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A deep learning approach for morphological feature extraction
based on variational auto-encoder: an application to mandible
shape
Masato Tsutsumi1, Nen Saito2,3,4✉, Daisuke Koyabu5,6 and Chikara Furusawa 1,4,7✉

Shape measurements are crucial for evolutionary and developmental biology; however, they present difficulties in the objective
and automatic quantification of arbitrary shapes. Conventional approaches are based on anatomically prominent landmarks, which
require manual annotations by experts. Here, we develop a machine-learning approach by presenting morphological regulated
variational AutoEncoder (Morpho-VAE), an image-based deep learning framework, to conduct landmark-free shape analysis. The
proposed architecture combines the unsupervised and supervised learning models to reduce dimensionality by focusing on
morphological features that distinguish data with different labels. We applied the method to primate mandible image data. The
extracted morphological features reflected the characteristics of the families to which the organisms belonged, despite the absence
of correlation between the extracted morphological features and phylogenetic distance. Furthermore, we demonstrated the
reconstruction of missing segments from incomplete images. The proposed method provides a flexible and promising tool for
analyzing a wide variety of image data of biological shapes even those with missing segments.
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INTRODUCTION
Morphology refers to the biological form and represents one of
the most visually recognizable phenotypes across all organisms.
Morphological features, including the shapes of organs, tissues,
and bodies, are shaped during the developmental process and
may evolve over time. Therefore, comparing morphology among
species and individuals is expected to provide insight into the
functional role of shape and its developmental and evolutionary
history1–5. To decipher such factors from the morphology,
quantification and characterization of shape are critical because
it allows us to describe, interpret, and visualize the variations in
shape.
So far, a great deal of effort has been made towards shape

analysis, and various methods have been proposed. The most
widely used shape analysis is landmark-based geometric morpho-
metrics in which landmarks are defined by anatomically homo-
logous points on multiple samples, and the shape of a given
sample is characterized by the coordinates of these landmarks6–10.
The applications of this landmark-based method are wide-ranging,
including vertebrates2,3,11–15, arthropods16–19, mollusks20,21, and
plants22,23. However, there are several difficulties and ambiguities
intrinsic to this method despite its prevalence. First, the landmark-
based method is unsuitable for comparisons between phylogen-
etically distant species or distant developmental stages (e.g.
between the early and late stages) in which biologically
homologous landmarks cannot be defined10, while the inter-
species comparisons between close species or comparisons
among near developmental stages have revealed morphological
changes through evolutionary or developmental trajectories1–5.

Second, both a large and small number of landmarks can cause
the loss of information about the morphology of a sample8,10,24–26.
In addition, errors can be problematic, such as those from
measurement devices27 and setting configurations of landmarks
set inadequately by researchers owing to differences in skill
levels28. As the landmark-free method, elliptic Fourier analysis
(EFA) has also been proposed29,30 and applied to characterize the
shape of cells31,32, bivalves33, fish11,34,35, and plant organs36–38.
Typically, the landmark-based method or EFA is combined with

principal component analysis (PCA) to reduce high-dimensionality
in morphological data into easily visualizable low-dimensional
space3,6,11. Linear methods that reduce dimensionality, such as
PCA and linear discriminant analysis (LDA), are straightforward
and easily implementable, but a nonlinear approach, such as a
deep neural network (DNN), might be suitable for capturing more
complex features with fewer dimensions. In fact, nonlinear
methods based on DNN have been the standard analysis tools
in the fields of image classification39,40 and medical diagnostic
imaging41,42: however, their application to morphological analysis,
specifically to feature extraction of morphology, has been still
limited to a few cases43–48. A possible drawback of the DNN
approach is that the analysis is often black-boxed and difficult to
interpret, but many attempts have been made to solve this
issue49–51.
In this paper, a landmark-free method based on a variational

autoencoder (VAE) is proposed that analyzes shape from image
data without manual landmark annotation. A VAE is a class of DNN
and consists of the encoder and decoder. The encoder embeds
high-dimensional image data into low-dimensional latent
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variables, and the decoder reconstructs the input image from the
compressed latent variables52. The nonlinear-data compressibility
of the encoder allows VAE to be used for feature extraction from
image data53,54. The reconstruction capability of the decoder of
VAE ensures that the input image is compressed while maintain-
ing the information of the image, rather than being compressed in
an irreversible manner. Herein, the original VAE is modified by
integrating a classifier module into the VAE, which allows us to
extract morphological features that can best distinguish data with
different labeled classes. Although hybrid architectures combining
supervised and unsupervised learning have been proposed
recently55–59, the present study represents the first application
of this architecture to morphometrics.
The modified VAE model is demonstrated to be superior to the

original VAE and PCA-based methods in capturing morphological
features by analyzing the mandibular image data of primates
(seven families with a total of 141 samples; see Supplementary
Fig. 1e and Supplementary Table 1). The mandible varies widely
in morphology depending on its function and diet60–63. For
instance, the size and morphology of the mandible joint and its
position relative to the biting surface differ between carnivorous
and herbivorous mammals due to the differences in their
masticatory functions64,65. The proposed method provides a
landmark-free and non-linear feature extraction analysis for the
morphological data of a three-dimensional object, as exemplified
by the mandible. Additionally, an interpretation of the extracted
features is presented as well as the application to the mandibular
image data with a missing bone segment. The proposed model is
a useful and flexible tool for investigating a morphological
dataset.

RESULTS
The study aims to develop a landmark-free method for extracting
morphological features from images to distinguish different

groups. A total of 147 mandibles samples from seven different
families (i.e., seven labels) were prepared for verifying the method.
These samples comprise 141 samples of the primate mandibles
(Cercopethecidae, Cebidae, Lemuridae, Atelidae, Hylobatidae, and
Hominidae) and six samples of the mandibles of carnivora
(Phocidae) as an outgroup. Here, Phocidae samples were added
to examine whether or not the proposed method can distinguish
data with apparently different morphology. The corresponding
three-dimensional mandible data are projected from three
directions to produce three projected two-dimensional images,
as shown in Fig. 1a (see “Methods” section). These three
projections of each mandible are used as the input images for
the following analysis. The proposed architecture, morphological
regulated variational auto encoder (Morpho-VAE), is illustrated in
Fig. 1b. Note that the VAE module is combined with the classifier
module through the latent variable ζ. Since we aim to extract
features that can classify families while maintaining the quality of
reconstruction by VAE, we constructed a total loss function
Etotal= (1− α)EVAE+ αEC, as a weighted sum of the VAE loss (EVAE)
and the classification loss (EC). EVAE is the loss associated with VAE
(i.e., the reconstruction + regularization losses), EC is the
classification loss for the classifier module, and α is a hyperpara-
meter that dictates the ratio between EVAE and EC in Etotal. Using
the mandible sample images, the hyperparameter α is determined
as 0.1 through cross-validation (Fig. 1c, see also “Methods”
section). This choice of α ensures a low EC with a negligible
increase in EVAE from α= 0, indicating that the classification ability
can be incorporated into the VAE without lowering the
performance in the VAE module. Other hyperparameters, such
as the number of layers, number of filters, type of activation
function, and optimization function, are also tuned; moreover, the
number of dimensions of the latent variable are set to three (see
“Methods” section).
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Fig. 1 Machine learning pipeline for predicting. a Schematic of data preprocessing. b Schematic of the Morpho-VAE that comprises the
encoder, decoder, and classifier. c Plot showing the changes in EC and EVAE as α is varied: Blue points and red points indicate the values of EC
and EVAE, respectively, in the optimal model for each of the 10 combinations of training and test data. EC and EVAE are normalized such that the
maximum value is 1. The left panel shows the range from 0 to 1, and the right panel shows the expanded range from 0 to 0.3.
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Cluster separation
After the 100-epoch training, as described in the “Methods”
section, a trained model is obtained that can classify the input
image into seven class labels with a high validation accuracy (90%
as median, Supplementary Fig. 2b), compress the image into
three-dimensional latent space ζ, and reconstruct the image from
the latent space.
The distribution of training and validation datasets in the latent

space (Fig. 2a) illustrates that the data points of each label form
well-separated clusters from the data with different labels. Here, to
confirm that the label information can separate the clusters, the
latent space distribution in Morpho-VAE is compared to that in
PCA (Fig. 2b) and VAE (Fig. 2c), showing that the clusters are most
separated in Morpho-VAE space (Fig. 2a). Herein, PCA is performed
by transforming the image into a vector of 16,384 (= 128 × 128)
dimensions and extracting the top three components. Note that
this use of PCA differs from its ordinary use in the landmark
method6,7,10 and the elliptic Fourier analysis32,66, where not a
vector of pixel data but the coordinates of landmarks or Fourier
coefficients are subjected to PCA. VAE is trained using the same
procedure and training, validation, and testing datasets to
Morpho-VAE, as described in the Methods section, while ignoring
classification loss (i.e., α= 0). To quantify the extent to which the
data points with different class labels are separated in each
method, the cluster separation index (CSI) is defined as follows:

CSIij ¼ δi þ δj
Δij

� �
; (1)

where Δij ¼ kxiG � xjGk2 is the Euclidean distance between the

centroids of the i-th cluster Ci, xiG, and the j-th cluster Cj, x
j
G. δi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=jCi j

P
k2Ci

kxik � xiGk22
q

is the mean distance between a point in

Ci, xik , and the i-th cluster centroid, xiG. When the clusters i and j are
separated, CSIij < 1, and CSIij > 1 when one of the clusters is
encompassed or partially overlaps the other one. By taking the
average of the maximum of CSIij for j≠ i (i.e.,

P7
i¼1 maxj≠iCSIij=7), this

index corresponds to the Davies–Bouldin index with p= q= 2 67,
which is widely used to evaluate the degree of cluster separation.
Figure 2d shows the CSIs for all pairs of the seven clusters obtained in
the reduced feature space of Morpho-VAE, PCA, and VAE, in which a
single circle indicates a pair of different classes. In Morpho-VAE,
almost all points are less than one, which indicates that all pairs of
clusters are well-separated; however, for PCA and VAE, almost half of
all points are lower than one, suggesting that the data points with
different family labels cannot be distinguished in PCA or VAE space.
For further verification, the evaluated Davies–Bouldin indices (a score
of less than 1 represents well-separated clusters) are 0.80 (Morpho-
VAE), 2.60 (PCA), and 1.60 (VAE) for test data.
Additionally, the classification accuracy calculated using the

support vector machine (SVM) from the data distribution in the
latent space is quantified as another measure of the degree of
cluster separation. Because the SVM can solve a classification
problem with a high validation accuracy when the clusters of data
with different labels are well-separated in the latent space, this
SVM-based accuracy is expected to reflect the degree of cluster
separation. After the proposed Morpho-VAE is trained using the
training data (for PCA, the top three PC vectors from the training
data are selected), the same training data are used for training the
SVM, and then the SVM accuracy in the latent space is calculated
using the test data. The average test accuracy estimated from 10
different combinations of training and test data is shown in Fig. 2e.
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phylogenetic tree was created by selecting the species with the largest sample size for each family.
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We performed a Steel test68 to determine if Morpho-VAE and PCA,
as well as Morpho-VAE and VAE, differed in their classification
accuracy. Morpho-VAE model achieves a considerably higher test
accuracy than PCA and VAE (p= 3.07 × 10−4, p= 3.70 × 10−3

(Fig. 2e)), indicating that the proposed model can embed the
data of different families in well-separated clusters in latent space.
Since Morpho-VAE is the only method that utilizes supervised

information about families for training, the higher clustering
performance of Morpho-VAE shown in Fig. 2 does not necessarily
indicate that Morpho-VAE is inherently superior to the other two
methods that do not use supervised information. However, the
results above demonstrate that Morpho-VAE is capable of
generating a suitable latent space for effectively separating
different morphologies by integrating VAE with supervised
information. Additionally, we conducted an evaluation to deter-
mine whether the clustering performance of the latent space
generated by Morpho-VAE is superior to that of PCA and VAE,
regardless of the use of supervised information. Our hypothesis is
that the latent space of Morpho-VAE, designed to separate
mandible morphologies of different families, can effectively
cluster a morphology dataset from an additional family that was
not included in the training process. To test this hypothesis, we
performed the following analysis: First, we trained Morpho-VAE
using the training dataset of six families out of the seven families
prepared, utilizing family information to generate a latent space
suitable for separating the morphologies of these six families.
Next, we calculated the CSI between the additional family dataset
and the test datasets of each of the six families on the latent space
of Morpho-VAE. Similarly, for PCA and VAE, we constructed latent
spaces using datasets of six families and calculated the CSI for the
additional family dataset. The maximum value of CSI between the
additional family dataset and each of the pre-existing six families
was used as the measure of clustering performance for the newly
added family dataset. It is important to note that we did not use
family label information in evaluating the clustering performance
of the additional datasets, allowing us to make a fair comparison
of the clustering performance among Morpho-VAE, PCA, and VAE.
Supplementary Fig. 8 presents the results of our analysis. For
example, Supplementary Fig. 8f displays the maximum CSI
between Hominidae and six other families in the latent space
generated without the Hominidae dataset. As shown in Supple-
mentary Fig. 8, Morpho-VAE resulted in lower maximum SCI scores
(indicating better cluster separation) compared to PCA and VAE
for the majority of cases. This result suggests that Morpho-VAE is
capable of generating a better latent space for separating
mandible morphology compared to PCA and VAE. This superior
performance of Morpho-VAE may be attributed to the fact that
Morpho-VAE tends to focus on informative segments of images to
characterize mandible morphology, allowing for separation of
morphologies of different families even without label information.
The data distribution in the latent space (Fig. 2a) shows that the
distances between clusters are different for each pair of clusters.
This distance in the latent space can be interpreted as the
similarity of shapes. In terms of classification, Hylobatidae and
Cebidae are easy to distinguish, but Atelidae and Cercopithecidae
are difficult to distinguish, and so on (Supplementary Fig. 1e). This
shape similarity may be hypothesized to be determined based on
evolutionary distance; however, the relationship between mor-
phological similarity and evolutionary distance has long been a
topic of debate69–76. This is because other factors, such as diet
(carnivore, herbivore, or omnivore), sexual dimorphism, and
predator presence, may have a greater influence on morphology
than evolutionary distance. To assess whether our mandibular
data support this hypothesis, we investigated the correlation
between latent spatial distance and phylogenetic distance across
families. For this family-level comparison, we selected a repre-
sentative species with the largest sample size from each family
data and generated a family-level phylogenetic tree from

VertLife.org (http://vertlife.org/phylosubsets/)77. We selected
Macacafuscata (as Cercopithecidae), Cebuscapucinus (Cebidae),
Lemurcatta (Lemuridae), Atelespaniscus (Atelidae), Hylobateslar
(Hylobatidae), Homosapiens (Hominidae), and Zalophuscalifornia-
nus (Phocidae). The generated family-level phylegenetic tree is
shown in Fig. 2f. The result of the comparison is illustrated in
Supplementary Fig. 3, where no correlation is observed between
the distance of clusters in the latent space and the family-level
phylogenetic-tree distance.

Reconstructing and generating images from latent space
The proposed Morpho-VAE model can reconstruct an image from
the low-dimensional latent variable ζ through the decoder as well
as compress the input image into ζ through the encoder. This
ability guarantees that the compressed latent variable ζ preserves
the information about the morphology of the input data, rather
than compressing them in an irreversible manner. A representa-
tive example of an input and reconstructed images from the
input image is shown in Fig. 3a, in which the entire morphological
information of the input image is preserved in the reconstructed
image, and some detailed differences are recognizable. The
reconstruction loss ERec that reflects the accuracy of the
reconstructed input image reaches a plateau during training
(Supplementary Fig. 2c), indicating that learning is successful. The
reconstructed image is re-input into Morpho-VAE to further
confirm the extent of morphological information preserved in the
reconstruction image; subsequently, the predicted label is
obtained through the classifier module and the prediction
accuracy is calculated by comparing with the true label. This
prediction accuracy can be used as an indicator of the extent of
morphological information that is preserved as the precisely
reconstructed images should be correctly classified, but the
poorly reconstructed images should result in a significant
accuracy drop. Figure 3b illustrates this prediction accuracy of
the reconstructed image in comparison to the accuracy
calculated from the original data with only a few percent of
drops observed. We further confirmed that there was no
significant difference between these accuracies by performing a
Mann–Whitney test (p= 0.160). This suggests that the reconstruc-
tion is demonstrably successful.
Similar to VAE, the Morpho-VAE model is categorized as a class

of generative models that can generate an image from an
arbitrary point in the latent space ζ even when no input data
correspond to the point in ζ. This property enables the
visualization of the latent space; Fig. 3c illustrates the generated
images from the uniformly sampled ζ on the two-dimensional
square lattice in three dimensional latent space (right panel in
Fig. 3c) in which the choice of the two dimensional plane in the
three-dimensional latent space is determined by PCA based on
the data distribution in the latent space. The background colors in
the left panel of Fig. 3c represent the predicted labels from ζ by
the classifier module; circles indicate the input data points
mapped into ζ with their sizes corresponding to the distance
from the PC1–PC2 plane. The generated morphology changes
gradually in the latent space (left panel in Fig. 3c), indicating that a
smooth embedding is achieved of the morphological information
into the latent space. In addition, both PC1 and PC2 seem to
reflect an anatomical meaningful feature because the angle
between the condylar and the coronoid processes approaches 90
degrees as PC1 becomes larger (left panel of Fig. 3c), and the
angular process becomes larger as PC2 increases.

Visual explanation of the basis for class decisions
The part of the image that Morpho-VAE focuses on in the
classification task can be interpreted. Herein, a post hoc visual
explanation method Score-CAM51 is used for visualizing impor-
tant areas in the input image for classification. The schematic
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overview of Score-CAM is given in Supplementary Fig. 4 (see
“Methods” section for detailed procedures). Outcomes of this
analysis are “the saliency maps” for each family, as shown in
Fig. 4a in which the darker colors represent the area judged more
important for classification by the Morpho-VAE. These maps
emphasize essential bone processes: the area around the
coronoid process (Fig. 1a) for Phocidae, the condylar process
for Cercopethecidae, Hylobatidae, and Hominidae. Furthermore,
the angular processes, except for Hylobatidae, are highlighted in
the x and y projections. These processes connect temporal and
pterygoid muscles as well as are crucial in the opening and
closing of the jaw; therefore, them being highlighted for
classification is reasonable.
The Score-CAM analysis also clarifies that the images of z

projection do not contribute to the classification task as the
colormaps in z projection are all blank (Fig. 4a). This result is
further confirmed by calculating the classification accuracy from
the inputs of single-direction data only (e.g., x projection only)
and those of double-direction data only (e.g., x and y projections
only), rather than the full dataset of x, y, and z projections (Fig.
4b). Both results indicate that the x projection image is most
informative. Likewise, the site around the teeth in the x projection
(bottom half of the image) tends to be ignored by the map, which
likely reflects that the position of the teeth and their presence/
absence varies greatly among samples and is thus less
informative.

Reconstruction from cropped data
Bone samples, especially fossil samples, sometimes have missing
parts. A possible application of the generative ability of the
proposed model is to reconstruct such missing bone parts based
on the remaining parts. Herein, the proposed model is demon-
strated to achieve this reconstruction from a partially cropped
image. Artificially cropped three-dimensional data from the y and
z directions (Fig. 5g, j) are prepared and their x, y, and z projections
are used as the data set to be reconstructed. Figure 5a, c, d show
representative examples of the original, vertically cropped, and
horizontally cropped data, respectively, and their reconstructions
using the proposed Morpho-VAE are presented in Fig. 5e (vertical
crop) and Fig. 5f (horizontal crop). The reconstructed images from
the cropped data (Fig. 5c, d) illustrate that the cropped area in the
mandible of the original image (Fig. 5a) is reconstructed well but
not perfectly. The image looks closely similar to the reconstructed
image from the original (Fig. 5b), indicating that the cropped
region is less informative than the remaining region.
Furthermore, the robustness of this reconstruction is evaluated

by calculating the cropped-region dependency of the reconstruc-
tion loss, i.e., the binary cross-entropy between the reconstructed
image from the cropped data and the original image (Fig. 5h, k,
respectively) as well as that of the prediction accuracy (Fig. 5i, l).
Within about 60% and 25% crop rates for the vertical (Fig. 5h, i)
and horizontal (Fig. 5k, l) crops, respectively, only a slight increase
in the loss and drop in the accuracy is observed, indicating that
the reconstruction quality is maintained. The loss then starts to
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increase and the accuracy drops for a further increase in the crop
size. For the vertical crop, an image with the cropping size just
before the loss starts to increase is shown in Fig. 5d in which the
shapes of the coronoid and condylar processes are just barely
preserved. When these processes are completely removed, the
reconstruction and classification fail (Supplementary Fig. 5). For
the horizontal crop, an image just before the loss increase (Fig. 5c)
shows that the reconstruction is robust against the cropping of
the region around the teeth and tip region of the mandible (i.e.,
the region around the body of the mandible). Both the
aforementioned results indicate that the shape of the coronoid
and condylar processes contain relevant information about the
overall shape of the mandible, which is consistent with the results
of the Score-CAM analysis (Fig. 4a).

DISCUSSION
In this study, a method based on VAE combined with a classifier
module is proposed for morphological feature extraction and
analyzing the image datasets of mandibles. The proposed
method compresses the 128 × 128 pixel input image data into
three-dimensional latent space in which the data points of
different families form well-separated clusters and the degree

of cluster separation outperforms those obtained using the
unsupervised dimension-reduction methods, i.e., VAE and PCA
(Fig. 2 and Supplementary Fig. 8). Because the label information
of image data is used as the supervisory signal for the classifier
module, the proposed model incorporates the essence of
supervised learning as well as that of unsupervised learning of a
VAE module. This architecture is designed to reduce dimen-
sionality by focusing on the morphological features through
which the differences between predefined labels (i.e., family
classes) are distinguished. Consequently, the proposed
Morpho-VAE can be interpreted as a nonlinear version of LDA
that is designed to determine a linear combination of features
that separates data with different classes.
While hybrid architectures of Variational Autoencoder (VAE)-

based unsupervised learning and classifier module have been
investigated for solving classification tasks with limited labeled
data and a large number of non-labeled data78,79, their application
to dimensionality reduction and feature extraction has been
studied more recently. For example, Bandyopadhyay et al.56

utilized this architecture to extract features from drawings by
dementia patients to distinguish between dementia and non-
dementia cases. Similar architectures have been extended to
handle multimodal inputs for anomaly detection in robotic
vehicles under uncertain environments55, or for classification of
diverse cancer types using omics data57. Furthermore, this hybrid
architecture has been proposed to be combined with a loss
function that ensures equally spaced clusters with each label in
the latent space, resulting in high-performance classification and
reconstruction59. Building upon these previous studies, the
present study provides the first application of this architecture
to morphometrics and presents a framework for landmark-free
morphological quantifications.
The results in Fig. 1c also indicate that the reconstruction loss

exhibits negligible increase after taking into account the
classification loss, as depicted in Fig. 1c with α= 0 (reconstruc-
tion only) and α= 0.1 (reconstruction and classification),
suggesting that the reconstruction performance can be main-
tained to some extent by adding the classification function;
moreover, this ensures the cluster separation of different-label
data in the latent space. A supervised dimensionality-reduction
technique such as between-group PCA(bgPCA) can cause
spurious separation80–82 for a small sample size. To avoid this,
we performed the cross-validation procedures by separating
data into training, validation, and test data, which corresponds
to the operation performed by Cardini and Polly82. With the use
of CNNs, this procedure successfully avoided overfitting and
distinguished seven family groups with high test accuracy, even
for a small sample size.
The characteristics of this model, which select the latent space

that distinguishes predefined labels, can be described as
extracting morphological features by focusing on traits through
which a clade is well distinguished from others. The distance in
the latent space is then considered to be a measure that contains
information about these traits. Although we examined whether or
not there is some link between this distinguishability and the
evolutionary distance, no clear correlation between the latent-
space and phylogenetic distances was detected (Supplementary
Fig. 3). As was seen in our result, the longstanding debate
regarding the correlation between phylogenetic and morpholo-
gical distances has been extensively discussed, as the relationship
is not always straightforward69–76. Several studies have success-
fully demonstrated that phylogenetic relationships can be inferred
from morphological differences. For instance, recent studies
utilizing deep learning approaches with embedding techniques,
such as the “triplet loss” method, have shown promising results in
phylogenetic reconstruction using images of butterflies43 and rove
beetles83. However, these studies were mostly limited to
comparisons among closely related taxa. This is because the
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presence of homoplasy, including reversal, parallel, and conver-
gent evolution72, can confound morphology-based estimation of
phylogenetic relationships. These difficulties would manifest in
comparisons among wider taxa. One possible reason for the lack
of a significant correlation between latent state distance and
phylogenetic distance in our study may be due to the inclusion of
phylogenetically broad and distant taxa, coupled with a relatively
small dataset size. Furthermore, previous studies have suggested
that mandible morphology can exhibit a significant degree of
non-genetic variance and homoplasy84 resulting from adaptations
to dietary habits. These factors can further complicate the
observation of the relationship between phylogeny and morphol-
ogy. Therefore, we speculate that the absence of correlation
between latent space distance and phylogenetic distance does
not necessarily indicate limitations in our proposed method. To
address this, future work will involve verifying the applicability of
our method using morphological data from more closely related
taxa, possibly by combining the latest advanced embedding
technique using the triplet loss function43.
Another potential explanation for the lack of correlation

between morphological and phylogenetic differences is the
presence of other systematic morphological differences that

disturb the correlation. To explore this possibility, we investigated
whether sex differences could be identified in the latent space of
Morpho-VAE (Supplementary Fig. 6). However, our findings did
not reveal any evidence of sex differences, indicating that sex did
not significantly contribute to the correlation analysis of
morphology and phylogeny. In contrast to a previous study that
detected sex and age differences in the human mandible85, our
study employed size normalization, utilized mixed data from
multiple families, and conducted supervised classification of these
families. This size normalization was not adequate to detect sex
differences and may have obscured the features that distinguish
between the sexes. We conducted this analysis for exploring
factors that would disturb the correlation between morphological
and phylogenetic differences, however, if the main aim is to
detect the sex difference, the analysis without the size normal-
ization would be required. Additionally, the limited sample size for
certain families presented a significant challenge in our analysis.
These unsuccessful results suggest that a narrower taxonomic
comparison should have been employed if the focus was on
detecting correlations between phylogeny, morphology, or sex
differences.
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In this study, we used data that were apparently different and
not difficult to classify from anatomical viewpoints to validate the
usefulness of the proposed landmark-free method. To further
check the application to more, morphologically similar data, we
examined the genus-level comparison on a family dataset, namely,
whether Cercopithecidae dataset can be divided into four genera,
Cercopithecus, Macaca, Mandrillus, and Papio. The number of data
was 20 for Cercopithecus, 92 for Macaca, 10 for Mandrillus, and 16
for Papio. Supplementary Fig. 7e–g show the results of the
comparison after the hyperparameter tuning and training with
four genera labels. The distribution of the four genera output by
Morpho-VAE were well separated compared with PCA and VAE.
We computed CSI and classification accuracy using SVM to
measure the degree of separation of the clusters’ output using
Morpho-VAE, PCA, and VAE. Supplementary Fig. 7h, i illustrate that
data points with different labels in Morpho-VAE were still more
separated than those in the other methods. These results show
the applicability of the proposed method to the genus level data
as well.
Furthermore, the Score-CAM method, which provides an inter-

pretable visualization of the parts of an image that are important for
classification (Fig. 4), was applied to overcome the difficulty of
interpreting DNN-based analysis. The first notable result of this
analysis is that the x projection of the mandible image data is the
most important for classification among the x, y, and z projections.
This result is likely attributed to the fact that the area of the x
projection is the largest and the results of Score-CAM, which focuses
on the lateral view of the mandible is consistent with the previous
studies in which the landmarks visible from the lateral view of the
mandible are important for detecting sexual dimorphism86–88 and
inter-period variation89. Moreover, the analysis through a closer look
at the x projection shows that the anatomically distinguishable
projections of bone, i.e., the angular, condylar, and coronoid
processes, are highlighted. For all groups except for Hylobatidae,
the angular process is highlighted, but the condylar process for
Cercopithecidae, Hylobatidae, and Hominidae are exaggerated. The
angular and coronoid processes provide insertion sites for the medial
pterygoid and temporalis, respectively; both of which are critical for
producing bite force65. The coronoid process provides the tempor-
omandibular joint, which works as the fulcrum during biting. The
highlighted parts essentially correspond to key regions related to
mastication; thus, them being highlighted seems reasonable. For
Phocidae, the area around the coronoid process is emphasized. This
is reasonable because a well-developed temporalis is a key feature of
carnivora, and the coronoid process to which the temporalis inserts is
notably enlarged compared with the other two processes.
As an application of the generative aspect of the model, the

proposed model is demonstrated to complement a missing
bone segment from an artificially cropped image (Fig. 5) based
on the remaining structure. The reconstruction is robust against
the cropping of the region around teeth and tip of the
mandible (Fig. 5c, h, i), but sensitive to the lack of the
mandibular joint, i.e., the coronoid and condylar processes
(Fig. 5d, k, l). Both these results are consistent with the results of
the Score-CAM analysis (Fig. 4a) in which the shape of the bone
processes contains relevant information about the overall
shape of the mandible. The proposed model can reconstruct
a missing segment from data having defects, i.e., data in which
a part of the sample is missing or damaged, as is often the case
with fossils. Although there exist landmark-based methods that
can interpolate missing landmark locations90, the proposed
model has the flexibility of reconstructing the entire missing
segment from the remaining structure. The generative model
based on VAE has also been applied to jaw reconstructive
surgeries for completing the missing segments of the bone
based on the remaining healthy structure91. The proposed
architecture, by combining a VAE and classifier module,
provides a new framework for reconstructing missing bone

segments while performing dimensional reduction for visuali-
zation and classification.
In summary, the proposed model enables dimension reduction

and feature extraction by which different label data are well-
separated, providing a promising application of analyzing
morphological dataset in biology. A comparison of the proposed
method with landmark methods needs to be performed in the
future, but even if the performance of the method is comparable
to the conventional methods, the proposed landmark-free
method provides a useful tool to non-experts, without need for
manually defining the landmarks. Although the model is designed
for image input data, a combination with the landmark-based
method is possible, for instance, the model output through Score-
CAM analysis (Fig. 4) can be used for defining the landmark
positions in a systematic manner. In addition, the proposed model
can be modified in the future to extend to three-dimensional
input data, which will provide a deeper analysis and higher
resolution of the reconstructed image, but that will also require a
high machine power and a huge dataset.

METHODS
Data sets and data preprocessing
Three-dimensional computed tomography (CT) scanning morpho-
logical data of primate mandibles were collected from Primate
Research Institute (KUPRI) and MorphoSource.org. Phocidae (the
carnivores) was used as an outgroup to highlight the difference
between herbivores and omnivores. Additionally, three-
dimensional datasets were collected, which consist of three
images of the mandible captured from three orthogonal direc-
tions (i.e., top-, front-, and side-views), from Mammalian Crania
Photographic Archive Second Edition (MCPA2). A total of 148
mandible datasets (87 Cercopethecidae, 6 Cebidae, 6 Lemuridae, 6
Hylobatidae, 6 Atelidae, 30 Homonidae, and 6 Phocidae) were
collected (Supplementary Table 1). Samples were restricted to full
adults with no abnormalities in appearance.
Because deep learning using three-dimensional data requires

extensive computational resources and large memory size,
accompanied by the memory-access problems92–94, here, we
converted three-dimensional mandible-image data into three two-
dimensional images (i.e., top-, front-, and side-views) to avoid
these challenges. Supplementary Fig. 1a illustrates that the
mandible is aligned such that its teeth face downward, and the
xy plane is defined as the plane to which the base of the mandible
is parallel. Next, the position of the mandible is adjusted such that
the line connecting the center of the two medial tips of the
condylar head and the mandible tip is parallel to the y-axis.
Because the mandibles of all the animals collected in this study
are left–right symmetrical, one mandible is divided into two pieces
by the center of the mandible tip to increase the number of
datasets; moreover, one part is mirror-image inverted. The divided
mandible, which is placed in the xyz space, is then converted into
a set of three two-dimensional images with a size of 128 × 128
pixels by projection onto the yz (x projection), xz (y projection),
and xy (z projection) planes. In addition, the samples we analyzed
are roughly five times different in size. Without the size normal-
ization, the smaller images would be distorted unless the input
images are of high resolution. To avoid size dependency of data,
we downsized the projected images so that the length from the
angular process to the tip of the mandible is normalized to be the
same (Supplementary Fig. 1d).

Model description
This study aims to extract low-dimensional image features while
ensuring the ability to classify the mandible images into families.
To this end, Morpho-VAE (Fig. 1b), a VAE-based model, is proposed
in which a VAE module is combined with a classifier module
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through the latent variable ζ. Similar to the conventional VAE, the
VAE module of the Morpho-VAE model comprises a l-layer
convolution neural network as the encoder and a l-layer
deconvolution neural network as the decoder. The encoder is a
layer for reducing the input data into a low-dimensional latent
variable ζ in which the input image is converted into the mean μ
and variance σ of the multidimensional normal distribution.
Subsequently, the latent variable ζ is sampled from the distribu-
tion Nðμ; σÞ. The decoder is a layer for reconstructing the low-
dimensional latent variable ζ into an output image that has the
same resolution as the input image. The network is trained such
that the output image is as close as possible to the input data by
optimizing the reconstruction loss ERec (see below). The distinct
feature of Morpho-VAE is that the VAE module is combined with a
classifier module in which a single-layer network converts the low-
dimensional latent variable ζ into the output vector for classifica-
tion using the softmax activation function (Fig. 1b). Therefore,
Morpho-VAE has two outputs: the output image for the
reconstruction and the output vector for the classification. The
classifier module is trained to predict the label from the input data
via the latent variable ζ in a supervised-learning manner. Herein,
family-level classification from the input image is considered;
therefore, the training labels are: Cercopethecidae, Homonidae,
Cebidae, Lemuridae, Hylobatidae, Phocidae, and Atelidae. A more
detailed architecture of Morpho-VAE is shown in Supplementary
Fig. 2e.
The loss functions Etotal required to train the proposed Morpho-

VAE are as follows:

1. Reconstruction Loss (ERec): binary cross entropy between the
input and output images, expressed as ERecðp;qÞ ¼
�1= dimp

Pdimp
i ðpi logðqiÞ � ð1� piÞ logð1� qiÞÞ, where p

and q are the input and output image vectors, respectively.
2. Regularization Loss (EReg): Kullback–Leibler divergence

DKL(q(ζ∣X)∥p(ζ)) between the data distribution in the latent
space q(ζ∣X) encoded by the encoder from data X and the
predefined reference distribution pðζÞ ¼ N ð0; 1Þ, which is
fixed as a Gaussian distribution with mean 0 and variance 1.

3. Classification Loss (EC): cross entropy between the predicted
y0 and true label vectors y from the latent variable ζ and
classifier module, expressed as EC ¼ �1=7

P7
i yi logðy0iÞ.

From these three loss functions, VAE loss function is defined as
EVAE= ERec+ EReg. Moreover, the total loss function is defined as
Etotal= (1− α)EVAE+ αEC, where α= 0.1 is selected by cross-
validation (Fig. 1c), and Morpho-VAE is trained to minimize Etotal
by backpropagation.

Hyperparameter tuning
The structural hyperparameters of Morpho-VAE, such as the
number of layers, number of filters in each layer, type of activation
function, and type of optimization function, were tuned using
Optuna95.
The number of layers was optimized to be within the range of

1–5, and the number of filters in each layer was optimized to be
within the range of 16–128. The activation functions were selected
from ReLU, sigmoid, and tanh, and the optimization function was
selected from stochastic gradient descent, adaptive momentum
estimation (Adam), and RMSprop. Note that the latent-space
dimension was fixed to three in these processes. These optimiza-
tions were performed by searching 500 different conditions, each
with 100 epochs of training, and the following parameters were
defined as the optimal hyperparameters to minimize the loss
function Etotal. The other hyperparameters are listed in Supple-
mentary Table 2. The number of layers in the encoder was five.
The numbers of filters in each layer were 128, 128, 32, 32, and 64
in the order from the layer nearest to the input layer. The selected
activation and optimization functions were ReLU and RMSprop,

respectively. Moreover, the number of layers in the decoder was
five, and the numbers of filters in each layer were 64, 32, 32, 128,
and 128 in the order from the layer nearest to the latent variable.
The type of optimization function was RMSprop. Note that
sigmoid is adopted instead of ReLU as the activation function of
the decoder because the input image of this model is a binary
image in the range of [0,1], and the output image needs to be in
the same range.
After tuning the structural hyperparameters, the dimensions of

the latent variable ζ were also explored. The number of
dimensions of the latent variable was examined from 2–10 by
100-times independent 100-epoch training with different
training–validation datasets for each dimension. Supplementary
Fig. 2a illustrates that the mean and median of the minimum of
Etotal in each 100-epoch training decrease as the dimension
increases from two to eight. Because our aim is to select a low-
dimensional feature ζ that generates a low Etotal, the dimension
value of three was adopted, for which only a slight increase
appears in the loss value compared with the dimensions ≥4, but a
certain drop (Supplementary Fig. 2a, b) is observed between
dimensions two and three.
A double cross-validation procedure96 was used for separating

the data into training, validation, and test data. One-third of the
total data were used as test data to evaluate the generalization
performance of Morpho-VAE. Of the remaining data, 75% was
separated as training data for tuning the hyperparameters of
Morpho-VAE and the remaining 25% as validation data for
verifying the hyperparameters to avoid leaks of the same species
of data. Because the data set collected in this study had a class
imbalance, as listed in Supplementary Table 1, the data set was
divided into training and test data using the proportional
extraction method, which divides the data by reflecting the
sample size of each label. However, due to the limited size of our
dataset and the uneven distribution of sexes and species ratios in
some of the collected data, it was not feasible to achieve an equal
split of sexes or species in the train/validation/test data. Note that
two datasets were obtained from one mandible sample (see
Datasets section), but the data are distributed such that the same
sample is not included both in the test and training data.

Visualization of the saliency map (Fig. 4a) by Score-CAM
The Score-CAM51 method was applied to visualize Morpho-VAE
making its decisions. The schematic overview of Score-CAM is
presented in Supplementary Fig. 4. First, upsampling is performed
from the 8 × 8 pixel activation map, which activates the last layer
in the convolution layers of the encoder, to a 128 × 128-pixel
image and then normalization is implemented such that the
maximum and minimum pixel intensities of the image are 1 and 0,
respectively. Each pixel intensity of the image is then multiplied by
the intensity of the corresponding pixel in the 128 × 128-pixel
original input image to create a masking image. Furthermore, this
masking image is re-input into Morpho-VAE and the prediction
probability is calculated for the label of the input image through
the classifier module. Because the calculated prediction prob-
ability can be interpreted as the importance of the masking image,
this probability is then multiplied by the activation map, and the
final outcome of Score-CAM (Fig. 4a), “the saliency map”, is
obtained by taking a sum over the number of filters (e.g., 64).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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