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Globally invariant behavior of oncogenes and random genes at
population but not at single cell level
Olga Sirbu1, Mohamed Helmy1,2, Alessandro Giuliani 3 and Kumar Selvarajoo 1,4,5✉

Cancer is widely considered a genetic disease. Notably, recent works have highlighted that every human gene may possibly be
associated with cancer. Thus, the distinction between genes that drive oncogenesis and those that are associated to the disease,
but do not play a role, requires attention. Here we investigated single cells and bulk (cell-population) datasets of several cancer
transcriptomes and proteomes in relation to their healthy counterparts. When analyzed by machine learning and statistical
approaches in bulk datasets, both general and cancer-specific oncogenes, as defined by the Cancer Genes Census, show invariant
behavior to randomly selected gene sets of the same size for all cancers. However, when protein–protein interaction analyses were
performed, the oncogenes-derived networks show higher connectivity than those relative to random genes. Moreover, at single-
cell scale, we observe variant behavior in a subset of oncogenes for each considered cancer type. Moving forward, we concur that
the role of oncogenes needs to be further scrutinized by adopting protein causality and higher-resolution single-cell analyses.

npj Systems Biology and Applications            (2023) 9:28 ; https://doi.org/10.1038/s41540-023-00290-9

INTRODUCTION
Cancer is both a heterogeneous as well as a highly dynamic
malady1–4. Even within the same cancer types, tumors can exhibit
intratumoral variations5 (biological variations gained during the
progression of the disease, i.e., variable histopathology), inter-
tumoral variations6 (variation within the same cancer patient i.e.,
metastasis), and interpatient variations7 (variations among patients
i.e., heterogeneity). Furthermore, the lack of a clear understanding
of cancer causality is another confounding factor that makes
cancer research complex8. Due to this, and despite tremendous
efforts, approaching the study and treatment of cancer is a
delicate ordeal, with existing treatments not being foolproof and
often working sporadically only on a subset of patients3.
To address these challenges, researchers target genes that are

associated with the hallmarks of cancer, such as increased cell
proliferation and avoidance of cell death9. Proto-oncogenes
represent an exemplar case as they are genes whose expression
is fully physiological and only when mutated (with a consequent
dysregulation of their original function) act as cancer-causing
elements10. This is the case of tumor suppressor genes (TSG)
whose original function of limiting cell proliferation and directing
cells toward apoptosis, when abolished by mutation, promote
cancer development11.
The high interest in cancer research also adds complexity which

is evident by the lack of a unified consensus definition of
oncogenes. For example, the National Human Genome Research
Institute’s definition is, “an oncogene is a mutated gene that has
the potential to cause cancer”12, while the National Cancer
Institute (NCI) defines them as, “a gene that is a mutated
(changed) form of a gene involved in normal cell growth”11. NCI
provides another broader definition, “an oncogene is a gene that
has the potential to cause cancer without the requirement of a
particular change in the gene sequence or in the gene
expression”. Lastly, in Comprehensive Toxicology the term

oncogene refers to “a gene that encodes a protein that is capable
of transforming cells in cultures or inducing cancer in animals”13.
For cataloging oncogenes, the Cancer Genes Census (CGC) lists

genes that contain mutations “that have been causally implicated
in cancer”14. According to the CGC, less than 1% of the human
protein-coding genes, 729 genes, are implicated in cancer, and
they are divided into two tiers based on the availability of
documented activity and curated evidence of “promoting
oncogenic transformation”. The Atlas of Genetics and Cytoge-
netics in Oncology and Hematology (AGCOH) gives more than
double estimates of oncogenes number, providing a list of 1580
genes, annotated as cancer genes, and a larger list of over 27 K
genes that are “possibly implicated in cancer”15. Thus, it becomes
apparent that the way oncogenes are defined impacts the
inclusion and exclusion of genes in these databases, drawing
attention to them in research and therapeutics, the problem being
further exacerbated by the exclusion of non-coding genes that
have been more recently associated with cancer16.
The current challenges associated with navigating the massive

body of research become even more evident in a recent study
that found 87.7% of human genes have been associated with
cancer to some extent17. This is not surprising given the
prevalence of cancer research with a yearly estimate of 200,000
cancer-related publications17, the complexity, and heterogeneity
associated with cancer, as well as the flexible definition of
oncogenes. However, not only it is unlikely that all these genes
can be classified as cancer genes, but the large number and lack
of consensus makes the road to finding a cure even more
challenging, while clinically relevant goals, such as disease
prediction and prevention, become more difficult to achieve18.
Here, we focus solely on the curated list of oncogenes from the

CGC database14 to which we referred to as CGC genes, and
cancer-specific oncogenes (CSO) which we identified for each
cancer type from the CGC list using the identifiers provided by the
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database. In this paper, we, thus, investigated the relationship
between cancer and cancer-associated genes, to find if the latter
behave any differently from the rest of the genes when we
compared normal and cancer proteomic and transcriptomic data.
This comparison encompassed multiple data analytics (correlation,
noise estimation, dimensionality reduction etc.), sample similarity
analysis, protein–protein interaction network analysis on bulk as
well as single-cell RNA-seq gene expression datasets using
Seurat19, so to individuate, if any, the characteristic features that
discriminate “proper” oncogenes from randomly picked genes.

RESULTS
We explored several RNA-seq cancer datasets of bulk (population-
based) and single cells that are available in the National Center for
Biotechnology Information (NCBI)’s Gene Expression Omnibus
(GEO) database20. We selected seven cancer types for bulk
(breast21, colorectal22, leukemia23, liver24, ovarian25, skin26, and
osteosarcoma27) and three types for single cells (breast15,
ovarian28, and glioblastoma29) that are suitable for our analyses
(see “Methods” for details). For proteomics assembly data, we
searched for data on Proteomic Data Commons (PDC)30 and
identified suitable datasets for liver and ovarian cancers.

Bulk transcriptome and proteome noise and correlation
analyses
Initially, we focused on bulk datasets. After performing quality
control checks and lower expressions filtering (“Methods”), we
investigated the level of global gene expression correlation (and,
consequently, the relative amount of explained and stochastic
variability). We compared transcriptome- and proteome-wide
scatterplots of normal, cancer, and normal versus cancer sample
pairs, and evaluated their corresponding Pearson (linear contin-
uous), Spearman (monotonic rank-based) correlations, mutual
information (MI, nonlinear dependence), and noise (square of the
coefficient of variation31) (Table 1, Fig. 1a and Supplementary Fig.
1, gray dots). In general, as expected, the transcriptome-wide
variability and noise are lower (and thus, correlation is higher),
between normal samples when compared to between cancer
samples or between cancer and normal samples (Fig. 1a, left
panel). While a similar pattern can be observed in the proteomic
data, the difference between cancer and normal samples in the
expression of cancer genes is more pronounced (Fig. 1a, right
panel).
Next, we focused on cancer-associated or cancer genes (~600

CGC and ~20 cancer-specific oncogenes (CSO), “Methods”) and
compared their noise and scatter (Fig. 1a and Supplementary

Fig. 1, blue and red dots, respectively). Notably, for breast,
colorectal, liver, ovarian, and skin cancer transcriptomes, we notice
that both CGC and CSO genes have lower scatter and noise (Table
2, Fig. 1a (right panel), Supplementary Fig. 1a, c, e) compared to
their whole transcriptome, especially between normal and cancer.
This is contrary to expectations since these genes are generally
mutated in cancers and their expressions are anticipated to be
significantly altered when compared to normal32. On the other
hand, at the proteome level, CGC and CSO genes show slightly
higher noise and variability (Table 2 and Fig. 1a, left panel). To
avoid any statistical biases induced by size variation between the
whole and subset of cancer genes, we also sampled CGC and CSO
size random genes/proteins with 100 times repeated sampling
(Fig. 1b, Supplementary Fig. 2a–g, and Table 2). For both
transcriptome and proteome, the Pearson correlation and noise
analyses show higher correlations and lower noise between
normal samples, and the opposite trend between cancers and
between normal and cancer samples for all sampling sizes.
Interestingly, the correlations between random and cancer genes
(CGC and CSO) in normal and cancer conditions, is similar, and in
certain cases such as the liver transcriptome and the ovarian
transcriptome, the CSO show greater correlations than random
samplings. These data suggest that the expression variability and
correlations of cancer genes are generally invariant with respect of
the whole genome or randomly selected genes.
To check mutual and nonlinear dependence between the

samples, we investigated mutual information (MI, “Methods”)
based nonlinear correlations for both cancer and random genes
(Supplementary Fig. 3). Again, the results are inconclusive in that
we could not generalize across the different cancer types whether
random or cancer genes display a different degree of association.
While these results cannot be adjusted for the tumor purity of
cancer samples since not all the datasets provided this informa-
tion, the purity of the tumor samples in the skin26 and liver24

cancer transcriptomic datasets were established to be adequate
(>30% tumor cell fraction, and 0.821–0.905 purity index respec-
tively). Notably, the invariance of cancer genes from random
genes is even stronger for liver cancer samples.
Thus, by studying scatterplots, noise, linear, and nonlinear

correlations, we could not conclude whether CGC or CSO,
collectively, display different statistical properties with respect to
similarly sized random samples of genes in both transcriptomic
and proteomic data. To probe this result further, we next
performed dimensional reduction using Principal Component
Analysis (PCA) (“Methods”).

Table 1. Transcriptome-wide and proteome-wide correlation values and noise.

Cancer type R ρ MI η2

N vs N T vs T N vs T N vs N T vs T N vs T N vs N T vs T N vs T N vs N T vs T N vs T

Breast 0.967 0.947 0.941 0.867 0.87 0.829 0.727 0.792 0.632 0.321 0.304 0.363

Colorectal 0.964 0.928 0.936 0.837 0.812 0.793 0.697 0.6 0.564 0.583 0.63 0.656

AML 0.965 0.872 0.88 0.911 0.847 0.833 0.982 0.72 0.664 0.175 0.311 0.279

HCC 0.847 0.674 0.685 0.937 0.795 0.807 1.059 0.567 0.609 0.177 0.373 0.353

Ovarian 0.898 0.756 0.735 0.972 0.819 0.735 1.268 0.555 0.423 0.124 0.477 0.537

Osteosarcoma 0.837 0.833 0.752 0.942 0.811 0.76 1.121 0.668 0.53 0.222 0.349 0.489

Skin 0.939 0.985 0.947 0.77 0.813 0.704 0.694 0.658 0.482 0.453 0.326 0.464

HCC (proteome) 0.476 0.227 −0.144 0.495 0.176 −0.177 0.211 0.086 0.079 6E+ 07 1E+ 06 9E+ 06

Ovarian (Proteome) 0.426 0.465 0.262 0.433 0.439 0.218 0.13 0.155 0.056 3E+ 05 2E+ 05 1E+ 06

Transcriptome-wide Pearson correlation (R), Spearman correlation (ρ), noise (η2), and Mutual Information (MI), between normal samples (N vs N), tumor
samples (T vs T), and normal vs tumor samples (N vs T).
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Fig. 1 Expression invariance of oncogenes. Various types of statistical analysis were performed on bulk datasets to show the expression
invariance of cancer genes. The analysis for transcriptomics samples is on the right panels, and the analysis for the proteomics samples is on
the left panels. a Scatterplots between normal samples, tumor samples, and normal vs tumor samples for liver cancer and ovarian cancer, with
the remaining types presented in Supplementary Fig. 1. Regular genes are represented by gray dots, CGC genes by blue dots, and CSO genes
by red dots. b Pearson correlation for the expression levels of CGC genes (blue), CSO genes (red), CGC-sized sampled random genes (purple),
CSO-sized sampled random genes (orange). Ovarian cancer was selected as an example for both proteome and transcriptome here, and the
rest of the cancer types are in Supplementary Fig. 2. c PCA plots for whole dataset normal samples (light blue circles), whole dataset tumor
samples (light orange circles), CGC genes normal samples (dark blue circles), CGC genes tumor samples (dark orange circles), CGC-sized
random sampling of genes from normal samples (dark blue stars), CGC-sized random sampling of genes from tumor samples (dark orange
stars), and the rest of the cancer types are in Supplementary Fig. 4.
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Dimensionality reduction by PCA
Figure 1c and Supplementary Fig. 4 show the PCA solution in the
first two dimensions accounting for the largest variance amount.
For both transcriptome and proteome, we observed that normal
samples (light blue circles) are located closer to one another,
whereas their cancer counterparts (light orange circles) are more
dispersed across the x–y space (Fig. 1c and Supplementary Fig. 4).
This result indicates that the whole biological datasets (Fig. 1c,
transcriptome-left panel, proteome-right panel) of normal repli-
cates is less noisy than that for cancers, confirming the results of
the bivariate correlation analyses above. However, when we
analyzed the same metrics for cancer genes (CGC and CSO), they
are less variable and closer to the metrics between normal (dark
blue circles) and cancer (dark orange circles). To test whether this
is due to the size or gene number effects, as above, we tested
random gene samples of the same size in the normal tissue (dark
blue stars) and the tumors (dark orange stars). Notably, the
locations of the randomly selected samples are almost invariant to
those of the cancer genes, in both omics’ levels. Furthermore, the
mean Euclidian distance between the samples’ locations in whole
datasets between normal and cancer is the highest when
compared with that of cancer genes or random genes alone
(Table 3).
Taken together, these results indicate that although normal and

cancer counterparts have vastly different amounts of hetero-
geneity at the whole transcriptome and proteome scale, they are,
however, very similar when only cancer and randomly sampled
genes are taken into consideration.

Sample similarity analysis
To further investigate the observed invariance between CGC and
random genes, we employed two types of sample similarity
analyses on the transcriptomic datasets: Neighbor-Joining (NJ)
and hierarchical clustering. We first used the whole transcriptomes
to project samples from each cancer type into NJ dendrograms
(Fig. 2a and Supplementary Fig. 5, left panels). For breast, glioma,
ovarian, and osteosarcoma, the dendrograms show clear separa-
tions and clusters differentiating cancer (orange), and normal
samples (blue). For the remaining leukemia, liver, and skin, the
dendrograms, however, appeared randomly clustered for a subset
of cancer and normal samples. This may not be surprising as some
cancer data are highly heterogenous even between their
replicates33.
Investigating the specific effect of CGC genes on NJ dendro-

grams, we observed that the overall distance between all samples

decreased significantly, in a similar manner to our dimension
reduction analysis (Fig. 2b and Supplementary Fig. 5, middle
panels). However, it is worth noting the fact that for some cancers
small local changes occurred where tumor samples were rear-
ranged. To avoid the statistical bias induced by sample size
variation, we once again performed the sample similarity analysis
on a CGC-sized random sampling of genes. As anticipated, the
distance between samples decreased for the random sampling of
genes as well (Fig. 2c and Supplementary Fig. 5, right panels), with
the overall mean sum of branch lengths between the samples
being comparable. Unlike the CGC genes, however, the dendro-
grams generated from the random sampling of genes were highly
similar to the whole transcriptome dendrograms (Fig. 2a, c and
Supplementary Fig. 5, right and left panels). Unexpectedly, the
dendrograms generated using the CGC genes had the tumor
samples mildly rearranged. While these results also show
invariance between CGC and randomly sampled genes when it
comes to differentiating between tumor and normal samples, CGC
genes do appear to play some role in among tumor sample
differences.
Next, we performed hierarchical clustering for CGC, CSO and

randomly sampled genes (Fig. 2d, e and Supplementary Fig. 6).
Notably, only in some cancers CGC and random genes were able
to correctly cluster cancer and normal samples (ovarian and
osteosarcoma), while in the rest the clustering was not precise.
Nevertheless, the overall clustering based on CGC and random
genes were highly similar for all cancers with minor rearrange-
ments only. In the case of CSO, the separation between normal
and tumor samples decreased when compared to the CGC
clustering in all cancer types. Furthermore, when we compared
this outcome with the results of the CSO-sized sampling of
random genes, we observed that the random genes performed
poorly in separating tumor samples and normal samples due to
the small number of genes.

Table 2. Noise of cancer genes and random samples of genes in transcriptome and proteome.

Cancer type N vs N T vs T N vs T

CGC CGC
sample

CSO CSO
sample

CGC CGC
sample

CSO CSO
sample

CGC CGC
sample

CSO CSO
sample

Breast 0.267 0.325 0.248 0.32 0.232 0.305 0.204 0.303 0.306 0.366 0.294 0.363

Colorectal 0.464 0.585 0.451 0.586 0.51 0.631 0.48 0.632 0.528 0.658 0.501 0.658

AML 0.145 0.176 0.131 0.174 0.249 0.315 0.246 0.311 0.218 0.282 0.212 0.278

HCC 0.173 0.17 0.172 0.177 0.337 0.357 0.363 0.372 0.322 0.335 0.316 0.351

Ovarian 0.07 0.127 0.073 0.126 0.39 0.48 0.404 0.477 0.45 0.536 0.461 0.537

Osteosarcoma 0.203 0.257 0.175 0.223 0.293 0.37 0.296 0.351 0.413 0.529 0.588 0.493

Skin 0.423 0.451 0.454 0.453 0.28 0.33 0.271 0.327 0.419 0.466 0.392 0.465

HCC (Proteome) 15457 5E+ 05 1256 4E+ 05 1E+ 06 3E+ 05 1930 3E+ 05 5E+ 05 4E+ 06 11016 1E+ 06

Ovarian
(Proteome)

2E+ 06 4E+ 05 33743 86705 81443 6E+ 05 3126 1E+ 05 25978 5E+ 05 7910 3E+ 05

Noise between normal samples (N vs N), tumor samples (T vs T), and normal vs tumor samples (N vs T) for CGC genes, CGC-sized random sampling of genes,
CSO genes, and CSO-sized random sampling of genes.

Table 3. Euclidian distances between normal and tumor samples.

Genes Whole CGC CGC-sized random
sampling

CSO CSO-sized random
sampling

Distance 144.1 26.27 23.7 4.78 2.75

Average Euclidian distances between normal and tumor samples in
dimensionality reduction plots (PCA).
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Overall, these results point to the similar clustering of samples
between CGC and CGC-sized random samplings of genes, as well
as CSO and CSO-sized random samplings of genes, suggesting
invariance as observed for the previous sections. Thus far, the
analyses are unable to highlight any significant effect of CGC
genes compared to the rest of transcriptome.

PPI network analysis
Since the definition of oncogenes only allows for protein-coding
genes, their interaction properties can be investigated to clarify
whether oncogenes are truly like any other protein-coding genes
in the transcriptome. Notably, biological PPI networks tend to
display power law distribution34 with few nodes (hubs) having
thousands of interactions (edges), while most nodes (leaves) will
have a few or just a single interaction.
We plotted the distribution density of the number of

interactions per gene for all known protein-coding genes in
STRING and GeneMania databases combined35,36 (black), and
found it to follow the general trend of the power law distribution
(dotted gray line), where only a strict minority of genes have
several thousand of interactions followed by a rapid decrease in
connectivity for the other genes (Fig. 3a). Next, we investigated
the PPI distributions of CGC and CGC-sized random genes. First,
for CGC-sized random genes (yellow), it can be observed that the
distribution of interactions looks similar to that of the whole,
except for the peak density, which is slightly lower. Second, for the
distribution of PPI per CGC gene (orange), we observe that its
mean is higher, and the density plot is shifted further from the
power law curve (gray). When computing the average number of
interactions per gene, we observed that the whole transcriptome
and the random sampling have a nearly identical average,
whereas the CGC genes have a significantly higher mean number
of interactions per gene (Table 4). This result is not surprising since
cancer genes are much more widely studied with respect to all

other genes, so their number of connections (stemming from
literature data) is likely to be higher. Furthermore, some cancer
genes are known to be transcription factors (TFs) as well, which
would explain their connectivity. Nevertheless, only 20% of CGC
genes (Supplementary Fig. 7) are found to be TFs37, and upon
removing those 20%, the average number of PPI does not drop
significantly (Table 4). Thus, the results highlight CGC oncogenes
as a special subset of genes with above-average connectivity and
much more homogeneous (with respect to the whole gene set) in
terms of their physiological roles.
To further illustrate this point, we generated PPI network plots

for CGC and random genes (Fig. 3b, c). A color and size gradient
were used to highlight the number of interactions per node,
where larger connectivity shows bigger size and lighter color.
When compared to the randomly sampled genes, the CGC
network possesses more highly connected nodes, similar to
network hubs, and fewer nodes with single connections.
Furthermore, the CGC network appeared to have a significantly
higher number of edges connecting the nodes, indicative of CGC
genes being genes related to each other. The random network, on
the other hand, despite containing genes with a relatively high
number of global connections, appeared to be considerably less
locally connected.
Lastly, in order to investigate the biological significance of CGC

genes, we generated GO networks using ClueGO38 in Cytoscape
(Fig. 3d). We observed that the GO network of CGC genes is dense
and composed of various crucial biological processes that can
affect cell fate. On the other hand, when we generated GO
networks from the same number of random genes as CGC genes
(Fig. 3e), we observed that the network is sparser with fewer
biological terms that are able to pass the minimum filtering
threshold. Lastly, unlike in the CGC GO network, where each node
was composed of tens to hundreds of genes, in the random GO
network the maximum number of genes per node is 6 genes. This

Fig. 2 Sample Similarity Analysis. NJ sample tree of ovarian cancer (rest of cancer types shown in Supplementary Fig. 5) used to highlight the
differences between tumor samples (orange) and normal samples (blue). The trees were generated from a whole transcriptome, b CGC genes,
c CGC-sized random sampling of genes. Hierarchical clustering was used to show the differences between tumor samples and normal samples
of ovarian cancer using d CGC genes and CSO genes, and e CGC-sized random sampling of genes and CSO-sized random sampling of genes.
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5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2023)    28 



shows that CGC genes cover a wide range of interconnected
biological processes that have the ability to affect cell fate.
Together, these results emphasize the distinctiveness or

importance of oncogenes as the more highly connected “hub
genes” and suggest that the insignificant behavior of oncogene
expression levels in transcriptomic data might not be reflective of
their true importance.

scRNA-seq transcriptome analysis
The advantage of single-cell sequencing is the fact that it offers a
more in-depth overview of individual cell expression levels within
various subpopulations, which is essential considering the
complex nature of tumor microenvironments that employ a wide

Fig. 3 PPI and network analysis. a Using the literature-known connectivity properties of protein-coding genes we generated a density plot
for the number of PPI per gene for all human protein-coding genes (black), CGC genes (red), CGC-sized random sampling of genes (yellow)
and the fitted power law distribution (gray dashed line). We then used Cytoscape to visualize PPI interaction networks for b CGC genes and
c CGC-sized random sampling of genes. We also explored the GO networks (“Methods”) generated from d CGC genes and e a set of randomly
sampled genes of the same size as the CGC set.

Table 4. Mean number of interactions.

Gene set Average number of PPI interaction

Whole 1115.963

CGC 1841.178

CGC—TF genes 1798.995

Random sample 1114.693

Mean number of PPI interactions for whole transcriptome, CGC genes,
random samplings of genes, and subset of CGC genes that does not
include any CGC TF genes.

O. Sirbu et al.
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array of cell types during tumor progression. Therefore, to
investigate the expression patterns of oncogenes within various
cell populations we searched the GEO database for scRNA-seq
datasets that contained patient tumor and normal samples. We
selected three scRNA-seq datasets from the GEO database
(“Methods”) composed of paired normal and tumor patient tissue
samples for breast cancer, ovarian cancer, and glioma. We first
performed quality control and normalization, after which we
proceeded to integrate normal and tumor samples for concurrent
analysis of cancer gene expression (“Methods”). We observed a
diverse microenvironment (Supplementary Tables 3–5) in all three
cancer types (Fig. 4a and Supplementary Fig. 8a, c, g), with each
cluster comprising different proportions of cancer and normal
subpopulations (Fig. 4b and Supplementary Fig. 8b, d).
To verify whether there exist cancer-specific differences in gene

expressions at each cluster, we performed Differential Expression
(DE) analysis between tumor and normal cells of the preserved
clusters across the two conditions (e.g., cluster 9, Fig. 4b). Our
analyses show that 5–10% of all the identified DE genes in every
cluster and across all three cancer types are CGC genes (Table 5).
Amongst the differentially expressed CGC genes (Table 6), we
observed and visualized several oncogenes that have been
previously studied for their role in different cancers (e.g., TMSB4X
and TNFAIP3, Supplementary Fig. 9). Furthermore, despite
representing only a small fraction of the network, CGC genes also
exhibit special connectivity properties (“Methods”) within the
network of DE genes (Fig. 4c, e, f). To avoid sample size bias in our
results, we similarly generated random networks composed of the
identical number of nodes as the DE network (Fig. 4d). For these
random sets of genes of identical size, the differentially expressed
DE genes exhibit average connectivity properties similar to that of
the larger networks, that is, of lower connectivity compared to
CGC genes. (Fig. 4e, f). This result is consistent with our previous
analysis, and with the fact that CGC genes tend to be better
connected due to them being better studied in the literature.
Taken together, these results show indeed that there exist

notable differences between normal and tumor tissues that
emerge on a single-cell level from the heterogeneous tumor
microenvironment (reflected by cell clusters). Differential expres-
sion between normal and tumor cell types in cell clusters, as well
as the enhanced connectivity properties of cancer genes highlight
the fact that oncogenes can be distinguished from other genes as
a special subset.
Together, the analysis of single-cell transcriptomic data revealed

not only a heterogeneous tumor microenvironment (reflected by
cell clusters), but also heterogeneous expression patterns for
oncogenes that cannot be generalized on a global population
level. Furthermore, differential expression analysis between similar
cell clusters in tumor and normal samples further highlighted the
fact that oncogenes can be distinguished from other genes as a
special subset with distinct network connectivity properties.

DISCUSSION
Cancer is a highly complex and variable disease. It is, thus,
conceivable that the variability among cancer patients in terms of
gene expression patterns (e.g., transcriptomics, proteomics) will be
large. Correspondingly, in Fig. 1a and Supplementary Fig. 1, we
show the transcriptome-wide scatter (right panel) and proteome-
wide scatter (left panel) both showing a significant amount of
noise between cancer samples or between normal versus cancer
samples, even in the presence of a relevant correlation
corresponding to the presence of a “tissue-specific” attractor.
Nevertheless, when focusing on elements that are known as
cancer genes or oncogenes (here noted as CGC and CSO genes),
we observe lower variability and noise with respect to oncogenes-
sized random sets of genes, indicating a more correlated behavior
of oncogenes between normal and cancer or between cancer

samples. The same behavior is apparent when correlation, mutual
information and dimensional reduction using PCA were per-
formed (Fig. 1c, d and Supplementary Figs. 2–4). Furthermore,
sample similarity (nj-tree and hierarchical clustering heatmap)
analyses show almost identical clustering between oncogenes and
random gene samples (Fig. 2 and Supplementary Fig. 5), again
pointing to invariance. Thus, the global behavior of oncogenes at
this very general level, cannot be neatly separated by the behavior
of the rest of both transcriptome and proteome. On the other
hand, when the analysis focuses on specific distributional feature,
the much higher internal consistency of oncogenes expression
levels clearly emerges, this increased consistency, has both a
methodological and a biological origin. The methodological has to
do with the well-known difference between correlation and
causation39. The difficulty of setting up an experiment allowing for
a clear discrimination between correlation and possibly causative
factors in biology is linked to the large circular causality of
complex systems40. We believe this methodological weakness is
causing severe biases in current cancer research.
The biological origin of the ambiguity, ending up in the

paradoxical but statistically consistent statement that almost
any gene is a cancer gene17, stems from the fact that genes do
not work in isolation but as coherent modules. This implies that
any variation that derives from specific “driver” genes reverbe-
rates across the whole genome expression, putting the entire
set of expressions on another state or “attractor” mode. This is
evident in Fig. 3, where we observe that the oncogenes clearly
possess better connectivity (leading to more network hubs41)
compared to the random selection of genes, regardless of
whether they are TF genes or not. That is, the oncogenes tend
to generally act as “hubs” of interaction networks and, thus, the
“relevance for cancer” is not an essential property of single
genes but an emergent property of groups of genes where
oncogenes play a major role at the bulk scale42. This makes
inter-module switch genes that mediate the relation between
different parts of the biological regulation network affine to
“causative” agents43.
Finally, when moving into single-cell scale, we can observe

that a subset of oncogenes show specific behavior at cell cluster
levels, representing subpopulations of cells (Fig. 4). In other
words, only when shifting to single-cell scale we start to
appreciate significant expression differences between onco-
genes and random gene collections. Notably, the relevance of
cancer subpopulations heterogeneity is now being recognized
by newer dynamical approaches to cancer research44,45. This
heterogeneity can be fully appreciated only by the adoption of
single-cell level analysis46, and this is perhaps why only in the
case of single-cell RNA-seq studies we are able to uncover
putative and possibly “cancer driver” genes that are totally
unnoticeable at the bulk level.
In summary, we can state that the accumulation of huge

amount of molecular data made evident the need for a radical
“change of scale” of cancer research. This change of scale is
analogous to the rise of statistical mechanics-inspired methods in
physics and implies the shift from linear causative paths at single
gene level to the search for general organization principles of
strongly internally correlated systems47. Our work highlights the
fact that oncogenes need to be reviewed in the context of
association and causality, as it is easy to show that any gene can
be highly correlated with cancer genes. Nevertheless, when one
take’s a network view, oncogenes show higher connectivity than
random genes, In the future, what constitute an oncogene needs
to be deeply scrutinized by adopting protein causality studies and
higher-resolution single cells analyses.
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Fig. 4 scRNA-seq analysis and network properties of oncogenes. a uMAP dimensional reduction for integrated tumor and normal samples
of ovarian cancer where different colors represent different cell populations. b Cell condition composition breakdown per cluster in ovarian
cancer. DE analysis identified DE genes between normal and tumor cells in each cluster. These DE genes were used in Cytoscape to generate
PPI networks for c DE network and random network of the same size from d random sampling of genes for comparison. In the PPI networks,
node size scaled to the degree of the gene, and highlighted the CGC genes (yellow). The average e connectivity and f degree properties of the
whole DE network (blue), and CGC DE genes (orange) are higher when compared to the random network (gray), and the random subset of
genes (yellow).
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METHODS
Oncogene gene sets
The oncogene gene sets were obtained from the Cancer Gene
Census (CGC) of the Catalog of Somatic Mutations In Cancer
(COSMIC) database14. Cancer-specific oncogenes were defined
using the tumor type identifiers provided by the database and are
listed in Supplementary Table 1.

Bulk proteomics datasets and pre-processing
Bulk proteomics datasets were downloaded from the Proteomic
Data Commons (PDC)30 from previously published datasets for
liver cancer (PDC00198), and ovarian cancer (PDC00010). No
missing value imputation was performed, and all genes with
missing values were removed (~20%). The exact number of genes
and samples considered for the analysis are listed in Supplemen-
tary Table 2.

Bulk RNA-seq datasets
Bulk RNA-seq datasets were downloaded from the Gene Expres-
sion Omnibus (GEO) database from previously published data for
eight cancer types: breast (GSE183947)21, colorectal cancer
(GSE165255)22, acute myeloid leukemia (GSE138702)23, hepato-
cellular carcinoma (GSE112705)24, high grade serous ovarian
cancer (GSE190688)25, osteosarcoma (GSE126209)27, oral squa-
mous cell carcinoma (GSE184616)26. The datasets were chosen
based on the availability of patient tumor samples as well as
paired patient healthy tissue samples. Only relevant samples from

each dataset were selected. The datasets were all converted to
transcripts per million (TPM) counts for consistency. All the
replicates are considered to be biological replicates (i.e., referring
to independent individuals), and not as technical replicates.

Single-cell datasets
Single-cell RNA-seq datasets were downloaded from the GEO
database for three cancer types: breast (GSE161529)15, ovarian
(GSE181955)28, glioblastoma (GSE162631)29. For all three datasets,
only a subset of samples was used.

Statistical distribution fitting
For each sample in the bulk RNA-seq datasets, the TPM expression
values were fitted to theoretical statistical distributions such as
log-normal, Pareto, Burr, loglogistic, and Weibull48. The best-fitted
distribution for each sample was selected based on the minimum
Akaike information criterion value, and approximate thresholds for
filtering were selected based on how closely the experimental
distributions follow the theoretical distributions49. The fitdistrplus
package50 was used for parameter estimation, and the mass
package51 for the aforementioned theoretical distributions.

Correlation analyses
For all datasets, correlation for a set of n genes was computed
between two samples of interest. The total mean correlation value
was then calculated by finding the average of all correlation
values.

Pearson correlation. The Pearson correlation coefficient between
two samples (vectors X and Y) for a set of n genes can be defined
as:

r X; Yð Þ ¼
Pn

i¼1 xi � μXð Þð yi � μY Þ
σXσY

(1)

where xi and yi are the expression value for the ith gene in the
dataset for each of the two samples. Similarly, μx and μy , represent
the average expression of each sample, and the standard
deviation of the expression values in each respective sample.

Table 6. DE CGC genes for each cancer type.

Type DE Genes

Glioma ABL1, ABL2, AFDN, ALDH2, ARHGEF12, ATP1A1, B2M, BAX, BAZ1A, BCL3, BTG1, CALR, CASP3, CBL, CCND1, CD74, CDH11, CHCHD7, CHST11,
CLTC, COL1A1, COL3A1, COX6C, CREB3L2, CTCF, CTNNB1, CUL3, DNM2, ETV6, EXT1, EZR, FGFR1, FLNA, FLT4, FNBP1, GNAQ, H3F3A,
HERPUD1, HEY1, HIF1A, HLA-A, HRAS, HSP90AB1, IDH1, IDH2, ITGAV, JAK1, KDM5A, KDR, KLF4, KLF6, LATS2, LCP1, LMNA, LYN, MAFB,
MALAT1, MALT1, MAP3K13, MAPK1, MSI2, MSN, MYH9, MYO5A, NACA, NFE2L2, NFKBIE, NPM1, NR4A3, PABPC1, PDE4DIP, PDGFB, PPP2R1A,
PRDM1, PREX2, PTPRK, RAC1, RALGDS, RANBP2, RAP1GDS1, RB1, REL, RHOA, RPL10, RPL22, RPL5, RPN1, SET, SFPQ, SGK1, SH2B3, SH3GL1,
SIRPA, SMARCA4, SND1, SOCS1, SRSF3, TET2, TFPT, TMEM127, TMSB4X, TNFAIP3, TOP1, TP53, TPM3, TPM4, TRAF7, TRIM24, USP9X, WAS,
WWTR1, YWHAE, ZEB1, ZNF331

Ovarian WWTR1, CD74, BIRC3, BCLAF1, CDH1, TPR, ARID1B, THRAP3, CASP8, ERBB3, KLF6, CBFB, PABPC1, TFRC, AFF4, FCGR2B, SDHA, KDM5A,
IGF2BP2, MAP3K13, HSP90AA1, PTPRC, XPO1, CYLD, ATRX, MECOM, BAX, GNAS, FUS, FH, EZR, HSP90AB1, MYH9, HIF1A, ARHGAP5, TSC2,
NDRG1, UBR5, TFPT, CCDC6, RNF43, DDX5, PRKAR1A, BRCA1, YWHAE, CCND1, PPFIBP1, CHD4, QKI, CBLB, SF3B1, MSH6, SFPQ, TNFAIP3,
SGK1, CCND2, SET, DNMT3A, BCL11A, CXCR4, HNRNPA2B1, ACSL3, USP9X, DEK, PAX8, KDM5C, KTN1, MAP2K2, SMARCA4, AKAP9, HIP1,
SPECC1, AFDN, CLIP1, DNAJB1, H3F3B, CDC73, LCP1, RAC1, ABI1, HMGA1, NUMA1, ATIC, IDH1, ITGAV, USP8, TCF12, PML, ZFHX3, NCOR1,
CLTC, SDHC, TPM3, EML4, LPP, ARHGAP26, NONO, NFIB, CDKN2A, RANBP2, MSI2, GNAQ, EIF4A2, SLC34A2, RUNX1, LMNA, IKZF3, SRSF2,
FUBP1, REL, H3F3A, ATP1A1, ELF3, RPN1, PBRM1, RAD21, COX6C, NSD1, B2M, STAT6, TPM4, CTNNB1, STAT3, ASPSCR1, CNBP, CAMTA1, BCL2,
EIF1AX, RNF213, DDIT3, SMAD2, TBL1XR1, JUN, PDE4DIP, CALR, MUC16, NPM1, SETD2, IDH2, CREB3L2, CSF1R, MAML2, WT1, SOCS1, MUC1,
PBX1, IKZF1, SRGAP3, NCOR2, NF1, FLNA, SND1, TRIM33, SIRPA, CTNND1, MDM4, TOP1, TRIM27, TMSB4X, HLA-A, DDX3X, ETV5, MALAT1,
LSM14A, CUX1, NCOA4

Breast AKAP9, ATP1A1, B2M, BTG1, BTG2, CALR, CAMTA1, CCND1, CD74, CD79A, CDH11, CDKN1A, CDKN2A, CDKN2C, CNBP, COL1A1, COL3A1,
COX6C, CTNNB1, DDX5, DEK, DNAJB1, EIF1AX, EIF3E, EIF4A2, ELF3, EPAS1, EZH2, FUS, GATA3, GMPS, GNAS, HERPUD1, HLA-A, HSP90AA1, ID3,
IDH2, JUN, KDSR, KLF6, LHFPL6, LMNA, MAFB, MALAT1, MAP3K13, MYH9, NDRG1, NFIB, NONO, NSD3, PABPC1, PBX1, PCBP1, PDGFRB, PSIP1,
RAC1, RAD21, RHOA, RPL10, RPL22, RPN1, SDC4, SDHB, SDHC, SET, SMARCA4, TCEA1, TFG, TMSB4X, TNFRSF17, TPM3, TPM4

CGC DE genes between normal and tumor cells from the same cluster for each cancer scRNA-seq dataset.

Table 5. Number of identified DE genes.

Type: DE genes CGC

Breast cancer 1249 72

Glioma 1866 115

Ovarian cancer 2240 166

The number of DE genes identified in each cancer type and the number of
CGC DE genes.
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Spearman correlation. Similar to the Pearson correlation, Spear-
man rank correlation is defined by:

ρ X; Yð Þ ¼ 1�
Pn

i¼1 ðrx;i � ry;iÞ2
nð n2 � 1 Þ (2)

Where rx,i and ry,i are the ranks of the ith gene in the two samples
of interest.

Mutual information. The nonlinear dependency between two
samples can be checked by mutual information:

M IðX; YÞ ¼ �
XM

i¼1
pðxiÞlnðpðxiÞÞ �

XM

i¼1
pðyiÞlnðpðyiÞ þ

XM

i¼1
pðx; yÞlnðpðx; yÞÞ � ε

(3)

where the joint probability distribution function p(x,y) and
marginal probability distribution functions are estimated by
discretizing the rank-transformed gene expression into bins. For
each transcriptome, the number of bins used in the analysis was
computed using Doane’s rule52. The MI between samples was
computed using the infotheo package53.

Average noise analysis
For a set of n genes, the total average noise between two samples
can be defined as:

η2tot ¼
1
n

Xn

i¼1
η2iXY (4)

where the noise of the ith gene between two samples of interest is
defined as η2iXY and can be calculated by dividing the variance (σ2)
by the squared mean expression (μ2):

η2iXY ¼ σ2
iXY

μ2iXY
(5)

Neighbor-joining tree
The ape54 package was used to compute dendrograms for all
samples using the neighbor-joining (nj) algorithm. For every dataset
composed of m samples and n genes, the nm matrix of expression
values was used to compute a distance matrix between the m
samples using the stats package55. The algorithm assumes a star
network and uses the distance matrix to build the dendrogram into a
completely resolved unrooted tree with known branch lengths. In
the final tree, samples that are more similar cluster together and are
separated by shorter overall branch lengths.

scRNA-seq analysis
QC and normalization. All scRNA-seq datasets were analyzed using
the Seurat package19. Every dataset was filtered out for cells based on
the following QC metrics: number of unique genes per cell, and
percentage of mitochondrial counts. Only cells with over 200 unique
genes per cell and less than 15% mitochondrial counts were
retained. The data were then normalized using the “LogNormalize”
method provided by the Seurat package, which normalizes the count
values for each cell by the total counts for the cell and multiplies it by
a scale factor of 10000.

Integration. Top 2000 variable features for every sample were
selected using the “vst” method in the Seurat package for
further analysis. The method aims to account for the mean-
variance relationship in scRNA-seq that arises due to technical
factors by fitting a polynomial regression to the relationship
between the log(variance) and log(mean) of every gene. This
allows for the computation of standardized variances that are
used to rank the genes directly.
Based on the number of samples they are deemed variable in,

the list of variable features is further reduced to the top 2000

genes that have the highest variability across most samples.
Then, cells that can serve as integration anchors across the
different samples are selected using the FindIntegrationAnchors
that is described in the Seurat package. Lastly, based on the
identified integration anchors, and ranked list of variable
features, the samples were integrated, and the expression
values were corrected such that the finalized integrated dataset
can be treated as a single normalized dataset. The final
integrated dataset from each cancer type was then used to
identify the composition of the samples. The dataset was first
scaled on feature-level using the standard deviation of the
expression of each gene such that the expression will be
centered to have a mean of zero. The scaled dataset was used
to perform PCA as an intermediate step in the dimension
reduction analysis. Similarly, uMAP was then performed to
embed the single cells into the Euclidian space. Lastly, the
shared nearest-neighbor (SNN) clustering algorithm was used
to identify individual cell clusters.

Cell marker identification and annotation. Top five biomarkers
were selected for every identified cluster with the FindAllMarkers
function using the Wilcoxon rank-sum test. We then used
CellMarker56 and PanglaoDB57 to predict the cell type based on
the top five biomarkers.

Differential expression. Using the clusters identified from the
integrated analysis, we performed differential expression between
tumor cells and normal cells classified into the same cluster. The
FindMarkers function was used to find differentially expressed
genes that were expressed in at least 50% of the cells of interest.

PPI data
The protein–protein interaction (PPI) data were obtained from
STRING and GeneMania databases35,36. The protein identifiers of
the two datasets were converted to UniProt accessions. Then we
merged the two datasets and removed any redundant interac-
tions, keeping a single instance of each interaction.

Cytoscape network analysis
Networks using DE genes were generated using the Cytoscape
StringApp58,59. The software’s Analyzer60 was used to analyze
the network and compute the degree parameters for each
gene in all the networks. The parameters considered were
degree which refers to the number of connections per node, as
well as connectivity, which refers to the number of connected
components in the subset of nodes, where a higher value
indicates a better-connected network, and lower values
indicate elements that are more disjoint and poorly
connected60.

ClueGO. GO Networks were generated in Cytoscape for Biologi-
cal Processes only. The network specificity was chosen to be
global, and the significance threshold was set to 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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