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Efficient, cell-based simulations of cardiac electrophysiology;
The Kirchhoff Network Model (KNM)
Karoline Horgmo Jæger 1✉ and Aslak Tveito 1

Mathematical models based on homogenized representation of cardiac tissue have greatly improved our understanding of cardiac
electrophysiology. However, these models are too coarse to investigate the dynamics at the level of the myocytes since the cells are
not present in homogenized models. Recently, fine scale models have been proposed to allow for cell-level resolution of the
dynamics, but these models are too computationally expensive to be used in applications like whole heart simulations of large
animals. To address this issue, we propose a model that balances computational demands and physiological accuracy. The model is
founded on Kirchhoff’s current law, and represents every myocyte in the tissue. This allows specific properties to be assigned to
individual cardiomyocytes, and other cell types like fibroblasts can be added to the model in an accurate manner while keeping the
computing efforts reasonable.
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INTRODUCTION
The healthy contraction of the cardiac muscle is initiated by an
action potential (AP) generated in the sinoatrial node (SA-node).
From the SA-node, the AP propagates as an electrochemical wave
throughout the cardiac muscle approximately every second
throughout an individual’s lifespan. The AP commences with a
significant increase in the membrane potential of each cell,
leading to an influx of calcium into the cell. This, in turn, triggers
the release of large amounts of calcium from intracellular storage
systems. The resultant rise in intracellular calcium concentration
induces contraction of each myocyte, which underlies the heart’s
essential pumping function.
Remarkably stable and versatile, this process automatically

adapts to the body’s needs and generally operates for many years
without external maintenance, exemplifying an incredible biolo-
gical machinery. Nevertheless, the process can fail, causing
extensive harm to the body and potentially leading to death.
Gaining a solid understanding of cardiac function is critical for
comprehending how to address related illnesses.
In many scientific fields, understanding is often grounded in

mathematical models that can be employed to examine the
dynamics of a particular system. Computational cardiology has
advanced significantly since the groundbreaking paper by
Hodgkin and Huxley1, which modeled excitable neurons, and
the subsequent paper by Noble2 that introduced the first model of
a cardiac AP. Today, knowledge of cardiac electrophysiology is to a
large degree founded on computational models of the heart.
The present state-of-the-art simulators of cardiac tissue are

based on the homogenized bidomain model (BD)3. This model is
accurate at the millimeter level4, and has been successfully
applied to study a series of challenging questions in cardiac
electrophysiology5–7. The bidomain model is very well established
with well tested, stable and openly available software, see, e.g.,
https://opencarp.org/. However, since the myocyte is not present
in the model, it is very difficult to use this approach to model cell-
to-cell variations that appear during illness. Fundamentally, the
bidomain model assumes that the extracellular space, the cell
membrane and the intracellular space are present everywhere (see

Fig. 1a). When the mesh resolution reaches the length scale of the
myocyte, this approximation runs into difficulties because the cell
is not part of the model.
Recently, a cell-based mathematical model has been suggested

where the extracellular (E) space, the cell membrane (M) and the
intracellular space (I) are explicitly represented as distinct and
spatially resolved parts of the computational domain (see Fig. 1a).
This model will herafter be referred to as the extracellular-
membrane-intracellular (EMI) model4,8,9. The EMI model has been
applied to study properties of cardiac conduction10,11, and
arrhythmogenic influence of mutations in the sleeve of the
pulmonary veins12. It has also been compared to the bidomain
model13–15, and solved using a boundary integral formulation16.
The main advantage of EMI is that the cell is represented in the
model and the properties of each cell can therefore be adjusted
and cell-level accuracy can be achieved. Furthermore, local
changes due to illness can be properly analyzed. The main
disadvantage, however, is that the EMI model is very CPU
demanding.
The EMI model provides subcellular precision, as it enables

manipulation of properties within individual myocytes10,17.
Although this offers great flexibility, it is not required in all types
of simulation. Here, we will present the Kirchhoff network model
(KNM) which represents each myocyte and allows manipulation at
the cellular level, and between cells, but not within individual cells.
The Kirchhoff network model is based on representing each cell
and its surrounding extracellular space as computational nodes
and applying Kirchhoff’s current law, stating that the sum of
currents into a node must equal the sum of currents out of the
node. We will show that KNM is much less computationally
demanding than the EMI model and has computational demands
that are comparable to the bidomain model.

MODELS
The bidomain model (BD)
The bidomain model (see, e.g., ref. 3) is based on the assumption
that the extracellular space, the membrane and the intracellular
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space all exist everywhere in the tissue. The model is expressed as
a system of two partial differential equations (PDEs) for the
unknown functions v and ue, representing the membrane
potential and the extracellular potential, respectively (both in
mV). This system is coupled to a system of ordinary differential
equations for the membrane dynamics with an additional set of
unknown state variables, s, representing ion channel gates and
ionic concentrations. The system reads

Cm
∂v
∂t

¼ χ�1 ∇ � Mi∇vð Þ þ ∇ � Mi∇ueð Þð Þ � Iionðs; vÞ; (1)

0 ¼ ∇ � Mi∇vð Þ þ ∇ � ðMi þMeÞ∇ueð Þ; (2)

ds
dt

¼ Fðs; vÞ: (3)

Here, Cm is the specific membrane capacitance (in μF/cm2), χ is the
membrane area to volume ratio (in cm−1), Mi and Me are
intracellular and extracellular bidomain conductivity tensors (in
mS/cm), Iion is the current density through in channels, pumps and
exchangers in the cell membrane (in μA/cm2) and F is a function
governing the dynamics of the state variables s.

The Kirchhoff network model (KNM)
Here, we introduce the Kirchhoff network model based on
representing each cell and an associated surrounding extracellular
space as computational nodes and applying Kirchhoff’s current law.
We assume that currents of the form

Ij;ki ¼ Gj;k
i uji � uki
� �

; (4)

Ij;ke ¼ Gj;k
e uje � uke
� �

(5)

flow between all connected neighboring cells j and k and
neighboring extracellular compartments j and k, respectively.
Here, Gj;k

i and Gj;k
e are the total intracellular and extracellular

conductances (in mS), and uki and uke are the intracellular and
extracellular potentials (in mV) in cell k and extracellular
compartment k, respectively.
In addition, we assume that membrane currents of the form

Ikm ¼ Ak
m Cm

dvk

dt
þ Ikionðvk ; skÞ

� �
(6)

flow between a cell and its associated extracellular space. Here, Ak
m

is the membrane area of cell k (in cm2), Cm is the specific

Fig. 1 Model comparison and convergence. a Illustration of the models. In BD, the extracellular space, the membrane and the intracellular
space are assumed to exist everywhere in the tissue, and the computational mesh can therefore be chosen irrespective of the location of the
cells. In KNM, each cell and an associated part of the extracellular space are represented as computational nodes connected to their
neighbors. In EMI, the computational nodes are set up to spatially resolve the extracellular space, the cell membrane, and the intracellular
space. Note that in the illustration, the extracellular space only partly covers the cells to make the cells visible, but in simulations, it surrounds
the cells on all sides. b Convergence analysis. The tables display the difference, in percent, between the CV computed using the finest
considered resolution (Δt= 1 μs, Δx= 3 μm) and coarser resolutions for three different adjustments of the default gap junction resistance, Rg.
The discretization parameter that is not varied is fixed at the finest resolution. Note that for KNM, there is no spatial discretization since the
computational nodes are the cells, and for EMI, the applied numerical scheme is unstable for 1 × Rg if Δt ≥ 20 μs29. c Comparison of the CV for
the three models. The CV is computed using the finest considered resolution for three choices of Rg. Note the change of definition of the axes
for the three panels.
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membrane capacitance (in μF/cm2), vk ¼ uki � uke is the membrane
potential of cell k (in mV), Ikion is the ionic current density through
ion channels, pumps and exchangers on the membrane of cell k
(in μA/cm2) and sk is a set of additional state variables modeling
the membrane dynamics of cell k.
The sign of the current flowing across the cell membrane depends

on the charge of the ions and the direction of flow. In the context of
cardiac electrophysiology, it is common to focus on positive ions
such as Na+, K+, and Ca2+. By convention, the flow of positive ions
out of the cell is defined as positive. Therefore, the membrane
current Ikm is positive when the ions under consideration flow from
the intracellular space to the extracellular space. Similarly, Ij;ki is
defined as positive when positive charges flow from cell j to cell k.
Taking the defined current directions into account, for each cell

k, the membrane currents Ikm flow out of the cell into its associated
extracellular space and the sum of currents

P
j2Nk

Ij;ki flow into the
cell from neigbouring cells. Here, Nk denotes the collection of
connected neighboring cells of cell k. Applying Kirchhoff’s current
law, stating that the sum of currents into a cell must equal the sum
of currents out of the cell, we get

Ikm ¼
X
j2Nk

Ij;ki : (7)

Similarly, by applying Kirchhoff’s current law to the extracellular
space surrounding cell k, we get

Ikm þ
X
j2Nk

Ij;ke ¼ 0: (8)

Inserting (7) in (8), we getX
j2Nk

Ij;ki þ
X
j2Nk

Ij;ke ¼ 0; (9)

which means that we end up with the system

Cm
dvk

dt
¼ 1

Ak
m

X
j2Nk

Ij;ki � Ikionðvk ; skÞ; (10)

0 ¼
X
j2Nk

Ij;ki þ
X
j2Nk

Ij;ke ; (11)

dsk

dt
¼ Fkðsk ; vkÞ; (12)

where we have included the system of equations for the
additional state variables, sk, involved in the definition of Ikion. In
order to express the first two equations in terms of just two
variables, vk and uke instead of the three variables vk ; uki and uke , we
can use the definition of vk ¼ uki � uke to replace uki in the currents
of the form (4) by vk þ uke .

Spatial definition of KNM
In KNM, the network’s spatial configuration is determined by
the center of mass of each myocyte. Assuming uniform myocyte
size and distribution, the network takes the form of a regular,
uniform mesh. This implies that the cellular structure inherently
defines the network, eliminating the need for any additional
spatial mesh parameters aside from the size and position of
individual cells. Consequently, mesh refinement or coarsening
is not applicable to KNM. The computational load can be
modified by changing the total number of cells, but the spatial
resolution remains defined by the cells.

The extracellular-membrane-intracellular model (EMI)
In the EMI model (see, e.g., refs. 8,9), the extracellular space, Ωe,
and the intracellular spaces of the cells, Ωk

i , are represented as
spatially resolved volumes. The cell membrane, Γk, is defined at
the interface between Ωk

i and Ωe. Furthermore, intercalated

discs, Γk,j are defined at the interface between two neighboring
cells, Ωk

i and Ωj
i . The unknown functions ue and uki representing

the extracellular and intracellular potentials (in mV) are only
defined in Ωe and Ωk

i , respectively. Similarly, the membrane
potential, vk ¼ uki � uke , and the additional state variables of the
membrane model, sk, are defined only at the membrane Γk, and
the intercalated disc potentials, wk ¼ uki � uji , are defined at the
intercalated discs Γk,j of cell k. The system of equations reads

∇ � σi∇uki ¼ 0 in Ωk
i ; (13)

∇ � σe∇ue ¼ 0 in Ωe; (14)

Cm
∂vk

∂t
þ Ikionðvk ; skÞ ¼ ne � σe∇ue ¼ �nki � σi∇uki at Γk ; (15)

∂sk

∂t
¼ Fkðsk ; vkÞ at Γk ; (16)

Cg
∂wk

∂t
þ Ik;jgapðwkÞ ¼ nji � σi∇uji ¼ �nki � σi∇uki at Γk;j; (17)

for all cells k and all j∈ Nk, where Nk defines all the neighbors of
cell k. Here, σi and σe (in mS/cm) are the conductivities of the
intracellular and extracellular spaces, respectively, Cm and Cg are
the specific capacitance (in μF/cm2) of the membrane and the
intercalated discs, respectively, Ikion is the ionic current density
(in μA/cm2) through ion channels, pumps and exchangers in the
membrane of cell k; nki and ne are the outward pointing unit
normal vectors of Ωk

i and Ωe, respectively, and Fk governs the
dynamics of the additional membrane state variabels, sk. More-
over, Ik;jgap is the current density through gap junctions connecting
cells k and j given by the passive model

Ik;jgapðwkÞ ¼ 1

Rk;jg

wk ; (18)

where Rk;jg is the gap junction resistance density (in kΩ cm2) of the
intercalated disc connecting cells k and j.

RESULTS
One crucial feature of the electrochemical wave that triggers the
contraction of the heart muscle is its conduction velocity (CV). It is
well known that reduced CV can cause arrhythmias by enabling
reentry of the wave in a large heart volume, see, e.g., ref. 18.
Therefore, accurate computation of the CV is essential. To compare
the results of BD, KNM and EMI, we first determine the appropriate
time step and mesh parameters ensuring that the numerical
solutions are converged. Next, we investigate how the three models
predict different CVs under conditions where conduction is
impaired between cells. In our example, the reduction of the CV
is implemented by gradual increase of the parameter Rg,
representing cell-to-cell resistance. Physiologically, increased resis-
tance can, for instance, be caused by fibrosis, see, e.g., ref. 19. The
cell-to-cell resistance, Rg, enters BD as shown in Eqs. (66)–(68) in
ref. 14. For KNM, Rg is included as shown in Eq. (20) in the ’Methods’
section, and for EMI Rg is included as shown in Eq. (18).
After observing model differences in CV response to an

increased gap junction resistance, we demonstrate that these
differences lead to different predictions of reentry, which we
initiate using an S1–S2 stimulus protocol. In this protocol, S1
represents the primary stimulus of cardiac tissue, and S2
represents a premature, ectopic beat, see, e.g., refs. 20,21. Here,
we adopt the S1–S2 protocol from ref. 4. It should be noted that
we use CV to assess the accuracy of the models because of its
physiological relevance and importance. However, other mathe-
matical norms may prove more sensitive to changes in
physiological properties, see, e.g., ref. 22.
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Convergence of numerical solutions
Our aim is to compare the physiological accuracy and computa-
tional demands of BD, KNM and EMI, and we start by investigating
the required resolutions. Figure 1b displays the difference, in
percent, between the conduction velocity (CV) computed using
the finest considered resolution and a number of coarser
resolutions for each model. We consider three different choices
of gap junction resistance between the cardiomyocytes; normal
conduction (1 × Rg), reduced conduction (50 × Rg) and severely
reduced conduction (500 × Rg). Assuming that we want the
difference to the finest resolution to be 2% or below, we observe
that a temporal resolution of 10 μs appears to be sufficient for all
models. Similarly, for BD and EMI we need a 10 μm and a 5 μm
spatial resolution, respectively. For KNM, there is no adjustable
spatial discretization because the location of the cells defines the
node points.

Comparison of model solutions
Next, we investigate the accuracy of BD and KNM by comparing
their solution to the solution of the more detailed EMI model. The
conduction velocities computed for each model are reported in
Fig. 1c. We observe that for normal conduction conditions, the
models all display similar conduction velocities, but when the
conduction is impaired, there is a significant difference between
BD and the two other models. This indicates that both BD and
KNM are accurate in normal conduction conditions, but that KNM
is considerably more accurate in cases of reduced cell coupling.
An example where the inaccuracy of BD has important
consequences is illustrated in Fig. 2a. Using an S1-S2 stimulation
protocol (see, e.g., refs. 4,20,21) in a collection of weakly coupled
cells, a reentrant spiral wave is generated for KNM and EMI, but

for BD, the CV is too high for a reentrant spiral wave to be
generated.

Computational demands
In Fig. 2b, we report the CPU efforts for the simulations displayed
in Fig. 2a. We observe that KNM, in addition to providing very
similar results to EMI, is by far the least computationally
demanding model, with a CPU time of ~1% and 0.01% of BD
and EMI, respectively. Based on the results presented in Fig. 1, we
concluded that a spatial resolution of 10 μm was necessary to
ensure that the error of the CV is less than 2% for BD. This is in
contrast to earlier studies where spatial resolutions of about
Δx ≈ 250 μm have been applied23,24. Whereas the spatial mesh of
KNM is completely determined by the location of the individual
cardiomyocytes, the necessary resolution of BD is dictated by the
required accuracy of the numerical solution. The comparison of
CPU demands between BD and KNM thus depends on the
accuracy demanded by the specific application under considera-
tion. In general, the CPU demands of KNM and BD appear to be
comparable, but both are clearly faster than EMI.

KNM as a discrete version of BD
Upon inspection of the equations defining BD, we observe that
discretizing them on a standard finite difference lattice with the
cell length as the spatial discretization parameter results in a
numerical model that closely resembles KNM. Thus, KNM can be
interpreted as a special case of the discrete BD. However, as
noted in Fig. 1, KNM does not represent the converged
solution of BD.

BD
KN

M
EM

I

v (mV)

10 ms 30 ms 100 ms 700 ms CPU efforts

#nodes:
8,802

#time steps:
100,000

CPU time: 
55 min

#nodes:
400

#time steps:
100,000

CPU time: 
36 sec

#nodes:
333,899

#time steps:
100,000

CPU time: 
114 h

Fig. 2 Micro-reentry and CPU efforts. a A spiral wave is generated for KNM and EMI, but not for BD. We consider a collection of 20 × 20
weakly coupled cells (500 × Rg) and apply an S2 stimulation (see, e.g., refs. 20,21) in the lower left quarter of the domain 240 ms after an
S1 stimulation was applied in the left part of the domain. Note that also other tested timings of the S2 stimulation did not give reentry for BD
(see Supplementary Figure S1). The time points displayed at the top of the plots report the time (after the S2 stimulation) when the snapshots
are recorded. Note that the longitudinal axis is scaled for improved visibility. b CPU efforts associated with the simulations. We report the
number of mesh nodes, the number of time steps and the CPU time required to run the simulation. The applied resolution is Δt= 10 μs (all
models), Δx= 10 μm (BD), and Δx= 5 μm (EMI).
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DISCUSSION
The bidomain model (BD) is widely regarded as the state-of-the-
art model for numerical simulation of cardiac electrophysiology.
The model has acceptable computational demands, but lacks
accuracy at the level of individual cardiomyocytes. The EMI model
is a recently established cell-based alternative to BD with
subcellular accuracy at the expense of very high computational
demands. Here, we have presented the KNM approach that
achieves cell-level accuracy at reasonable computational
demands. Specifically, Fig. 2 shows that KNM requires consider-
ably less computing efforts than EMI while maintaining the
conduction properties of the detailed EMI model in the examples
considered here (see Figs. 1 and 2). It should, however, be noted
that KNM cannot reach the accuracy of EMI since EMI offers sub-
cellular accuracy. The computational complexity of KNM is
intuitively easy to comprehend, as it is solely based on the
representation of every cell in the tissue. It should be noted that
the KNM approach shares similarities with earlier models21,25,26. In
the present report, KNM is directly grounded in the biophysics of
cell interactions with neighboring cells and with the extracellular
domain. This implies that the model works equally well in 1D, 2D
and 3D, and that other cell types (e.g., fibroblasts) can be added to
the model in a straightforward manner. Excitable tissue is found in
many organs and the KNM approach can in principle always be
applied to model such collections of cells. However, we only have
experience in applying it to collections of cardiomyocytes.

METHODS
Membrane model
In our simulations, we let the membrane dynamics defining Iion and
F be governed by the left atrial membrane model defined in ref. 12.

Parameters
The specific model parameters used in our simulations are
σi= 4mS/cm, σe= 20mS/cm, Cm= 1 μF/cm2, Cg= 0.5 μF/cm2,
and Rg= 0.0015 kΩ cm2. This specified value of Rg represents the
default case of normal conduction. The cardiomyocytes are
120 μm long and have a radius varying from 6 μm at the cell
ends to 7 μm at the center of the cell. In EMI, we let the distance
from the boundary of the extracellular space to the cell collection
be 2 μm in all spatial directions.
The paper ref. 14 provides formulas used to define the parameters

χ,Mi and Me of the bidomain model from the EMI model parameters
and mesh. Similar formulas for KNM are based on classical
arguments of electrical conductance (see, e.g., ref. 27) and given by

Gj;k
e ¼ δj;ke

Aj;kσe

lj;k
; (19)

Gj;k
i ¼ 1

lj;k
δj;ki Aj;kσi

þ Rg
Aj;kg

; (20)

where Aj,k is the average cross sectional area between compart-
ments j and k (including both the intracellular and extracellular
parts), and lj,k is the distance between the cell centers. For
example, for two cells connected along the x-axis, we typically
have Aj,k= lzly and lj,k= lx, where lx, ly and lz are the lengths in the
x-, y-, and z-directions, respectively, of each compartment
containing a cell and an associated extracellular volume.
Furthermore, δj;ke and δj;ki are the extracellular and intracellular
fractions, respectively, of the volume between the centers of cell j
and k. In our simulations, these fractions do not vary across the
domain and can be computed from the EMI model mesh by

δj;ke ¼
R
Ωe
1 dVR

Ω1 dV
; δj;ki ¼

R
Ωi
1 dVR

Ω1 dV
; (21)

where Ωe and Ωi are the extracellular and intracellular parts of the
domain, respectively, and Ω denotes the entire domain. Similarly,
Aj;k
g is the area of the intercalated disc connecting cell j and k, and

Ak
m (see (10)) is the membrane area of a cell, which both can be

computed from the EMI model mesh.

Boundary conditions
For the simulations reported in Fig. 1, we consider a 1D strand of
15 cells. For BD and KNM, this results in a 1D problem and we
apply a homogeneous Dirichlet boundary condition for ue and
homogeneous Neumann boundary conditions for ui at the two
(left and right) boundaries of the 1D strand. For the EMI model, the
1D strand of cells is represented in 3D with homogeneous
Dirichlet boundary conditions on the leftmost and rightmost
extracellular boundaries and homogeneous Neumann boundary
conditions on the remaining outer extracellular boundaries.
For the simulations reported in Fig. 2, we consider a collection of

20 × 20 cells. For BD and KNM, this results in a 2D problem, and we
apply the same boundary conditions as those described above for
the entire domain boundary. For the EMI model, the problem is still
3D and we extend the homogeneous Dirichlet boundary conditions
to the outer extracellular boundary in both the x- and y-directions to
make the problem equivalent to that defined for BD and KNM.

Stimulus current
For the simulations reported in Fig. 1, we apply a stimulus current
to the membrane model in a part of the domain corresponding to
the location of the leftmost cell. For BD, this corresponds to
x∈ [0, 120 μm], for KNM, this corresponds to node number 1, and
for EMI this corresponds to x∈ [2 μm, 122 μm] and all values of y
and z. For the simulations reported in Fig. 2, we apply a first (S1)
stimulus current to a part of the domain corresponding to the
leftmost row of cells. For BD, this corresponds to x ∈ [0, 120 μm]
and all values of y, for KNM, this corresponds to the row of
leftmost nodes, and for EMI this corresponds to x ∈ [2 μm, 122 μm]
and all values of y and z. Then, after 240 ms, we apply a second
(S2) stimulus current to the lower left quarter of the domain. The
applied stimulus current has a strength of 40 μA/cm2 and lasts for
2 ms for both Figs. 1 and 2 and for both the S1 and
S2 stimulations.

Definition of conduction velocity
The conduction velocities reported in Fig. 1 are computed by
recording the difference between the points in time when the
membrane potential in the two points corresponding to the
centers of cell numbers 3 and 13 reach a value ≥−20mV. More
specifically, the conduction velocity is defined as the distance
between these two points divided by the difference in time.

Numerical methods
We apply a classical first-order temporal operator splitting scheme
to split the solution of the linear and non-linear parts of BD and
KNM28. Similarly, the EMI model is solved using the spatial and
temporal operator splitting technique from29. The PDEs of BD and
EMI are solved using the MFEM finite element software30 and the
meshes are generated using gmsh31. The linear part of the KNM
system is solved using a standard implicit (backward Euler)
scheme. The linear systems of all the models are solved using the
generalized minimal residual method, except for the intracellular
systems of the EMI model, which are solved using the conjugate
gradient method. The non-linear system of ODEs describing the
membrane dynamics is solved using a first-order Rush-Larsen
scheme32,33 generated using the Gotran code generator34 and
OpenMP parallelization35. All simulations are run using C++.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data created in this study are available at https://doi.org/10.5281/
zenodo.784866436.

CODE AVAILABILITY
The software used to perform the numerical simulations in this study is available at
https://doi.org/10.5281/zenodo.784866436. Running the code requires the MFEM C++
library for finite element methods available at https://mfem.org/download/. MFEM
version 4.1 was used in this study. In addition, ParaView (version 5.11.0), available at
https://www.paraview.org/download/ was used to create the visualizations in Fig. 2.
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