parameters.
The model predictions with parameter values randomly varied
within the range of the estimated values can still capture pSTAT3,
pAkt, and pERK dynamics stimulated by IL-6 alone and in
combination with sIL-6R (Supplementary Fig. 3). These simulations
suggest that the overall dynamics of the model outputs, pSTAT3,
pAkt, and pERK, are relatively robust to variability or uncertainty in
initial concentrations and parameters in the signaling network.

Fig. 2 Model comparison to training and validation data for IL-6 stimulation. 50 ng/ml IL-6 with or without additional 100 ng/ml sIL-6R
induced relative pSTAT3 (A), ppAkt (B), and pERK (C). Varying concentrations of IL-6 alone induced relative pSTAT3 (D) and with additional
100 ng/ml sIL-6R induced relative pSTAT3 (E). The circles are experimental data. Bars are mean ± SEM. Curves are the mean values of the 12
best fits. Shaded regions show 95% confidence intervals of the fits. Dashed and solid curves are training and validation results, respectively.
Light gray: 50 ng/ml IL-6 (A–C), 0–50 ng/ml IL-6 (D), and 10 ng/ml IL-6 (F–H) stimulation; Dark gray: 50 ng/ml IL-6+ 100 ng/ml sIL-6R (A–C),
0–50 ng/ml IL-6+ 100 ng/ml sIL-6R (E), and 10 ng/ml IL-6+ 10 ng/ml sIL-6R (F–H).
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No activation of ERK was observed in response to IL-6
stimulation alone and IL-6 classic and trans-signaling induced
responses are dose-dependent
We first applied the experimentally validated model to explore the
effects of IL-6 classic and trans-signaling on STAT3, Akt, and ERK
phosphorylation. We found that the maximum pSTAT3 and pAkt
levels within four hours increase with the increase of IL-6
concentrations (Fig. 3A, B). IL-6-induced pSTAT3 and pAkt exhibit
optimal ligand levels for inducing maximum responses as their
dose response plateaus approximately at 2 nM by the stimulation
of ligand concentration in the range of 0 nM – 5 nM (Fig. 3A, B). It
is noteworthy that no activation of ERK was observed in response
to IL-6 stimulation alone. In addition, the area under the curve
(AUC) is quantified for pSTAT3, pAkt, and pERK dynamics within
four hours as well and they exhibit a similar behavior (Supple-
mentary Fig. 4A–C).
We then set IL-6R level to zero and simulated the phosphoryla-

tion of STAT3, Akt, and ERK in response to the stimulation of 2 nM
IL-6 in combination with varying concentrations of sIL-6R to study
the effects of IL-6 trans-signaling. A dose-dependent manner of
STAT3, Akt, and ERK activation is also observed when considering
the maximal phosphorylation levels (Fig. 3D–F) and AUC
(Supplementary Fig. 4D–F), respectively. Specifically, the maximum
pSTAT3, pAkt, and pERK levels and AUCs increase and plateau with
the increase of sIL-6R concentrations within 100 nM sIL-6R in
combination with 2 nM IL-6 (Fig. 3D–F and Supplementary Fig.
4D–F).
In addition, since the maximum levels and AUCs exhibit the

same trends as we observed (Fig. 3 and Supplementary Fig. 4), for

simplification, the maximum pSTAT3, pAkt, and pERK levels within
four hours are utilized as indicators for pSTAT3, pERK, and pAkt
responses in this study.

IL-6 classic and trans-signaling exhibited similar potency in
inducing downstream responses
To compare the effects of classic and trans-signaling on STAT3,
Akt, and ERK phosphorylation, we next set the concentration of
sIL-6R at the same level as IL-6R for each fit, which is 6.4 nM on
average among the 12 best fits, and simulated the dynamics of
pSTAT3, pAkt, and pERK upon the stimulation of 2 nM IL-6 alone in
the presence of IL-6R (orange) and 2 nM IL-6 in combination with a
mean value of 6.4 nM sIL-6R in the absence of IL-6R (yellow) (Fig.
4). Since IL-6R and sIL-6R are both present in the physiological and
pathological conditions, we also studied the overall effects of the
stimulation of 2 nM IL-6 in combination with 6.4 nM sIL-6R (mean)
in the presence of IL-6R in pSTAT3, pAkt, and pERK responses (Fig.
4, gray curves). We found that the IL-6 trans-signaling induced
max pSTAT3 and pAkt and overall effects induced max pSTAT3,
pAkt, and pERK are statistically significantly higher than the classic
signaling induced corresponding responses, respectively (p < 0.05)
(Fig. 4, Supplementary Table 7). Also, IL-6 trans-signaling plays a
dominant role in the overall effects in inducing pSTAT3, pAkt, and
pERK as the overall effects induced responses overlap with the
responses induced by the IL-6 trans-signaling (Fig. 4).
To mechanistically explain this phenomenon, we explored the

model structure and found that it is mainly caused by an
assumption of a constant sIL-6R as our model input since the
abundant supply of sIL-6 is added to the cell culture media in the

Fig. 3 Predicted maximum pSTAT3, pAkt, and pERK responses. Maximum pSTAT3 (A), pAkt (B), and pERK (C) in response to IL-6
concentrations varying from 0 to 5 nM without sIL-6R. In the absence of IL-6R, 2 nM IL-6 in combination with sIL-6R concentrations varying
from 0 to 100 nM induced maximum pSTAT3 (D), pAkt (E), and pERK (F). Curves are the mean values of the 12 best fits. Shaded regions show
95% confidence intervals of the fits. Orange: classic signaling responses; Yellow: trans-signaling responses.
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in vitro experimental condition. A similar assumption was also
made in Reeh’s model, specifically, Hyper-IL-6, which is a fusion
protein composed of sIL-6R and IL-6 was applied to study the
effects of IL-6 trans-signaling and it was assumed to be a constant
model input as its concentration remained the same in the
supernatant experimentally in an in vitro study52. A sustained
supply of soluble receptors leads to greater downstream
responses compared to IL-6 classic signaling as the amount of
IL-6R is limited. To verify this hypothesis, we set IL-6R as a constant
input, which is the same as sIL-6R, in our model and compared the
effects of classic and trans-signaling. We found that pSTAT3, pAkt,
and pERK induced by IL-6 classic and trans-signaling almost
overlap when IL-6R and sIL-6R are set at the same level and
remain constant within four-hour simulation time (Supplementary
Fig. 5A and Table 1), which confirms our hypothesis that stronger
downstream responses induced by IL-6 trans-signaling are mainly
caused by the sustained supply of sIL-6R.
We also noticed some differences in the dissociation constant

(Kd) for the ligand-receptor binding reactions induced by the IL-6
classic and trans-signaling. Specifically, the Kd for reaction 1 (R1:
IL-6+ IL-6R ! IL-6:IL-6R; mean Kd= 479.6 nM) is lower than the
Kd for reaction 3 (R3: IL-6+ sIL-6R  ! IL-6:sIL-6R; Kd= 17.9 nM);
while the Kd for reaction 2 (R2: 2 IL-6:IL-6R+ 2 gp130  !
Rcomplex; Kd= 0.05 nM) is higher compared to the Kd for
reaction 4 (R4: 2 IL-6:sIL-6R+ 2 gp130  ! Rcomplex;
Kd= 0.02 nM) (Supplementary Fig. 6). It suggests a tighter binding
of IL-6 to sIL-6R and then gp130 than IL-6R and then gp130.
However, no obvious difference was observed in pSTAT3, pAkt,
and pERK when we set the kinetic rates governing the ligand-
receptor binding reactions for classic signaling (R1 and R2) to be
the same as the corresponding kinetic rates for the ligand-
receptor binding reactions for trans-signaling (R3 and R4)
compared with baseline model predictions (Supplementary Fig.
5B, Fig. 5, and Table 1). It indicates that although there are some
differences in ligand-receptor binding reactions induced by the IL-
6 classic and trans-signaling, specifically IL-6 binds tighter to sIL-6R
and IL-6:sIL-6R binds tighter to gp130 compared to classic
signaling, it shows no obvious effects in the downstream
signaling: 1.6% increase in max pSTAT3 compared to the baseline
model predictions (Table 1).
Last, we set IL-6R and sIL-6R at the same level and they remain

constant within four hours and kinetic rates governing R1 and R2

to be the same as the corresponding kinetic rates for R3 and R4
and predicted the dynamics of pSTAT3, pAkt, and pERK
(Supplementary Fig. 5C). The activation of STAT3, Akt, and ERK
induced by IL-6 classic was found to overlap with the
corresponding responses induced by IL-6 trans-signaling.
Overall, the model suggests that IL-6 trans-signaling induces

stronger responses than classic signaling, and it plays a dominant
role in the overall effects. This is mainly due to the sustained
supply of sIL-6R. Thus, it indicates that IL-6 classic and trans-
signaling have similar potency in inducing downstream signaling,
pSTAT3, pAkt, and pERK; however, the in vitro experimental
condition of abundant sIL-6R leads to stronger activation in STAT3,
Akt, and ERK induced by IL-6 trans-signaling.

Fig. 4 Predicted pSTAT3, pAkt, and pERK time course responses. Predicted time courses of pSTAT3 (A), pAkt (B), and pERK (C) following
stimulation by 2 nM IL-6 alone with a mean value of 6.4 nM IL-6R (orange), 2 nM IL-6 in combination with a mean value of 6.4 nM sIL-6R in the
absence of IL-6R (yellow), and 2 nM IL-6 with a mean value of 6.4 nM of both IL-6R and sIL-6R (gray). Curves are the mean values of the 12 best
fits. Shaded regions show 95% confidence intervals of the fits. Orange: classic signaling responses; Yellow: trans-signaling responses; Gray:
overall responses.

Table 1. Predicted maximum pSTAT3, pAkt, and pERK responses for
the baseline model, the modified model when IL-6R was set as a
constant input, when kinetic rates governing R1 and R2 to be the
same as the corresponding kinetic rates for R3 and R4, and when both
IL-6R was set as a constant input and kinetic rates governing R1 and
R2 to be the same as the corresponding kinetic rates for R3 and R4.

Max pSTAT3 Max pAkt Max pERK

Baseline Classic 3.14 0.18 0.04

Trans 6.70 2.70 4.64

Overall 6.70 2.69 4.48

Receptors Classic 6.69 2.43 0.95

Trans 6.70 2.70 4.64

Overall 6.70 2.69 5.67

Params Classic 3.19 0.18 0.04

Trans 6.70 2.70 4.64

Overall 6.70 2.70 4.75

Params & Receptors Classic 6.70 2.70 4.64

Trans 6.70 2.70 4.64

Overall 6.70 2.73 7.59

The units in the table are nM. R1: IL-6+ IL-6R  ! IL-6:IL-6R; R2: 2 IL-6:IL-
6R+ 2 gp130 ! Rcomplex; R3: IL-6+ sIL-6R ! IL-6:sIL-6R; R4: 2 IL-6:sIL-
6R+ 2 gp130  ! Rcomplex.
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sIL-6R enhances the downstream signaling and promotes
inflammatory responses
We next compared reaction rates for reactions 1–4 with or without
IL-6R and sIL-6R (Fig. 5). We found that IL-6 binds to IL-6R as fast as
to sIL-6R faster in the beginning as the highest reaction rate for R3
is not statistically different than the highest reaction rate for R1
(P > 0.05) (Fig. 5A, C, Supplementary Table 8). However, IL-6:sIL-6R
binds faster to gp130 than IL-6:sIL-6R as the highest reaction rate
for R4 is statistically higher than the highest reaction rate for R2 in
the beginning (P < 0.05) (Fig. 5B, D, Supplementary Table 8). It is
noteworthy that additional sIL-6R makes reaction rates for R1 and
R2 become negative over time (Fig. 5A, B and E, F), which suggests
a faster dissociation of IL6:IL6R and Rcomplex compared to the
association of IL-6, IL-6R, and gp130. It indicates that more IL-6 and
gp130 are freed from binding to IL-6R and becoming available for
binding to sIL-6R and inducing trans-signaling. Also, reaction rates
for R3 and R4 are more sustained when both IL-6R and sIL-6R are
present compared to the reaction rates for trans-signaling (Fig. 5C,
D and G, H) since more IL-6 are released from classic signaling.
Together, it indicates that additional sIL-6R shifts the signaling
towards trans-signaling, which promotes inflammatory responses
and this is consistent with the dominant role of trans-signaling in
the overall effects.
To further study the model details, we compared the time

courses of relevant species involved in R1-R4 with or without IL-6R
and sIL-6R (Supplementary Fig. 7). The model predicts that there is
more IL-6:sIL-6R formed compared to IL-6:IL-6R (Supplementary
Fig. 5A, C). Also, the predicted level of signaling Rcomplex induced
by trans-signaling is higher than the classic signaling (Supple-
mentary Fig. 5B, D). These model predictions further confirm that
IL-6 trans-signaling induces stronger responses than classic
signaling. Moreover, an accumulation of IL-6:IL-6R and a higher
consumption of IL-6:sIL-6R induced by the overall effects
compared to classic and trans-signaling respectively are observed
(Supplementary Fig. 5A compared to E, and C compared to F). It is
consistent with our predictions that additional sIL-6R shifts the

signaling towards trans-signaling. In addition, the Rcomplex
induced by the overall effects is approximately the same level
as the Rcomplex induced by trans-signaling (Supplementary Fig.
5D compared to G), which agrees with the dominant role of trans-
signaling in the overall effects.
Generally, the model suggests that under the condition of

abundant sIL-6R, IL-6 trans-signaling induces stronger responses
and additional sIL-6R shifts the signaling towards trans-signaling,
which promotes pro-inflammatory responses.

Both IL-6 and sIL-6R levels regulate signaling strength
We next varied IL-6 and sIL-6R simultaneously and studied their
combination effects in STAT3, Akt, and ERK activation. We found
that there is a gradient towards the diagonal direction of
increasing IL-6 and sIL-6R concentrations for each signaling
species (Fig. 6). As we observed previously, STAT3, Akt, and ERK
activation plateau at approximately 2 nM IL-6 stimulation (Fig.
3A–C), while additional sIL-6R further promotes the downstream
signaling (Fig. 6). Also, at a certain level of sIL-6R, adding IL-6
increases the STAT3, Akt, and ERK activation as well (Fig. 6). An
upregulation of IL-639 and sIL-6R59 has been reported in the
peripheral arterial disease conditions, which leads to stronger
inflammatory responses. It is consistent with our model predic-
tions as higher IL-6R and sIL-6R levels lead to greater phosphor-
ylation of STAT3, Akt, and ERK (Fig. 6).

Model identifies potential targets for influencing STAT3, Akt,
and ERK activation and quantitively evaluates their efficacy
We performed a sensitivity analysis using PRCC (see Methods for
more details) for the experimentally validated model and
identified influential initial concentrations (Supplementary Fig.
8A–C) and parameters (Supplementary Fig. 8D, E) to STAT3, Akt,
and ERK activation. Specifically, all model parameters and initial
values were sampled within two orders of magnitude above and
two orders of magnitude below the baseline values. In this case,

Fig. 5 Predicted reaction rates for ligand-receptor binding interactions. Reaction rates for ligand-receptor binding following stimulation by
2 nM IL-6 alone with a mean value of 6.4 nM IL-6R (orange) (A, B), 2 nM IL-6 in combination with a mean value of 6.4 nM sIL-6R in the absence
of IL-6R (yellow) (C, D), and 2 nM IL-6 with a mean value of 6.4 nM of both IL-6R and sIL-6R (gray) (E-H). R1: IL-6+ IL-6R ! IL-6:IL-6R; R2: 2 IL-
6:IL-6R+ 2 gp130 ! Rcomplex; R3: IL-6+ sIL-6R ! IL-6:sIL-6R; R4: 2 IL-6:sIL-6R+ 2 gp130 ! Rcomplex. Curves are the mean values of the
12 best fits. Shaded regions show 95% confidence intervals of the fits. Orange: classic signaling responses; Yellow: trans-signaling responses;
Gray: overall responses.
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the baseline values for the fitted variables were the best fit
estimated from model fitting. Based on the behaviors of max
pSTAT3, pAkt, and pERK that reach a plateau as the IL-6
concentration increases (Fig. 3), we selected 2 nM IL-6 as a
representative concentration to capture the optimal responses
induced by classic signaling. Also, to compare the effects of IL-6
classic and trans-signaling, we took 6.3 nM sIL-6 as a representa-
tive concentration since it is the same level as the IL-6R
concentration from the best fit. Therefore, we calculated the
PRCC values for pSTAT3, pAkt, and pERK in response to the
stimulation of 2 nM IL-6 in combination of 6.3 nM sIL-6R at eight
time points (0, 5, 10, 15, 30, 60, 120, and 240 min) ranging from
zero to 240min. Again, the PRCCmax across all the concentrations
and time points was compared for all the variables.
To analyze their effects in pSTAT3, pAkt, and pERK quantita-

tively, we varied each of identified influential variables within a
finite range, specifically 10-fold above and below the baseline
levels and compared with the baseline model predictions (Fig. 7).
When the ratio is greater than one, it suggests that varying the
variable promotes the response; when the ratio is equal to one, it
shows no effects on the response; when the ratio is less than one,
it indicates an inhibitory effect on the response. We consider the
effects of the perturbations as effective when the change of
response is greater than 2-fold or less than 0.5-fold. We found that
no initial concentration or parameter was observed to influence
pSTAT3/STAT3 significantly (Fig. 7A, B). In addition, Akt phosphor-
ylation is positively regulated by PI3K, IL-6R, Akt, and PIP2 levels
(Fig. 7C); while it is negatively regulated by STAT3, PTEN, and PP2A
levels (Fig. 7C). This is intuitive as PI3K, IL-6R, Akt, and PIP2 are
important signaling upstream species for Akt phosphorylation.

PTEN and PP2A are phosphatases for PIP3 and pAkt. The impact of
STAT3 level in the Akt phosphorylation is due to the competition
between STAT3 signaling and the Akt pathway. Also, parameter
k_aAkt positively regulates pAkt, while p6 and k_aPP2A negatively
regulate pAkt (Fig. 7D) as k_aAkt is the association rate of PIP3 and
Akt/pAkt, p6 is the deactivation rate pf Rcomplex, and k_aPP2A is
the association rate of pAkt/ppAkt and PP2A. Last, IL-6R positively
regulates pERK, while STAT3 negatively regulates ERK phosphor-
ylation (Fig. 7E). Because IL-6R is an upstream species for ERK
phosphorylation and STAT3 is a signaling species involved in the
competitive pathways and negatively influences ERK activation.
Also, parameter p5 positively regulates pERK, while p6 negatively
regulates it (Fig. 7F) as p5 and p6 are the activation and
deactivation rate of Rcomplex.
Thus, our model identifies potential targets for modulating

downstream inflammatory and/or angiogenic signals, pSTAT3,
pAkt, and pERK in response to the overall effects of IL-6 classic and
trans-signaling and quantitively evaluates their efficacy.

DISCUSSION
We developed an intracellular signaling model of IL-6 mediated
inflammatory pathways in endothelial cells. The detailed compu-
tational model represents the reaction network of interactions on
a molecular level. The model includes molecular interactions,
kinetic parameters, and initial concentrations documented in the
literature, which are provided in the supplementary materials
(Supplementary Table 1–3). Influential parameters were estimated
by fitting the model to experimental data44. Additionally, we
validated the model using three independent experimental

Fig. 6 Predicted maximum pSTAT3, pAkt, and pERK responses with varying concentrations of IL-6 and sIL-6R. Maximum pSTAT3 (A), pAkt
(B), and pERK (C) in response to the stimulation of 0–5 nM IL-6 in combination with 0–50 nM sIL-6R.
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datasets44. All experimental data we used in model training and
validation are in vitro HUVEC data. Thus, this model is constructed
specifically to characterize in vitro HUVEC responses and could be
used as the foundation to model in vivo experiments in the future.
IL-6 classic signaling is believed to be associated with anti-

inflammatory or regenerative responses, while IL-6 trans-signaling
is important in pro-inflammatory responses43. It has been reported
that IL-6 trans-signaling induces monocyte chemoattractant
protein-1 (MCP-1) expression via activating STAT3 and Akt
pathways, but not MAPK signaling in HUVECs44. Also, ERK
activation is mainly believed to be important in cell proliferation50.
PI3K/Akt pathway has been reported to be critical in regulating
cell survival and migration45–49,60,61. Therefore, pSTAT3, pAkt, and
pERK are the main indices for inflammation and angiogenesis in
this study. Specifically, this model focuses on IL-6 trans-signaling
mediated pSTAT3 and pAkt responses as indicators for pro-
inflammatory signaling, and IL-6 classic signaling mediated Akt
and ERK activation as signaling species for pro-angiogenic
responses.
The fitted model predicts pSTAT3, pAkt, and pERK responses

upon the stimulation by IL-6 classic and/or trans-signaling. Overall,
the model suggests that the max pSTAT3, pAkt, and pERK levels
are IL-6 and sIL-6R dose-dependent. It has been shown that STAT3
phosphorylation in response to IL-6 classic and trans-signaling is
dose-dependent in human hepatoma cells (HepG2)52 and
endothelial cells44, which is consistent with our model predictions.
Also, slight activation of Akt and no obvious activation of ERK was
observed in response to IL-6 stimulation alone (Fig. 3B–C). This is
also consistent with the experimental observation of no obvious
activation of Akt and ERK induced by IL-6 classic signaling36. In
addition, our model predicts that IL-6 trans-signaling induces
stronger responses and additional sIL-6R shifts the signaling
towards trans-signaling and promotes inflammatory responses. It
is consistent with other experimental work44,57 and modeling
work52 that showed greater inflammatory response induced by IL-

6 trans-signaling compared to classic signaling. Specifically, Reeh
et al. showed greater STAT3 activation induced by IL-6 trans-
signaling than classic signaling in HepG2 cells52. In addition,
Zegeye et al.36 and Lindkvist et al.57 showed that IL-6 trans-
signaling induces greater STAT3, Akt, and ERK phosphorylation
compared to classic signaling in HUVECs. Importantly, our
molecularly detailed model examined this phenomenon mechan-
istically, which could be hard to differentiate experimentally, and
found that IL-6 classic and trans-signaling actually have similar
potency in inducing downstream signaling, pSTAT3, pAkt, and
pERK; however, the in vitro experimental condition of abundant
sIL-6R leads to stronger activation in STAT3, Akt, and ERK induced
by IL-6 trans-signaling. Furthermore, our model identified the
influential species and kinetic parameters that specifically
modulate downstream inflammatory and/or angiogenic signals,
pSTAT3, pAkt, and pERK responses, which could assist relevant
experimental design to investigate the effects of potential targets.
Angiogenesis and inflammation play an important role in many

diseases, such as cancer, ocular, and cardiovascular diseases.
Angiogenesis also triggers inflammatory responses17, which leads
to malfunction of endothelial cells. Specifically, endothelial cells in
response to pro-inflammatory cytokines, such as IL-6, get activated
resulting in increased vascular leakage and leukocyte recruit-
ment19,20. However, there is a limited quantitative analysis of
inflammatory pathways together with angiogenic responses in
endothelial cells to inform potential treatments that target
inflammation and angiogenesis. There are a number of computa-
tional models that study IL-6-induced signaling in many other cell
types including hepatoma cells52, cardiac fibroblasts62,63, macro-
phages64,65, and cancer stem cells66. However, there is a limited
quantitative understanding of IL-6 signaling in endothelial cells.
Our research is the first computational model that focuses on IL-6
mediated signaling in endothelial cells to examine endothelial
cytokine-mediated inflammatory and angiogenic responses.

Fig. 7 Predicted targets for modulating pSTAT3, pAkt, and pERK responses. 0.1-fold/baseline (blue) and 10-fold/baseline (orange) for 2 nM
IL-6 with a mean value of 6.4 nM of IL-6R and 6.4 nM sIL-6R induced pSTAT3/total STAT3 (A, D), pAkt/total Akt (B, E), and pERK/total ERK (C, F)
when varying identified influential initial concentrations (left) and parameters (right) by 0.1- and 10-fold of their baseline values. Bars are
mean ± 95% confidence intervals of model predictions.
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Also, there are models that study cellular responses without
considering intracellular signaling. For example, Nazari et al. linked
cellular responses, specifically the temporal changes in the cancer
stem cells, progenitor cells, and terminally differentiated cells with
the fractional occupancy of bound receptors per cell66. Our model
can be utilized in combination with these types of models to more
accurately predict cellular behaviors as more downstream
signaling species could be better indicators for cellular responses.
This model can be beneficial to study the efficiency of

angiogenesis- and inflammation-based therapies. Our model can
identify the important variables to the pSTAT3, pAkt and pERK
levels induced by IL-6 signaling and predict how pSTAT3, pAkt,
and pERK levels change by varying those parameters, which can
provide quantitative insights into investigating the efficiency of
targeting particular variables as angiogenesis- and inflammation-
based strategies.
We do acknowledge certain limitations in our model. We

adapted Reeh et al.’s IL-6 induced STAT3 pathway model which
assumed that the ligand-receptor complex (Rcomplex) formed
from classic and trans-signaling are the same. It implied a
regulation of IL-6R and sIL-6R since the Rcomplex can associate
and form both types of the receptor. Because the majority of the
sIL-6R is generated by the shedding of the membrane bound IL-
6R, and IL-6R expression can be regulated by ligands such as IL-6
in many cell types67,68, we applied Reeh et al.’s model structure to
include the potential regulation of the IL-6R and sIL-6R.
Additionally, we simplified many species and reactions before
activating STAT3, MEK/ERK, and PI3K/Akt pathways by the
stimulation of IL-6 because our main focus is their interactions.
Also, we excluded soluble gp130 (sgp130) although their binding
with IL-6:sIL-6R plays a role in inflammation69. Their contributions
to the model can be incorporated in future studies. In addition,
due to the scarcity of quantitative data on kinetics rates and initial
conditions of IL-6 induced STAT3, Akt, and ERK activation in
endothelial cells, we used parameters that govern IL-6 induced
STAT3 pathway in human hepatoma cells52 and VEGF- and FGF-
induced Akt and ERK pathways in endothelial cells70 as our initial
guess to tune the parameters for IL-6 induced endothelial
signaling, although the model was calibrated and validated using
HUVEC data44. Moreover, we assumed that IL-6 and sIL-6 levels are
constant over four hours as the nutrients in the cell culture media
were still sufficient. The same assumption has been made by Reeh
et al. in their IL-6 signaling model to study human hepatoma
cells52. Also, we estimated the receptor number since the
expression of IL-6R in human endothelial cells is uncertain71.
Furthermore, as the model was calibrated to fold change
experimental data, the model can predict the relative change
with small variations (Fig. 2). However, it gives large variations
when predicting absolute values (Figs. 3, 4). It can be improved
when additional data on the receptor expression become
available.
In conclusion, we developed a computational model to

characterize the pSTAT3, pERK, and pAkt dynamics by the
stimulation of IL-6 in endothelial cells. The model quantitatively
studies STAT3, ERK, and Akt phosphorylation in response to IL-6
and sIL-6R and provides mechanical insight into inflammatory and
angiogenic signaling in endothelial cells. The understanding of the
regulation of inflammatory and angiogenic signals on a molecular
scale can better aid the development of inflammation- and
angiogenesis-based strategies.

METHODS
Model construction
We constructed a molecular-detailed biochemical reaction net-
work including IL-6 and their membrane-bound and soluble
receptors, IL-6R and sIL-6R, respectively (Fig. 1). Signaling is

induced by the IL-6 binding to their receptors and gp130,
culminating with phosphorylation of STAT3, Akt, and ERK through
the STAT3, PI3K/Akt, and MAPK pathways. The molecular
interactions involved in the network are illustrated in Fig. 1. We
adapted the IL-6 induced STAT3 pathway from the model
developed by Reeh et al.52, and we expanded the model by
including PI3K/Akt and MAPK pathways from Song and Finley’s
model70. It is noteworthy that although STAT3 has been shown to
have two phosphorylation sites, Tyr705 and Ser72772, it has been
shown that IL-6 induced tyrosine phosphorylation depends on
JAKs, while the mechanism of serine phosphorylation is not
clear73. Thus, we only considered the singly phosphorylated STAT3
(pSTAT3) in our model. In addition, we consider that activated Akt
and ERK include both singly and doubly phosphorylated forms of
each species since they have been reported to get activated at
two phosphorylation sites58,74. The model can be improved when
more data are available. For simplicity, we collectively refer to
these species as phosphorylated STAT3, Akt, and ERK (pSTAT3,
pAkt, and pERK), respectively. The model reactions, initial
conditions, and parameter values are provided in Supplementary
Tables 1–3.
The network is implemented as an ordinary differential

equation (ODE) model using MATLAB (MathWorks, Natick, MA).
The main model includes 55 reactions, 65 species, and 68
parameters. The initial variable settings of the initial conditions
and parameters involved in IL-6 induced STAT3 pathway, and the
variables involved in IL-6 induced Akt and ERK pathways are taken
from the median values from Reeh et al.’s calibrated model52 and
Song and Finley’s fitted model70, respectively. The reactions, initial
conditions, and parameter values are listed in Supplementary
Tables 1 to 3. We listed four representative reactions below that
describe the ligand-receptor binding as an example.

IL6þ IL6R  !p1cl;p2cl
IL6 : IL6R

IL6 : IL6Rþ IL6 : IL6Rþ gp130þ gp130  !p3cl;p4cl
Rcomplex

IL6þ sIL6R  !p1tr;p2tr
IL6 : sIL6R

IL6 : sIL6Rþ IL6 : sIL6Rþ gp130þ gp130  !p3tr;p4tr
Rcomplex

Because the simulated time is within four hours, we do not
consider the degradation of the ligands or signaling species. The
complete model is available in Supplementary File.
To set the initial conditions, since the expression of IL-6R in

human endothelial cells is unclear71, we correlated the IL-6R level
with the gp130 level, which were measured in human umbilical
vein endothelial cell (HUVEC) lysates44 by one factor: ratio4
(gp130/IL-6R= 0.04 nM /0.0015 nM= 26) (Supplementary Table 2).
Also, we assumed a negligible basal sIL-6R in the system since the
basal sIL-6R level (0.00019 nM) measured in HUVEC medium is
much lower than IL-6R and gp130 measured in the HUVEC
lysates44, specifically the basal sIL-6R level is approximately 7.9-
fold lower than IL-6R (0.0015 nM) and 210-fold lower than gp130
(0.04 nM).

Sensitivity analysis
To identify the parameters and initial concentrations that
significantly influence the model outputs, we performed the
sensitivity analysis to calculate the Partial Rank Correlation
Coefficients (PRCCs), which indicate the correlation between the
model inputs and model outputs75. All targeted parameters and
initial values were sampled simultaneously within specified
bounds using Latin Hypercube Sampling (LHS); PRCC values for
all targeted parameters and initial values were computed to
evaluate the correlation between the model inputs (kinetic
parameters or initial conditions) and the pSTAT3, pAkt, and pERK
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concentrations. In addition, the p-values from a t-distribution test
corrected with Bonferroni correction were calculated. The PRCC
values of the sensitive variables that are statistically significant (p-
value < 0.05) were compared. The PRCC values can range from −1
to 1, where a higher positive PRCC value and a lower negative
PRCC value indicate the input is more positively and negatively
correlated to the output, respectively.
Before model training, we first calculated PRCC values for all the

parameters and initial values. Since the parameters for STAT3
activation were adapted from Reeh et al.’s model52, these
variables were sampled using LHS within the estimated lower
and upper bounds from Reeh et al.’s calibrated model52 listed in
Supplementary Table 3. All remaining model parameters and
initial values were sampled within two orders of magnitude above
and two orders of magnitude below the baseline values, where
the baseline values were taken from the median values estimated
from published literature70,76 listed in Supplementary Tables 2, 3.
Based on the experimental data that were used for model training,
we calculated the PRCC values for all the same concentrations and
time points as those used in the experiments. The highest PRCC
value (PRCCmax) across all of the concentrations and time points
was selected to represent the sensitivity index for each variable.
We also performed sensitivity analysis for the calibrated and

validated model to identify potential targets for inflammation- and
angiogenesis-based strategies.

Identifiability analysis
In addition to parameter sensitivity, we also performed structural
parameter identifiability analysis77,78 to consider the uncertainty
caused by the model structure in a dynamical system to study
molecular signal transduction. The identifiability analysis identifies
the parameters that have one unique model output for each
parameter value. In this method, pair-wise correlation coefficients
between parameters were calculated. The identifiable parameters
have correlations with all other parameters between −0.9 and 0.9
while unidentifiable parameters have correlations of >0.9 or <−0.9
with at least one other parameter.

Data extraction
In vitro experimental data from previously published work44,57

that studied pSTAT3, pAkt, and pERK time course and/or dose
response upon the stimulation of IL-6 with/without sIL-6R in
HUVECs were selected and were used for parameter fitting and
model validation. Experimental data from plots were extracted
using the data extraction function grabit. The western blot data
were extracted using ImageJ software based on the density of the
protein bands.

Parameterization
A total of 35 influential variables with PRCCmax values greater than
0.4 and less than −0.4 were identified by sensitivity analysis. Of
these, 28 identifiable variables were identified by identifiability
analysis (Supplementary Table 4, highlighted in red) Thus, we held
the rest of the variables constant and estimated a total of 28
influential and identifiable variable values by fitting the model to
experimental measurements52 using Particle Swarm Optimization
(PSO) implemented by Iadevaia et al.56 We used MATLAB to
implement the PSO algorithm. PSO starts with a population of
initial particles (parameter sets). As the particles move around (i.e.,
as the algorithm explores the parameter space), an objective
function is evaluated at each particle location. Particles commu-
nicate with one another to determine which has the lowest
objective function value. The objective function for each
parameter set was used to identify optimal parameter values.
Specifically, we used PSO to minimize the weighted sum of

squared residuals (WSSR):

WSSRðθÞ ¼ min
Xn

i¼1

Vpred;iðθÞ � Vexp;i

Vexp;i

� �2

(1)

where Vexp,i is the ith experimental measurement, Vpred,i is the ith
predicted value at the corresponding time point, and n is the total
number of experimental data points. The minimization is subject
to θ, the set of upper and lower bounds on each of the fitted
parameters. The bounds for the parameters involved in the
reactions for STAT3 activation were set to be the estimated lower
and upper bounds from Reeh et al.’s calibrated model52 and listed
in Supplementary Table 3. Also since the dissociation constant
(Kd) of IL-6 for IL-6R has been reported to be 0.5–50 nM52, we set
the upper and lower bounds on p2cl to be 0.5*p1cl and 50*p1cl to
confine the Kd for reaction IL-6+ IL-6R ! IL-6:IL-6R. In addition,
the bounds for the remaining model parameters and initial values
were set to be two orders of magnitude above and below the
baseline parameter values, which were taken from the median
values estimated from literature70,76 and listed in Supplementary
Tables 2–3.
The model was fitted using five experimental datasets from the

literature44, specifically: (1) relative change of pSTAT3 time course
response from 0 to 240min stimulated by 50 ng/ml IL-6 alone and
in combination with 100 ng/ml sIL-6R compared with a reference
point (pSTAT3 stimulated by 50 ng/ml IL-6 in combination with
100 ng/ml sIL-6R at 5 min); (2) relative change of ppAkt time
course response from 0 to 240min stimulated by 50 ng/ml IL-6
alone and in combination with 100 ng/ml sIL-6R compared with a
reference point (ppAkt stimulated by 50 ng/ml IL-6 in combination
with 100 ng/ml sIL-6R at 5 min); (3) relative change of pERK time
course response from 0 to 240min stimulated 50 ng/ml IL-6 alone
and in combination with 100 ng/ml sIL-6R compared with a
reference time point (pERK stimulated by 50 ng/ml IL-6 in
combination with 100 ng/ml sIL-6R at 5 min); (4) relative change
of pSTAT3 dose response stimulated by varying concentrations IL-
6 from 0 to 50 ng/ml at 15 min compared with a reference point
(pSTAT3 stimulated by 10 ng/ml IL-6 alone at 15min); (5) relative
change of pSTAT3 dose response stimulated by varying concen-
trations IL-6 from 0 to 50 ng/ml in combination with 100 ng/ml sIL-
6R at 15 min compared with a reference point (pSTAT3 stimulated
by 50 ng/ml IL-6 alone at 15 min). All published experiments were
conducted using human umbilical vein endothelial cells
(HUVECs)44.
Model simulations were compared to experimental measure-

ments. Specifically, the relative change of the responses was
calculated as following:

relative changeðt; cIL6; csIL6RÞ ¼
responseðt; cIL6; csIL6RÞ � responseðtref ; cref IL6; cref sIL6RÞ

responseðtref ; cref IL6; cref sIL6RÞ
(2)

where response t; cIL6; csIL6Rð Þ is the level of pSTAT3, ppAkt, or pERK
upon the stimulation of concentration cIL6 IL-6 in combination of
concentration csIL6R sIL-6R at time t, and
responseðtref ; cref IL6; cref sIL6RÞ is the response (pSTAT3, ppAkt, or
pERK) upon the stimulation of a reference concentration
combination of cref IL6 IL-6 and cref sIL6R sIL-6R at a reference time
point tref.
Here, the pSTAT3 in the model simulation includes all free and

bound forms of singly- phosphorylated STAT3. Also, ppAkt
includes all free and bound forms of doubly-phosphorylated Akt,
since Zegeye et al. and Lindkvist et al. used anti-phospho-
AKTSer473 antibody for detecting phosphorylated Akt44,57 and it
has been reported that Akt gets phosphorylated at S473 as a
secondary event60,79,80. Thus, we compared the predicted doubly
phosphorylated Akt (ppAkt) to experimental data44,57. In addition,
pERK in the model simulation includes all free and bound forms of
singly- and doubly- phosphorylated ERK.
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Constraints. In order to capture the whole dynamics of pSTAT3,
pAkt, and pERK within 240min, we applied a constraint for the
relative change for ppAkt and pERK induced by IL-6 trans-signaling
at 120 and 240min by a factor of 0.01 when calculating the WSSR.
Since the experimental relative change for ppAkt (0.32, and
−0.0087) and pERK (0.14, and −0.26) induced by IL-6 trans-signaling
at later time points are relatively low compared to other time points
as they are reaching a plateau level after 100min, we reduced their
WSSR by a factor of 0.01 to let the model be more able to capture
the whole dynamics rather than only the plateau behavior. Also, we
increased the WSSR for pSTAT3 induced by IL-6 stimulation alone at
60, 120, and 240min and trans-signaling at 120 and 240min by a
factor of 100 to better capture the whole dynamics of pSTAT3.
In addition, compared to a total of 48 time course data points,

there are only 14 dose response data points. To better capture the
dose response, we added a weight of 400 and 100 when calculating
the WSSR for pSTAT3 dose response induced by IL-6 stimulation
alone and trans-signaling at 0, 0.1, 1, 2, 5, and 10 ng/ml.
We first fitted the model 100 times to the experimental data.

However, from the parameter set that has the lowest errors, many
fitted values were found at one of the bounds (Supplementary
Table 5). To exclude the possibility of arbitrary bounds limiting the
parameter search space, we adjusted the bounds to be two orders
of magnitude above and below the set of parameter values that has
the lowest error (Supplementary Table 6). The identified influential
variables were estimated another 600 times with the new bounds.
With the second round of fitting, none of the parameters were
estimated to be at one of the bounds (Supplementary Table 6).
After model training, we validated the model with three datasets
not used in the fitting. We predicted the 10 ng/ml IL-6 alone and in
combination with 10 ng/ml sIL-6R induced pSTAT3, ppAkt, and
pERK relative change time course responses using the reference
points, pSTAT3, ppAkt, and pERK stimulated by 10 ng/ml IL-6 alone
and in combination of 10 ng/ml sIL-6R at 10min, respectively57. The
experiments57 used for validation were performed using HUVECs.

Goodness of fit. The performance of the model was assessed as
WSSR between the model predictions and experimental data and
a run test was to determine if the predicted curve deviates
systematically from the experimental data81,82.
For all three datasets used for validation, we simulated the

experimental conditions without any additional model fitting and
compared to the experimental measurements. A total of 12
parameter sets with the smallest errors and p-values greater than
0.05 by performing the runs test were taken to be the “best” sets
based on the model fitting and validation (Supplementary Table 6)
and were used for all model simulations.
If a fit is appropriate for the experimental measurements, the

residuals only represent experimental error, which would have a
random arrangement of positive and negative residuals; whereas
the residuals that have the same signs would tend to cluster if the
fit is inappropriate81,82. A run test determines whether the data are
systematically different from the predictions81,82. A p-value lower
than 0.05 indicates the predicted curve deviates systematically from
the experimental data, while a p-value greater than 0.05 suggests
the residuals appear randomly distributed across the zero line81,82.

Monte Carlo simulations
To study the robustness of the system, the fitted model was run
1000 times by generating 1000 values for all parameters and non-
zero initial concentrations, sampling from normal and lognormal
distributions, respectively. For initial concentrations and para-
meters that were estimated by fitting to the experimental data,
the mean values (μ) were the best fit, and for all other model
variable values, we set μ to be the baseline values. The variances
for the initial concentrations were set as an estimate of 10%μ. For
all the parameters, we calculated the standard deviation (σ) to

capture 99.7% of the possible values given the range of μ ± 50%μ
(i.e., μ ± 3σ). It is worth noting that with this sampling, it is possible
to get negative values, though this is unlikely to occur. However, if
any negative values were selected, we resampled until all the
sampled variables were positive.

Signaling responses
We investigated the STAT3, Akt, and ERK phosphorylation
responses upon stimulation by IL-6 classic- and/or trans-signaling.

Maximum pSTAT3, pAkt, and pERK. We calculated the maximum
STAT3, Akt, and ERK phosphorylation levels induced by the
stimulation of IL-6 classic- and/or trans-signaling within four hours.

Area under the curve (AUC) of pSTAT3, pAkt, and pERK. We
calculated the AUC of STAT3, Akt, and ERK phosphorylation levels
induced by the stimulation by IL-6 classic- and/or trans-signaling
within four hours.

Reaction rates. We specified the rates of each reaction based on
the law of mass action, where the rate of a chemical reaction is
proportional to the amount of each reactant. For example, for the
binding of IL-6 to IL-6R:

IL6þ IL6R  !p1cl;p2cl
IL6 : IL6R

The reaction rate is:

Rate ¼ p1cl�IL6�IL6R� p2cl�IL6 : IL6R (3)

Here p1cl and p2cl are rate constants for the forward and reverse
reactions, respectively, and IL6, IL6R, and IL6:IL6R are the species’
concentrations.
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