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An integrative mathematical model for timing treatment
toxicity and Zeitgeber impact in colorectal cancer cells
Janina Hesse 1, Tim Müller 2 and Angela Relógio 1,2,3✉

Increasing evidence points to a role of the circadian clock in the regulation of cancer hallmarks with a strong impact on the
understanding and treatment of this disease. Anti-cancer treatment can be personalized considering treatment timing. Here we
present a new mathematical model based on data from three colorectal cancer cell lines and core-clock knock-outs, which couples
the circadian and drug metabolism network, and that allows to determine toxicity profiles for a given drug and cell type. Moreover,
this model integrates external Zeitgebers and thus may be used to fine-tune toxicity by using external factors, such as light, and
therefore, to a certain extent, help fitting the endogenous rhythms of the patients to a defined clinic routine facilitating the
implementation of time-dependent treatment in clinical practice.
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INTRODUCTION
A wide range of diseases are reportedly associated with the
disruption of circadian rhythms, such as obesity, sleeping
disorders, neurodegenerative diseases and cancer development1,2.
To outgrowth in the body, cancer cells need to escape a series of
safe keeping mechanisms known as the hallmarks of cancer3.
Accumulating evidence points to a role for the circadian clock in
regulating most, if not all, of these hallmarks4. Understanding the
mechanisms that relate the circadian clock to cancer will help to
develop new therapies or optimize existing ones.
Cancer is a major health problem, it caused death in about one

out of six persons, and was the second most common cause of
death worldwide in 2020. This number is expected to increase
with the continuous aging of the population5. Colorectal cancer
(CRC) is the third most common cancer worldwide. Estimates from
2020 point to 1.9 million incidence cases and 0.9 million deaths
making CRC the second most deadly cancer type worldwide6. CRC
occurs in the large intestine (colon) and the rectum of the
gastrointestinal tract. Depending on the exact location, it is also
referred to as large bowel cancer, colon cancer or rectal cancer.
CRC affects mostly older patients, with a median age at diagnosis
of 72 years in males and 75 years in females7. Many patients are
treated with chemotherapy, during which they receive a drug that
interferes with the mechanism of cell division, and thus induces
cell death preferentially in fast-dividing cells. Fast dividing cells
encompass not only cancer cells, but also, for example, cells in the
gastrointestinal tract, which leads to side effects such as strong
diarrhoea, particularly devastating for patients of old age.
Chronotherapy aims to alleviate the side effects of anti-cancer
treatment by aligning the drug exposure to the circadian time of
the patient8, and several clinical studies reported an overall
treatment improvement in cancer when considering drug
administration time9. The desired timing where drug effectiveness
is maximised and side effects minimized results from the
regulation via the circadian clock over the expression of numerous
genes including those responsible for drug metabolism10. In a

clinical trial, in which patients received the drug irinotecan at
different times of the day, an ideal time of treatment, for which
patients showed the least severe side effects, could be identified
for sex-specific patient groups10, this is also the case for other anti-
cancer drugs11. For personalized treatment with irinotecan, we
established previously a mathematical model, which relates
circadian gene expression with the circadian profile of irinotecan
toxicity12. The model combined a transcription-translation net-
work of the core clock and of clock-regulated genes relevant for
irinotecan with a model of irinotecan pharmacokinetics and
-dynamics (PK-PD). Our previous work on SW480 and SW620 CRC
cells showed different toxicity profiles, in particular a flatter
circadian toxicity profile for the SW620 cell line with reduced
circadian oscillations12.
The need to have a mathematical model that can potentially

represent also other cells, and to predict cytotoxicity based on
new datasets, as well as to allow for a fitting of cytotoxicity
predictions based on the application of external Zeitgebers,
motivated us to develop the chronotherapy model here
presented, which is based on a transcription-translation network
for the CRC cell lines, HCT116, as well as SW480 and SW620 cell
lines. Compared to our previous mathematical model by Hesse
et al. 202112, we could improve the fit of the data by network
refinements including new network connections. The fit quality
improved the coefficient of determination from a R2 value of 0.23
(Hesse et al. 202112) to a R2 value of 0.29 with the here proposed
refinements (Supplementary Fig. 1). We also refined the PK-PD
part of the model by including biologically motivated temporal
effects of treatment on gene expression, such as an increase in
UGT1A1 and a transient increase in apoptosis rate.
The refined model is able to fit, in addition to the HCT116 wild

type (WT), also three different core-clock knock-outs (KOs), PER2KO,
NR1D1KO, and ARNTLKO, with altered circadian oscillations.
In patients, an analogue altered circadian rhythm amplitude,

and the expected reduced circadian oscillation of the toxicity,
would make chronotherapy less effective. To alleviate this
problem, the usage of external Zeitgebers (e.g. light, which can
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be used as phototherapy) is an interesting option, which may
enhance circadian amplitudes of the core clock and thus impact
toxicity profiles. In addition, external Zeitgebers may enable to
manipulate the patients’ cytotoxicity curves, which would allow,
for example, to fit a patient internal rhythm to a certain clinic
schedule. We thus incorporated in our model the influence of
external Zeitgebers, such as light, to the predicted toxicity profile.
Our results show that our model, which can be fitted to different
human CRC cell lines, also allows us to generate personalized
cytotoxicity curves, which can be further fine-tuned via external
Zeitgebers. Such an integrative approach using the individual
biological data (here cell lines) allows for a personalization of
treatment schedules, which may strongly benefit treatment
outcome and that can be further adjusted, if need be, to
implement an enhancement of the patients’ endogenous
rhythms, as well as an integration in a realistic clinic treatment
schedule, by using external cues to fine-tune the clock.

RESULTS
A refined core-clock model for drug toxicity in colorectal
cancer cells
Scheduling anti-cancer drug administration over 24 h may
critically impact treatment success in a patient-specific manner.
We address personalization of anti-cancer treatment toxicity time
for irinotecan, an anti-cancer drug widely used against digestive
malignancies. For this we developed a mathematical model that
links cellular pharmacokinetics and -dynamics (PK-PD) of irinote-
can to a representation of the core clock, which together predict
treatment toxicity based on circadian gene expression profiles,
and further allow for a fine-tuning of cytotoxicity profiles using
external Zeitgebers (Fig. 1).
We are particularly interested in heterogeneous circadian gene

expression profiles to simulate the variety of expected circadian
profiles within a patient cohort. The heterogeneity of different CRC
cell lines is due to their pathological state rather large; even cell
lines such as SW480 and SW620, which are derived from the same
patient, but different tumour sites (primary tumour vs. a metastasis
site, respectively), show strong differences in gene expression. We
found an appropriate level of heterogeneity in a set of three core-
clock KOs and the WT of the same CRC cell line (HCT116), as
described below.
The model used in this manuscript is based on a previous

model by Hesse et al. 202112. This new model combines a
transcription-translation network for circadian gene expression
with the pharmacokinetics and -dynamics of irinotecan,
extending the previous model to other CRC cell lines including
core-clock KOs. The model is improved to fit not only the
previously used microarray data of the human CRC cell line
SW480 and its metastatic counterpart, SW62012, but also for
longer timeseries of RNA-seq data for the same cells (Supple-
mentary Figs. 1 and 2), and for the human CRC cell line HCT116
and associated KO cell lines of the core-clock genes PER2,
NR1D1, and ARNTL (Fig. 2).
The transcription-translation network and the PK-PD model part

are linked by the expression of proteins related to irinotecan
metabolism, including the translation of the four irinotecan-
relevant mRNAs fitted by the network, UGT1A1, CES2, ABCB and
ABCC1, which modulate cell death in the PK-PD associated
network (Fig. 1b). As TOP1 shows no significant oscillations at
the gene expression level in CRC HCT116 cell lines, and the
corresponding protein TOP1 is reported as constant in the Caco-2
human colorectal cancer cell line13,14, we removed TOP1 from the
transcription-translation network, and assumed a constant TOP1
protein expression for the PK-PD model part.
For the transcription-translation network, the model presented

here refines the connections between network elements as

compared to the previous model from Hesse et al. 202112. In
particular, CES2 transcription is inhibited by PPARα15, and is only
indirectly activated by NFIL3 via NR1D16, NFIL3 inhibits PER17, and
NFIL3 and PAR compete for the same binding sites of the ABC-
transporters18. We now consider post-translational steps with
circadian protein degradation19, as an alternative to the post-
transcriptional steps for CES2 and ABCC (two for ABCC and three
for CES2 unidirectional activation steps) required in Hesse et al.
202112 to fit the mRNA expression of CES2 and ABCC (Fig. 1b). For
the pharmacokinetics and -dynamics part, the current model
replaces the treatment-induced phase-resetting of apoptosis
modulation, as used in Hesse et al. 202112, by a biologically
supported increase in UGT1A1 with treatment time, and a
transient increase in apoptosis modulation. The former is
motivated by the observation of increased UGT1A1 over time
following treatment20, the latter by published work, which reports
treatment-dependent alterations in genes that influence apopto-
sis, i.e., DDIT4 (DNA-damage-inducible transcript 4 gene, also
known as protein regulated in development and DNA damage
response 1 (REDD1) gene), a negative regulator of mTOR that
influences autophagy, shows a pronounced peak following
irinotecan treatment start21. The full mathematical description of
the model including the model equations with modifications
marked in blue font colour is provided in the Supplementary
Methods.
For the SW480 cell line, we compared fits to the RNA-seq data

(sampled over 30 h) with the rescaled microarray data (sampled
over 24 h) used in Hesse et al.12, see Supplementary Fig. 2.
For most genes, the Counts Per Million (CPM) values for the CRC

cell lines HCT116 WT, PER2KO, NR1D1KO, and ARNTLKO, as well as
SW480 lied within the same order of magnitude (maximal
difference three-fold). The noteworthy exception is UGT1A1,
responsible for drug removal, which was in the HCT116 cell lines
very low expressed, in agreement with the literature22. The RNA-
seq datasets of HCT116 WT, PER2KO, NR1D1KO, and ARNTLKO, as
well as SW480 showed consistent drifts, or linear trends, in
addition to the actual oscillation, that were not observed in the
SW480 microarray data (for SW480 see Supplementary Fig. 2, drifts
were particularly pronounced for the mRNAs of RORc, PPARα and
CES2). Genes with a linear trend in the RNA-seq data were still
fitted in reasonable agreement with the microarray data. This
highlights the potential of the model to uncover hidden
oscillations in the data. As the microarray data was measured at
an earlier time point and for a shorter time interval as compared
to the SW480 RNA-seq data, these linear trends may hint at an
underlying adaptation to the fresh cell culture media used for
synchronization only visible in the longer time series of the RNA-
seq data.

Paralog compensation contribute to the robustness of the
circadian clock in CRC cells
Our data shows paralog compensation for HCT116 cells, i.e.
downregulation of one paralog leads to the upregulation of
another, thereby maintaining the overall sum of expression
profiles almost unchanged, in agreement with previous reports
on other cell types23. In the PER2KO cells, PER1 is upregulated,
likewise in the NR1D1KO cells NR1D2 is upregulated (Fig. 3). In
contrast, ARNTL1 and ARNTL2 do not show compensation,
ARNTL1 KO leads to a downregulation also in ARNTL2 in HCT116
ARNTL1KO cells (Fig. 3). As we observed paralog compensation
for PER2 and NR1D1, we lumped certain paralogs within the
core clock into one variable of the dynamical model, i.e. the
dynamical variable PER is fitted to the sum of the expression
data of PER1, PER2 and PER3. Likewise, NR1D models the sum of
NR1D1 and NR1D2, and CRY models the sum of CRY1 and CRY2.
Such comparisons are possible because the used RNA-seq data
is quantitative. We observed more stable characteristics with
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regard to gene expression level and oscillation amplitude in PER
and CRY as compared to NR1D (with only partial paralog
compensation, see Fig. 3) and ARNTL (without paralog
compensation), see Fig. 2. This supports previously published
data showing that paralog compensation enhances the robust-
ness of the core clock23.

The effect of core-clock KOs in HCT116 cells can be simulated
by altering a subset of network parameters
As KO cell lines were derived with defined changes from the WT
(single gene KOs), they should resemble the wild-type cell line,
with strong differences in only few aspects of the gene regulatory
network, which try to compensate for the gene loss.

PERc

CRYc

PERc/CRYc

PERn/CRYn

CLOCKn/BMALn

Clock

CLOCKc/BMALc

CLOCKc BMALc

Bmal

Rev-Erb Ror

REV-ERBc RORc

REV-ERBn

RORn Cry Per

Ugt1a1

Pparα

PPARαNFIL3

Nfil3

Abcb1 Abcc Ces

PAR bZip

PAR bZIP

Core-clock

cytoplasm

nucleus

UGT1A1ABCB1 ABCC CES

CPT

SN

SNG

TOP

DNA
DNA/TOP

reversible
complex

irreversible
complex

outside
cell

CPTout

SNout

inside
cell

apoptosis
rate

SN

Primary Colorectal Cancer cell line SW480  
ATCC CCL-228TM; E-MTAB-7779 

75 bp reads; 12-42h, every 3h sampling

11 samples

Primary Colorectal Cancer cell line HCT116  
ATCC CCL-247TM; E-MTAB-9701 

75 bp reads; 9-54h, every 3h sampling

PER2KO

16 samples
WT

16 samples
NR1D1KO

16 samples
ARNTLKO

16 samples

Metastatic Colorectal Cancer cell line SW620  
ATCC CCL-227TM; E-MTAB-7779 

75 bp reads; 12-42h, every 3h sampling

11 samples

Transcription-
translation

model
optimization

LASSO regularization 
of HCT116 KOs

Cytotoxicity model 
optimization

Cytotoxicity model 
optimization

Zeitgeber
model

a

b

Toxicity
profile 
under 

Zeitgebers

Zeitgebers

Fig. 1 Based on the gene expression of different colorectal cancer cell lines fitted to an extended core-clock network, our model predicts
toxicity profiles for irinotecan treatment. a Schematic representation of the work flow to generate the mathematical model. b Network of
circadian regulation of toxicity. The extended core-clock model is connected to the PK-PD model by the expression of the ABC-transporters,
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Regularization of the model fit resulted in a small subset of
strongly deviating parameters that may give a hint as to which
biological processes were altered in the KO as compared to the
WT cell lines.
Our transcription-translation network models the interaction

between genes, and could be fitted to all CRC cell lines here
tested, including the three HCT116 core-clock KO cell lines (Fig. 2,
Supplementary Fig. 2). The large number of model parameters and
the restricted amount of data made the fit under-determined; a fit
of KO cell lines that optimizes a cost function on the squared error
between data and model simulation, i.e. that minimizes the
distance between data and simulation, differs from the fitted WT
scenario in several model parameters. Arguably, gene expression
differs in the KO cell lines compared to the WT for two related
reasons, the technical KO itself, and the biological counter

strategies: the KO of a given gene changes the gene expression
of all its direct or indirect target genes. The biological system aims
to counter these altered expressions by selected changes to the
gene network, thus partly recovering functional gene expression
as observed in the WT condition. We assumed that these changes
to the network occur in only a few parameters, but that the
associated parameter values can vary strongly. Technically, this
was implemented as a fit of the KO cell lines with LASSO
regularization, which minimizes the parameter divergence
between KO and WT. A penalty on the divergence of parameters
from the WT parameters, i.e. an additive cost-related to the
absolute difference of the new parameter value and the WT
parameter value (see Methods), ensured that only few parameters
of the new fit differ strongly from the WT scenario. LASSO
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regularization is appropriate for parameter selection, i.e. to identify
which parameters differ most strongly between WT and KO.
For the interpretation of the results, we considered parameters

that differ 5% or less from the WT as not being relevantly changed
(Fig. 4a). The number of parameters that vary more than 5%
decreased with the penalty term λ, thus making the KO models
more similar to the WT (Fig. 4b). However, larger penalty terms
also reduced the quality of the fit (Fig. 4c). We aimed for a balance
between both observations, thus the penalty term was chosen as
λ= 5 such that the number of altered parameters was significantly
reduced without reducing the model fit quality below 50% of the
coefficient of determination R2 without regularization, see Fig. 4b,
c. Penalty values larger than 5 reduced the number of parameters
that vary more than 5% by not more than 20 compared to a count
of over 100 parameters in the fit without regularization (Fig. 4b).
Our data showed that about half of the parameters is altered by

more than 5% in at least one KO, see Fig. 4a. Overall, we observed
a weakening of the interactions within the core clock. On the one
hand, weaker interactions result from a reduction of the
interaction strength, visible in Fig. 4a as those activation and
inhibition rates with values below 1. In particular, all KOs showed a
change in the inhibition of ARNTL and CLOCK (model parameters
ki5 and ki6 are below 1 for all KOs, i.e. reduced compared to WT).
On the other hand, weaker interactions result from an upregula-
tion of nuclear protein degradation (model parameters dx1, dx2, dx5
and dx6 tend to be larger than 1, i.e. increased compared to WT).
Thereby, faster degradation implies faster removal and thus a

reduced amount of nuclear proteins in the KO cell lines compared
to the wild type, and as the amount of nuclear proteins regulate
the translation of other genes, the reduced amount of nuclear
proteins can be interpreted as a reduced interaction between
core-clock genes. These changes seem to hint at an overall
reduced interaction between the core-clock elements of the KO
cell lines compared to the WT. These results are in line with
previous observations that under certain conditions, such as a
perturbation of the clock due to external or internal factors, the
interaction strength of the core-clock network is affected24,25.
The regularized fits to the KO cell lines fit the KO data nearly as

good as non-regularized fits (Fig. 4b, compare R2 values at penalty
0, i.e. no regularization, with R2 values at penalty 5), and the fits do
not resemble the WT data (negative R2 values result from a
comparison of the KO model fits to WT data). To evaluate whether
the transcription-translation network of the HCT116 KO cell lines is
more similar to their WT as compared to other cell lines, we fit two
different CRC cell lines, SW480 and SW620, using the same
regularization of the parameters based on the HCT116 WT as for
the KOs. In agreement with our assumption that the HCT116 KO
cell lines show a larger similarity to the HCT116 WT as compared
to other cell lines, we find stronger parameter deviations for the
SW480 and SW620 cell lines compared to the HCT116 KO cell lines
(Fig. 4d). This suggests that indeed the network of the HCT116 WT
compared to that of the SW480 and SW620 cell lines is more
different than compared to the HCT116 KOs, thus supporting our
assumption that the KO cell lines show networks similar to the WT.
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We hence suggest regularization, in particular LASSO regular-
ization, as a valuable methodology to investigate mechanistic
changes in KOs. While we do find reduced interactions within the
core clock, freeing only core-clock parameters is not sufficient to
explain the observed gene expression profiles; for example, the
model also requires changes in the ABC transporters to be able to
reproduce the KO effects on the network (Fig. 4a).

Treatment toxicity prediction for HCT116 cell lines
To predict toxicity profiles for irinotecan based on the mRNA
expression profile, the model of the transcription-translation
network is related to the pharmacokinetics and -dynamics (PK-
PD) of irinotecan via the expression of UGT1A1, CES2, ABCB and
ABCC1.
The protein translation of the mRNAs UGT1A1, CES2, ABCB and

ABCC1, as well as the free parameters of the PK-PD model part are
fitted to cytotoxicity from Hesse et al. 202112, see Methods for
details. Protein translation of UGT1A1, CES2, ABCB and ABCC1 is
implemented with circadian protein degradation, as common for
many proteins19. As in Hesse et al. 202112, maximal protein
expression is rescaled to the maximal concentrations used by
Dulong et al. 201514. To account for the reduced expression of
UGT1A1 in HCT116 cell lines, 10-fold reduction in the UGT protein
expression is assumed for HCT116 cell lines. After this rescaling,
UGT is increased in a sigmoidal way following treatment.

Besides the UGT increase, we free the parameters of the PK-PD
model part in the equations for the number of living and dead
cells, and the cell death modulation. The death rate in Hesse et al.
202112 shows an oscillation whose phase is reset by treatment
time. The death rate in the model presented here shows a
circadian oscillation independent of treatment, plus a transient
increase in death rate induced by treatment.
The lack of UGT1A1 expression in HCT116 cell lines, as well as

the here observed changes in other genes relevant for irinotecan
metabolism (CES2, ABC transporters, see Fig. 2), suggests that the
toxicity profile of HCT116 cell lines will likely differ from that of the
SW480 cell line.
Using a model fitted to the mRNA expression profile and

cytotoxicity data of the SW480 cell line, we modified the mRNA
expression profile of the SW480 cell line to the mRNA expression
profile of the extended core-clock network fitted to the HCT116
cell lines, see Fig. 2. As the circadian phase evaluated by ARNTL
expression differs between the cell lines, we adapted the phase of
the circadian protein degradation of UGT, CES, ABCB and ABCC, as
well as the phase of the circadian modulation in cell death rate to
the phase differences observed in ARNTL. This allows us to explore
how much the toxicity profile is shifted in different clock scenarios,
here represented by the various CRC cell lines used. The model
predicted that the maximum of the toxicity profile of the HCT116
WT is phase advanced by 1 h compared to the SW480 cell line
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(Supplementary Fig. 3). Compared to the HCT116 WT, the PER2KO

showed a phase delay of 1 h, while the NR1D1KO and ARNTLKO

showed toxicity profiles that were phase advanced by about 5 h,
see Supplementary Fig. 3c. We observed a slight amplitude
reduction in the circadian toxicity profile for HCT116 cell lines.
Reduced expression of the irinotecan-inactivating protein UGT1A1
led to overall increased toxicity compared to SW480, visible in
Supplementary Fig. 3c as higher Area Under the Curve (AUC)
values, as they were normalized to the control without treatment.

Extrinsic factors -Zeitgebers- can impact the core clock and
influence time-dependent toxicity
Zeitgebers are extrinsic factors able to change the circadian
rhythm, and thus also the metabolic processes associated with
irinotecan action. We used our model to link altered circadian
gene expression with the resulting output in the toxicity profile. In
particular, we considered short pulses of Zeitgebers as used in
clinical therapies, such as administered for light therapy or in the
scope of pharmacological interventions26.
As free-running circadian oscillator, our model showed perma-

nent changes in response to Zeitgeber pulses. To increase
similarity with clinical settings, we complemented the model with
a 24h-day-night rhythm. This established a reference circadian
oscillation, to which the model eventually returns following
disturbances. Light exposure is known to increase PER2 expression
both in the SCN and the periphery27,28, thus we implemented light
in the model as a transient increase in the maximal expression rate
of PER for the duration of the light exposure, as parameter flight in
the Supplementary Methods. Our results showed that an increase
in the maximal expression rate of PER by 7%, i.e. flight= 1.07, was
sufficient to entrain the circadian oscillator to the day-night
rhythm (Fig. 5).
In addition to the day-night Zeitgeber, the model received a

short-duration light pulse by transiently increasing PER maximal
transcription rate. The pulse led to a quick increase in PER
transcription, which altered the circadian phase of PER, and
consequently of all other genes (Fig. 5b).
To investigate the impact of pulses, we varied the three

parameters defining the pulse, pulse duration, i.e. the duration for
which PER maximal transcription rate is increased, pulse strength,
i.e. the factor flight > 1 by which PER maximal transcription rate is
multiplied, and pulse timing, i.e. the Zeitgeber time point at which
PER maximal transcription rate is increased. As expected, a longer
pulse duration or stronger pulse strength led to larger absolute
phase deviations, with a nearly linear correlation in the chosen
parameter range (Supplementary Fig. 4). Whether the pulse
advanced or delayed the circadian phase depended on the pulse
timing (Fig. 5c, d). For an intermediate pulse strength of
flight= 1.75, possible phase shifts ranged from about −2 h to
+2 h (Fig. 5d). Following a strong pulse of flight= 3 as in Fig. 5c,
the circadian oscillations still relaxed back to the reference
oscillations within a couple of days (Fig. 5c). Relaxation speed
and changes in oscillation amplitude depended on the pulse
timing (Fig. 5e), and differed for different genes (Fig. 5e, f). As
expected, core-clock genes, such as PER, tend to relax more
quickly to the reference oscillation as compared to clock-
controlled genes beyond the core clock, such as CES2 (Fig. 5e, f).
Besides light therapy, also other approaches for shifting

circadian phase have been suggested in a cancer context26. One
possibility may be to change the expression of NR1D1 by
pharmacological agents. We thus evaluated the impact of
Zeitgeber pulses in NR1D maximal transcription rate on gene
expression. For a given pulse strength and duration, pulses in
NR1D covered a similar range of phase shifts compared to pulses
in PER, but the timing required for a specific phase shift differed
(Fig. 5d). The largest phase shift for PER occured at 12 h Zeitgeber
time, and for NR1D at 3 h Zeitgeber time (Fig. 5d).

The dependence of gene expression on pulse timing also
translated to the prediction of toxicity profiles (Fig. 6). The
differences in CES2 gene expression and circadian phase
translated into the protein expression (Fig. 6a), and resulted in
different timings of maximal toxicity; our example showed
differences up to 2 h (Fig. 6b). The timing of the maximal toxicity
in response to light pulses depended on the cell line under
consideration, with differences observed between HCT116 WT and
KO cell lines (Fig. 6b-e), which could potentially represent patients
with different internal clock profiles.
Our results showed that the implementation of artificial

rhythmic light exposure was able to entrain the phase to a 24 h
oscillation. In agreement with our hypothesis that the timing of a
perturbation to the clock system is relevant, the sensitivity of our
model to pulses showed indeed a dependency on the pulse
timepoint. As observed, the pulse strength and duration can
additionally scale the effect of the phase shift induced by the
chosen pulse timing. For a clinical application, the personalized
identification of the appropriate intervention timing is thus
essential.

DISCUSSION
The appropriate timing of chemotherapy can alleviate side-effects,
increase efficacy, and thus favour cancer treatment10. While
previous studies have considered geostationary time to determine
the best timepoint of treatment, limited success of chronotherapy
might be explained by a lack of personalization of treatment to
the endogenous circadian rhythm of the patient. Particularly
promising may be the consideration of the patient’s peripheral
clock, which in principle mirrors the main pacemaker in the SCN,
but is strongly linked to living conditions influenced by behaviour
and illness, and can be measured at the molecular level using non-
invasive methods29–33.
To allow new study designs to consider the state of the

peripheral clock, as well as the possible influence of environ-
mental factors, we here investigated the potential for personaliza-
tion using a transcription-translation network model of circadian
gene expression. We simulated personalization of circadian timing
using a set of CRC cell lines with different circadian profiles,
artificially generated by manipulating their clock. Our results
highlight the relevance of compensatory mechanisms in gene
expression, paralog compensation, which implies for a set of
genes that personalized transcription-translation networks should
not be fitted to any individual gene, but rather the sum of the
expression of paralogous genes. Paralog compensation has been
previously reported also for the human osteosarcoma cell line U-2
OS, and the murine hepatocyte cell line MMH-D323,34. While U-2
OS cells show no paralog compensation for the PER2KO 23, and
MMH-D3 cells show an upregulation of PER334, we find for HCT116
cells that PER2 is compensated by PER1, not by PER3. We find no
paralog compensation for ARNTL, but rather a reduced expression
of ARNTL2 in the ARNTLKO, which can be explained by a positive
regulation of ARNTL2 by ARNTL, in agreement with previous
observations35.
We next show that fitting data by a computational model can

benefit from regularization methods, in particular LASSO regular-
ization, in order to prevent vastly different parameter sets leading
to similar dynamical behaviour. We here used classical LASSO
regularization to restrict the parameter divergence relative to the
wild type. A potentially more effective alternative for finding
essential parameters might be tanh-based error36, which is worth
considering in subsequent refinements of the model. For
personalization of a transcription-translation network, it is
necessary to determine a set of reference parameter sets for
human tissues, for example by simultaneously fitting gene
expression of different humans for one tissue type. Regularization
subsequently allows to restrict the parameters to be close to the
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reference, without the need to reduce the variance in biological
realism for the sake of a smaller, and thus better manageable set
of parameters. This approach is particularly promising for healthy
tissues, while for cancer tissues larger differences in the gene
network might be expected between patients.
The used transcription-translation network represents a model

of intermediate complexity32, the inhibition of PER/CRY on CLOCK/
BMAL, for example, is modelled as a blocking of DNA-binding
CLOCK/BMAL instead of the combined biological effect of
blocking, sequestration, and displacement, as used in another
model to enhance robustness of circadian oscillations37.
The transcription-translation network connects to a PK-PD

model part, which allows to predict the circadian toxicity profile
given a certain gene expression profile. As shown previously, the
proteins CES2 and UGT1A1, mainly responsible for the activation
and subsequent deactivation of irinotecan, have the strongest
influence on the circadian toxicity profile of irinotecan treat-
ment12–14. This makes HCT116 cells particularly interesting, as we
confirm, in accordance with the literature22, that under normal
conditions, HCT116 cell lines express no UGT1A1, nor its paralogs.
Interestingly, the toxicity profile of HCT116 predicts a higher
toxicity compared to the untreated control than the SW480 cell
line, in agreement with the observation that patients with reduced
UGT activation show higher sensitivity to irinotecan38.
Under certain experimental conditions, HCT116 cells may

overexpress UGT1A1, for example, blocking DNA methylation
increases UGT1A1 expression in HCT116 cells39. Gene expression of
UGT1A1 is increased during irinotecan/SN38 treatment20,40, which
motivates the increase in UGT1A1 in the model. Whether or not
irinotecan treatment induces UGT1A1 expression also in HCT116
cells is a question for future research.

Finally, we investigated whether our model could predict the
effect of Zeitgebers. This is relevant because therapies that shift
circadian phase, such as bright light therapy, have been
successfully applied to cancer patients with the aim to minimize
side effects like fatigue, most likely via enhancing circadian
rhythms41,42.
We complemented our model with a 24 h day-night rhythm and

tested the effect of pulses in PER, representing bright light pulses.
Light pulses lead to a transient increase in the SCN, and the
information on the light is then transferred to the periphery via
multiple channels43. Effectively, light pulses induce a shift in the
circadian phase, here implemented as an increase in PER. Yet,
more realistic implementations of light and sensitivity to light
might greatly improve the model towards a more clinically usable
scenario44,45. We found a strong dependence of the resulting
phase shift on pulse timing, but also on the specific gene under
consideration. This is particularly interesting given the involve-
ment of various circadian genes in chemotherapy-relevant
processes. Moreover, we show that pulses in a different gene,
NR1D, which might result also from the influence of external
Zeitgebers like medication or food intake (https://
metabolicatlas.org/)33, differ in the timing of the maximal phase
shifts, making this an attractive alternative if the desired phase
shift is not permissive with bright light therapy due to time
restrictions. Pulses in PER (light) and NR1D (pharmacological
agents or metabolic processes) led to differential responses of the
core clock, suggesting that the reaction of the core clock is specific
to the affected gene(s). In the future, we plan to extend our model
to explicitly include metabolic dynamics, such as those of the
model by Woller et al. 201646. These specific interactions will affect
a larger number of core clock genes in response to metabolic
signals, and will modulate the altered temporal profile resulting
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from perturbation induced in core-clock genes. Approaches such
as bright light therapy may potentially be used to entrain the
peripheral clock of patients to a timepoint where the patient-
specific treatment regime overlaps with the ideal treatment
timepoint, in particular given that specific treatment hours might
be unrealistic due to clinic opening hours.
Our approach to personalization of treatment timing uses a

model that relates gene expression with irinotecan toxicity. The
model may aid to bridge the observed gap between gene
expression and toxicity; for example, mouse data shows only
partly a relation between gene expression and toxicity47.
Promising for irinotecan treatment is also the experimentally
observed correlation between CES2 expression and the activation
of irinotecan in tumour tissue48.
Optimal treatment timing can be a combination of multiple

factors, and dependent on the patient and cancer type, as well as
development stage, the best timepoint of treatment could be
where the least side effects occur or where the highest
cytotoxicity lays, and mathematical models like the one here
presented may support clinical decisions in such choices and
enable a more personalized treatment planning, for the benefit of
the patients.

METHODS
Cell lines
This study considered data from six different CRC cell lines, RNA-
seq data from the wild-type HCT116 cell line and three core-clock
knock-outs of the HCT116 cell line (PER2KO, NR1D1KO, ARNTLKO)
published in Yalçin et al. 202124 (accession number: E-MTAB-9701),
and from SW480 and SW620 (El-Athman et al. 201949, accession
number: E-MTAB-7779), as well as for comparison microarray data
from SW480 (El-Athman et al. 201850, accession number: E-MTAB-
5876).

Mathematical model
Circadian dynamics in gene expression was modelled by a
transcription-translation network including core-clock genes and
core-clock regulated genes relevant for irinotecan metabolism.
This model was fitted to mRNA expression derived from RNA-seq
data for six different cell lines, the wild-type HCT116 cell line, three
core-clock knock-outs of the HCT116 cell line (PER2KO, NR1D1KO,
ARNTLKO) and for comparison with the previous model the SW480
cell line and the SW620 cell line. For the SW480 cell line, the model
is for comparison also fitted to microarray data, which was
rescaled to the same mean as the RNA-seq data.
The PK-PD model from Hesse et al. 202112 is refined in the

UGT1A1 expression and a circadian modulation of the cell death
rate. After rescaling to the appropriate protein concentration, see
Supplementary Methods, UGT is increased following treatment in
a sigmoidal way. The increase in UGT is modelled by multiplying
the protein expression resulting from the translation step and the
rescaling by a sigmoidal curve sig(t) with free magnitude MUGT and
free slope kUGT,

sig tð Þ ¼ 1þ MUGT
1þexp kUGTtþ4ð Þ (1)

with t as time after treatment.
The death rate in the model presented here shows a circadian

oscillation, plus a transient increase in death rate, which is
modelled by an alpha function, see Supplementary Methods.

Model fitting of the transcription-translation network
Parameter optimization used the evolutionary algorithm CMA-ES51

via the Python implementation pycma on a compute cluster. The
cost function is the squared error between data and model fit,
evaluating for each mRNA j the simulation sj(t) at the same time

points ti as the data xji was sampled, normalized by the maximum
gene expression of the mRNA expression data, summed for all
genes in the network:

costSE ¼
X
i;j

xji � sj tið Þ
maxk x

j
k

 !2

(2)

Here the maximum is taken for each mRNA over the
experimental time series. The division ensures equal weight to
all mRNAs independent of their concentration.
For the numerical integration we used Python’s scipy.integra-

te.odeint (method: lsoda, relative tolerance = 10−4, absolute
tolerance = 10−12). Model fits of mRNA were forced to oscillate
with a minimum relative amplitude of 5%, i.e. for the maximum
and minimum of the simulated time series we demanded (max-
min)/max > 0.05, with the exception of UGT1A1 for the HCT116 cell
lines, which was not expressed in these cell lines.

Regularization of the model fit
For LASSO regularization, the cost based on the squared error
between data and simulation from above was extended by the
following penalty on the parameters:

costLASSO ¼ costSE þ λ
1

npar

X
i

abs
pi � pWT

i

pWT
i

� �
(3)

where abs() is the absolute value, pi is the ith fitted parameter, npar
the number of parameters, and pi

WT is the ith parameter from the
fit of the wild type. The parameter λ is named penalty term, and
the larger this term, the more parameters are forced to remain
close to the wild-type parameter set. The penalty term λ was
chosen by evaluating for different λ the squared error and the
number of parameters with at least 5% deviation from the wild-
type parameters, see Fig. 4b, c. We have chosen λ with a squared
error comparable to the case without penalty, but with a clearly
reduced number of parameters with a large deviation.

Circadian toxicity profiles
The experimental circadian toxicity profile results from a calcula-
tion of the AUC for the experimental cytotoxicity curve shown in
Supplementary Fig. 3a as triangles. Cytotoxicity is the experi-
mental measure of the abundance of dead cells; it counts red
florescent objects which result from the binding of a cytox dye to
dead cells, see Hesse et al. 2021 for experimental details12. The
cytotoxicity curves are first rescaled to start at the same value as
the control condition also for treated conditions, to ensure that
the toxicity profile depends on the temporal development of the
cytotoxicity, but not the initial values at treatment onset.
For a model definition of the PK-PD part see Supplementary

Methods. The dynamical variable for the number of dead cells D
(see Supplementary Methods) is fitted to the experimental
cytotoxicity curves of the SW480 cell line, see Supplementary
Fig. 3a. A calculation of the AUC for this dynamic variable D gives
us the simulated circadian toxicity profile.
As for the transcription-translation network, parameter optimi-

zation used the evolutionary algorithm CMA-ES via the Python
implementation pycma on a compute cluster. The cost function is
the squared error between cytotoxicity data and model fit. For the
numerical integration we used Python’s scipy.integrate.solve_ivp
(method: lsoda, relative tolerance = 10−4, absolute tolerance
between 10−3 and 10−7).

Modulation of mRNA expression by light
Zeitgebers, such as bright light pulses, can shift circadian rhythms.
We asked whether a simple implementation of light as a transient
increase in the dynamical variable PER (modelling the sum of PER1,
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PER2 and PER3) can shift the toxicity profile of the model
simulation. Light was implemented as a change in the maximal
transcription rate of PER, i.e. the light-sensitive transcription rate
V1maxlight is given as

V1maxlight ¼
V1max; if light off

f V1max; if light on

�
(4)

where V1max is the maximal transcription rate of Per without light,
and f > 1 is a constant factor accounting for the increase in
transcription rate with light on, see Supplementary Methods.
The strength of the rhythmic light entrainment was determined

by the period of a harmonic oscillation of 24 h and a relative
amplitude over 64 h that is at least similarly strong as
without light.
We investigated the response of the system in response to a short

and strong light pulse with a duration of durpulse= 1 h and a strength
of flight= 3 unless stated otherwise, given at a certain perturbation
time Tpulse. If the transcription-translation network was not entrained,
light pulse stimulation induced persistent shifts in the phase of the
simulated mRNA expression. For a more realistic setting, we
entrained the circadian oscillations of the model with a zeitgeber
light that follows a 12 h dark-12h light cycle, with a strength of
flight= 1.07. Giving a light pulse stimulus in the entrained system led
to a transient shift in the phase of the mRNA oscillations.
We evaluated the phase shift induced by light pulses with

different parameters on the gene expression of ARNTL. The
relative phase shift was measured as the time difference of the
maximum of ARNTL in the second maximum after the pulse
comparing the condition with light pulse with the condition
without light pulse.
We also tested the effect of pulses that increase the expression

of NR1D, implemented in analogue to the pulses on PER.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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