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EMBED: Essential MicroBiomE Dynamics, a dimensionality
reduction approach for longitudinal microbiome studies
Mayar Shahin1✉, Brian Ji2 and Purushottam D. Dixit1,3,4,5✉

Dimensionality reduction offers unique insights into high-dimensional microbiome dynamics by leveraging collective abundance
fluctuations of multiple bacteria driven by similar ecological perturbations. However, methods providing lower-dimensional
representations of microbiome dynamics both at the community and individual taxa levels are not currently available. To that end,
we present EMBED: Essential MicroBiomE Dynamics, a probabilistic nonlinear tensor factorization approach. Like normal mode
analysis in structural biophysics, EMBED infers ecological normal modes (ECNs), which represent the unique orthogonal modes
capturing the collective behavior of microbial communities. Using multiple real and synthetic datasets, we show that a very small
number of ECNs can accurately approximate microbiome dynamics. Inferred ECNs reflect specific ecological behaviors, providing
natural templates along which the dynamics of individual bacteria may be partitioned. Moreover, the multi-subject treatment in
EMBED systematically identifies subject-specific and universal abundance dynamics that are not detected by traditional
approaches. Collectively, these results highlight the utility of EMBED as a versatile dimensionality reduction tool for studies of
microbiome dynamics.
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INTRODUCTION
Advances in sequencing have enabled the characterization of
host-associated microbiomes at an unprecedented resolution1,2. In
contrast to static cross-sectional snapshots of these ecosystems,
longitudinal studies offer unique insights into the biological
processes structuring microbial ecosystems within individual
hosts. For example, recent longitudinal studies on gut microbiome
have elucidated the determinants of microbiome colonization in
early childhood3,4, the effects of the microbiome on outcomes
following bone-marrow transplant5, and the recolonization of
microbial communities following antibiotic perturbation6–11.
Yet, understanding how the microbiome changes in response

to environmental perturbations such as host diet variation12,13 and
antibiotic administration10,11 remains challenging. This is because
of the enormous organizational complexity of these ecosystems,
comprising thousands of individual bacterial taxa whose abun-
dances vary substantially across space and time12,14–17 and across
biological replicates18. In addition, technical sequencing noise can
seriously confound true abundance changes15,19,20. For example,
technical noise is likely to be the most dominant factor in the
observed abundance variability in more than half the bacterial
taxa in longitudinal gut microbiome studies15 and likely remains a
significant contributor for all measured taxa.
Despite this complexity, recent work suggests that abundances

of individual bacterial species fluctuate with collective responses to
perturbations10–13. Therefore, the high-dimensional dynamics of
the microbiome could potentially be understood as dynamics of a
few collective variables on a manifold of a much smaller
dimension21. Indeed, approaches such as multidimensional scaling
that embed microbiome samples on a smaller dimensional
manifold are popular22–24. However, these methods only identify
shifts at the community level18. Crucially, these methods do not

account for temporal correlations in abundances of individual
bacterial taxa and variability across subjects.
At the same time, there is a long history of using dimensionality

reduction for multivariate time-series data25. Indeed, several
methods have been developed in the last decade focusing
specifically on the analysis of microbiome dynamics. Methods
such as ecogroup identification26 use covariation in longitudinal
data to infer interaction patterns between taxa. In contrast,
methods such as MDSINE227 and MTV-LMM28 infer interactions
among species by fitting microbiome abundance dynamics to
phenomenological models. Methods such as LUMINATE20, TGP-
CODA19, and DIVERS15 quantify the magnitude of noise in
abundance time series. Finally, dimensionality reduction
approaches such as CTF18 impute lower-dimensional representa-
tions for individual subjects as well as time points using sparse
tensor factorization of log-transformed data with the purpose of
identifying groups of subjects with unique dynamical signatures.
In this context, we present EMBED: Essential MicroBiomE

Dynamics. EMBED is a probabilistic nonlinear tensor
factorization-based dimensionality reduction method. EMBED
infers common dynamical features in microbiome trajectories of
multiple subjects that experience the same environmental
perturbation (dietary shifts, antibiotic exposure, etc.). EMBED
identifies a set of unique and orthogonal temporal bases which
we call Ecological Normal Modes (ECNs) and taxa- and subject-
specific loadings that quantify the contribution of individual ECNs
in determining the abundance dynamics of taxa in individual
subjects. ECNs are the statistically independent and unique
dynamical templates along which the abundance trajectories of
individual bacteria are decomposed. As we will show below, ECNs
can also be viewed as the latent drivers of the microbial
ecosystem. In systems strongly driven by environmental perturba-
tions, they are reflective of the environmental perturbations as
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well as inherent dynamics of the microbiome. EMBED has several
salient features. First, bacterial abundances are known to vary
substantially even over short periods of time16. To model this
variability, EMBED utilizes the exponential Gibbs–Boltzmann
distribution (also known as the logistic equation). The
Gibbs–Boltzmann distribution allows EMBED to capture very large
changes in bacterial abundances with relatively small changes in
the corresponding latents29. Second, by restricting the number of
ECNS to be low, EMBED can provide a low-dimensional description
of the community by filtering out small fluctuations in the data
that may be potentially unimportant. Third, ECNs are inferred
using a probabilistic model that accounts for sequencing noise
inherent in all microbiome studies15. Fourth, similar to the normal
modes in structural biology30, ECNs represent statistically inde-
pendent modes of collective abundance changes. Fifth, the
explicit multi-subject treatment in EMBED systematically identifies
universal and subject-specific dynamical behaviors and bacterial
taxa that exhibit that behavior.
Using synthetic data and several publicly available longitudinal

datasets12–14, we show that EMBED-based low-dimensional
approximation of microbial community dynamics is accurate and
robust to sequencing noise, underscoring the low-dimensional
nature of microbiome dynamics. Using synthetic data, we show
that EMBED infers statistically independent dynamical modes.
Using two datasets that encompass major ecological perturba-
tions including dietary changes13, and antibiotic administration10,
we show that the identified ECNs reflected specific ecological
behaviors and serve as templates to reconstruct the dynamics of
individual bacterial taxa. The loadings identify universal and
subject-specific bacterial taxa dynamics. These results show that
EMBED will be an important dimensionality reduction tool to
decipher collective dynamical behaviors within the microbiome.

RESULTS
EMBED identifies reduced-dimensional descriptors for
longitudinal microbiome dynamics
In EMBED (Fig. 1), we model microbial abundance counts nosðtÞ
(Operational taxonomic unit, OTU “o”, subject “s”, and time point
“t”) as arising from a multinomial distribution. The likelihood of
observing the data is given by:

L ¼
Y
s;t

Ns tð Þ!Q
o
nos tð Þ!

Y
o

qos tð Þnos tð Þ
(1)

where Ns tð Þ ¼
P

o nosðtÞ is the total read count on a given day t
for subject s. The probabilities qos tð Þ are modeled as a
Gibbs–Boltzmann distribution29

qos tð Þ ¼
1
Ωst

exp �
XK

k¼1

ztkθkos

 !
: (2)

In Eq. (2), ztk are time-specific latents that are shared by all
OTUs and subjects, θkos are OTU- and subject-specific loadings
that are shared across all time points, and Ωst is the normal-
ization constant. This low-rank tensor factorization is a special
case of the so-called Tucker decomposition31. The number of
latents is chosen such that K � O; T to obtain a reduced-
dimensional description. The parameters are estimated using
log-likelihood maximization. While most microbiome abundance
data are compositional32, new techniques are being developed
to measure absolute bacterial loads15,33,34. In addition to
modeling relative abundance data, EMBED is also equipped to
model measurements of absolute abundances. To do so, we use
the absolute abundance instead of the daily total read count
Ns tð Þ in Eq. (1).
The optimal values of the parameters depend on the initial

conditions but are nonetheless related to each other via a linear
transformation29. We therefore identify a unique and orthonormal
representation for the latents by exploiting the dynamical nature
of the data. The long-term stability of the microbiome is now well-
established16,17,35. Therefore, we fit a “return to normal” linear
dynamical model to inferred latents:

ztþ1 ¼ Azt þ uþ ε: (3)

In Eq. (3), the matrix A is assumed to be symmetric, u are the
baseline values, and the noise ε is assumed to be Gaussian
distributed and uncorrelated. After diagonalizing the inferred
interaction matrix (Supplementary Information section 1),
A¼vTΛv, we find that the re-oriented latents, or the ecological
normal modes (ECNs), yt ¼ vzt fluctuate independently of each
other

ytþ1;k ¼ Λkytk þ u0k þ ε0k : (4)

In Eq. (4), u0 ¼ vu, and ϵ0 ¼ vϵ: We redefine the corresponding
loadings Φ ¼ vTθ: Notably, since vvT ¼ I, this simultaneous
transformation is a mere reorientation of the latents and the
loadings and does not change model predictions29. As we will
show below, the orthonormal ECNs are uniquely defined for a
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Fig. 1 Schematic of EMBED. Dynamics of bacterial abundances within a community comprising three bacteria (left, red) is approximated
using K= 2 ECNs fyk tð Þg and corresponding loadings Φkf g (middle). From the abundance data, EMBED identifies ECNs that are shared across
subjects (right). The dynamics of abundances of individual bacteria are then approximated (green) using the inferred ECNs.
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given dataset. We note that the actual dynamics of the latents are
likely to be more complex than the linear model (Eq. (3)). Yet,
similar to normal mode analysis30, as we will show below, ECNs
represent a reorientation of the latents that uncovers the unique
and orthogonal templates of microbial abundance fluctuations.

EMBED accurately and robustly approximates microbiome
abundance time series using dynamics on a lower-
dimensional manifold
Using EMBED, we approximated microbiome abundance time
series from publicly available longitudinal datasets on human
beings11,12,14 and mice10,13 as well as synthetic data generated
using a multispecies Lotka–Volterra model36 (Supplementary
Information section 1). When using EMBED and other reconstruc-
tion methods to model synthetic data, we sampled relative
abundances using the true underlying propensities of species and
a multinomial distribution with a sequencing depth of 104. The
accuracy of reconstruction was evaluated against the true
propensities as predicted by the model. We compared EMBED
with CTF (compositional tensor factorization), a recently devel-
oped dimensionality reduction method by Martino et al.18,37, and
sparse vector autoregressive modeling (referred to as Lasso from
here onwards)38,39. While similar to EMBED, CTF obtains both time-
series reconstruction and lower-dimensional embedding, Lasso
only obtains time-series reconstruction using fewer parameters
than the data. To put Lasso on an equal footing with low-rank
factorization methods like EMBED and CTF, the number of
parameters in Lasso was adjusted to be approximately equal to
EMBED and CTF by adjusting the Lagrange multiplier that dictates
sparsity (# of parameters= K ×O+ K × T where O is the number of
OTUs and T is the number of time points for a single subject time
series, Supplementary Information section 2).
In Fig. 2, we show that EMBED-based reconstruction was

significantly more accurate than CTF and Lasso both at the level of
community composition as well as the dynamical trajectories of
individual OTUs. Figure 2a–c show results for the publicly available
datasets and Fig. 2d–f show results for the Lotka–Volterra model.
Notably, as seen in Fig. 2a–f, EMBED was better at data
reconstruction than CTF and Lasso for every time series. We note
that the results presented below are insensitive to the dimension
of the latent space (Supplementary Figs. 1 and 2) as well as the
sequencing depth (Supplementary Fig. 3) and to temporally
fluctuating carrying capacities in the Lotka–Volterra model
(Supplementary Fig. 4). The details of the analyses can be found
in Supplementary Information section 3.
Figure 2a shows the KL divergence between the observed

community composition and the reconstructions based on
EMBED, CTF, and Lasso. EMBED-based reconstruction was more
accurate at the community level (Wilcoxon signed rank p ¼
1:8 ´ 10�5 for the comparison between EMBED and CTF and
EMBED and Lasso). Figure 2b shows that the mean squared error
in OTU-specific longitudinal trajectories (averaged over OTUs) was
lower in EMBED-based reconstruction (Wilcoxon signed-rank p ¼
1:8 ´ 10�5 for the comparison between EMBED and CTF and
EMBED and Lasso). Finally, in Fig. 2c, we show the Pearson
correlation coefficient between the observed longitudinal time
series of individual OTUs and the corresponding reconstruction.
The Pearson correlation coefficient was averaged across OTUs for
each subject and one number was reported per subject. This
Pearson correlation coefficient was higher for EMBED (Wilcoxon
signed rank p ¼ 1:8 ´ 10�5 for the comparison between EMBED
and CTF and EMBED and Lasso). Figure 2d–f shows similar plots for
synthetic data (Wilcoxon signed rank p ¼ 7:5 ´ 10�10 for the
comparison between EMBED and CTF and EMBED and Lasso). We
note that all p-values are identical because EMBED reconstruction
was always better than CTF and Lasso reconstructions for

individual datasets (not shown), leading to identical p-values for
the nonparametric Wilcoxon test.
We next tested how the three methods perform when

reconstructing OTU-specific daily abundance changes (Fig. 2g).
To that end, we estimated the log ratio of daily abundance
changes Δ ¼ log10

xoðtþ1Þ
xoðtÞ across all OTUs and all days both in the

publicly available time-series data and in the reconstructed
time series ΔM (M= EMBED/CTF/Lasso). We then investigated
the dependence of the absolute error δΔ ¼ jΔ� ΔMj on the
abundance xoðtÞ. To that end, we binned the reconstruction error
for every 5th percentile of OTU abundances xoðtÞ. In Fig. 2g, we
plot the average error for each of the 5-percentile intervals (error
bars represent standard errors of the mean). Interestingly, we see
that while CTF is more accurate than EMBED and Lasso at
reconstructing low abundances, EMBED is more accurate in
reconstructing abundance changes for highly abundant OTUs.
Notably, our analysis suggests that abundance fluctuations of
OTUs with mean abundance <0.1% (log10=−3) are dominated by
technical noise15. We therefore conclude that CTF-based recon-
struction is accurate in modeling abundance changes that are
dominated by noise, suggesting that CTF-based reconstruction
may overfit to small and noise-dominated variations in OTU
abundances. In contrast, EMBED-based reconstruction is more
accurate compared to both CTF and Lasso for OTUs whose
abundances are measured with minimal technical noise.
The reorientation z→y of latents using a dynamical model

(Eqs. (3) and (4)) allows us to identify independent directions of
significant collective dynamics in the microbiome without
changing the accuracy of model predictions. In contrast, any
other orthogonal decomposition of the microbiome time series
that does not explicitly take into account dynamics is likely to
result in a latent space description that involves a mixture of
independent modes. To test the dynamical independence of
ECNs, we used the publicly available time series as above. Each
time series was approximated using EMBED using K= 5 ECNs. We
correlated the inferred ECNs with time series of abundances of
individual taxa. Correlations that were above a 5% FDR using the
Benjamini–Hochberg procedure were deemed significant. As seen
in Fig. 2h, on average, 35% of OTUs correlated with only one ECN
while 45% of OTUs correlated with two or more ECNs. In contrast,
28% of OTUs correlated with only one component obtained using
CTF (Wilcoxon signed-rank test p= 0.033) and 54% OTUs
correlated with two or more components (Wilcoxon signed-rank
test p ¼ 0:014). Notably, the specificity of taxon-ECN correlations
was not due to the accuracy of the EMBED-based reconstruction.
To test this, we performed SVD on the zθ matrix prior to the
reorientation step (Eqs. (3) and (4) above) to obtain orthonormal
latents ySVD that did not consider the longitudinal nature of the
data. We found that statistics of correlations of individual bacterial
taxa with ySVD were indistinguishable from CTF and significantly
different compared to ECNs (Supplementary Table 1). These
analyses underscore the importance of dynamical system-based
reorientation of the latents in EMBED in identifying independent
modes of significant collective abundance changes.
The probabilistic nature of EMBED accounts for spurious

abundance variability arising from sampling noise. To test the
robustness of EMBED to sampling noise, we generated ground
truth trajectories using the multispecies Lotka–Volterra model36

with both competitive and cooperative interactions40,41. Using
different sequencing depths, two sets of read counts were
sampled using the same ground truth abundances. EMBED (and
CTF) was used to model the observed read counts. The more
robust the inference is to sampling noise, the better will be the
agreement between the two inferred models. Indeed, as seen in
Fig. 2i, EMBED-based reconstruction of abundance time series was
internally consistent and robust to sequencing noise. The
statistical significance of these results evaluated using the
Wilcoxon signed-rank test can be found in Supplementary Table 2.
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Based on these analyses, we conclude that EMBED can
accurately and precisely reconstruct microbiome abundance
time series using a small number of latent dimensions and that
the inferred ECNs correspond to orthogonal modes of
fluctuations in the collective dynamics of the bacterial
ecosystem.

Effect of dietary oscillations on the gut microbiome
Host diet has been shown to be a major factor influencing gut
bacterial dynamics13,42 but in a subject-specific manner43. We
applied EMBED to the data collected by Carmody et al.13 to
better understand bacterial abundance changes in response to
highly controlled dietary perturbations. Briefly, the diets of five

Fig. 2 EMBED-based reconstruction of microbiome time series is accurate and precise. a–f EMBED vs CTF/Lasso reconstruction accuracy.
The x-axis shows EMBED numbers and the y axis shows CTF/Lasso numbers. Colors represent different methods (green: Lasso, pink: CTF). K= 5
components were used in EMBED and CTF. The number of parameters in Lasso were adjusted to match the number of parameters in EMBED
and CTF (see text). a–c Human and mice datasets. Individual symbols represent different datasets. d–f Synthetic data generated using the
Lotka–Volterra model and sampled at a sequencing depth of 10,000. The method reconstructions are compared against the ground truth
probabilities generated from the Lotka–Volterra model. a, d Kullback–Leibler (KL) divergence between the data and the reconstructed
community composition. The KL divergences were normalized by sample size (number of time points). b, e Mean squared error of OTU-
specific time series computed between the data and EMBED/CTF/Lasso-based reconstructions. For each time series, the error was first
calculated on longitudinal trajectories of abundances of individual OTUs and then averaged over all OTUs. c, f The Pearson correlation
between observed longitudinal trajectories of OTUs and the corresponding reconstruction. g The mean of the absolute error δΔ in
reconstruction of OTU-specific daily abundance change Δ ¼ log10

xo tþ1ð Þ
xoðtÞ plotted as a function of OTU abundance xoðtÞ at time t. The x axis was

binned in intervals of 5 percentiles and mean and standard errors of δΔ were plotted on the y axis. Analysis was performed by combining data
across all publicly available datasets considered. h Fraction of taxa that correlated with only one (left) and more than one ECN (right) obtained
using EMBED, temporal components obtained using CTF, and temporal component obtained using singular value decomposition of the zθ
matrix. Colors represent different methods (pink: CTF, yellow: SVD). Individual symbols represent different datasets. i Symmetric
Kullback–Leibler divergence (Jensen–Shannon divergence) between two models learned from two different multinomial samplings of the
same underlying ground truth microbiome trajectories generated using the multispecies Lotka–Volterra model across different sequencing
depths. The dashes represent the maximum, the mean, and the minimum of the data.
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individually housed mice were alternated every ∼3 days
between a low-fat, plant-polysaccharide diet (LFPP) and a
high-fat, high-sugar diet (HFHS). Daily fecal samples were
collected for over a month (Supplementary Fig. 5).
Using K= 5 ECNs, EMBED obtained a lower-dimensional time-

series approximation that reconstructed the original data with

great accuracy (average taxa Pearson correlation coefficient
r ¼ 0:75± 0:18, average community Pearson correlation coefficient,
r ¼ 0:98± 0:003) (Supplementary Fig. 6). Notably, the inferred
ECNs were unique (Supplementary Fig. 7), and robust to missing
samples (Supplementary Fig. 8 and Supplementary Table 3) as
well as variation in OTU inclusion criteria (Supplementary Fig. 9
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and Supplementary Table 4). The first ECN y1ðtÞ represented a
relatively constant abundance throughout the entire time series
(Fig. 3a and Supplementary Information section 3). Moreover, the
corresponding loading vector Φ1 showed a significant correlation
to the average individual OTU abundance across time (average
Spearman correlation coefficient across subjects, r ¼ �0:86± 0:06,
Fig. 2b), suggesting that despite large-scale, cyclic dietary changes,
gut bacterial abundances in the community tended to fluctuate
around a constant average abundance.
In contrast, ECNs y2ðtÞ and y3ðtÞ collectively captured the cyclic

nature of dietary oscillations, confirming that the murine diet
rapidly and reproducibly alters abundance dynamics even at the
individual OTU level (Supplementary Information section 3). To
identify OTUs whose oscillatory dynamics were similar across
subjects, we clustered the loadings Φ2 and Φ3 of individual OTUs
on ECNs y2ðtÞ and y3ðtÞ using Ward’s linkage. This approach is in
spirit similar to clustering the log ratio of OTU dynamical
trajectories reconstructed using OTU loadings corresponding only
to ECNs y2ðtÞ and y3ðtÞ and OTU loadings corresponding only to
ECN y1ðtÞ. This approach ensures that our identification of OTUs
with similar dynamics is not influenced by their overall
abundance. In addition to removing the effect of overall OTU
abundances, EMBED also allows us to cluster OTU dynamics only
along user-chosen dynamical modes. We found that bacteria in
the community largely clustered into three groups (Fig. 3d); those
whose abundances increased with the LFPP diet (blue, group 1),
and those whose abundances increased with the HFHS diet to
different extents (black and magenta, groups 2 and 3). In keeping
with recent studies44–46, we found that the genera Saccharicrinis,
members of the Bacteroidetes phylum, were significantly enriched
in group 1 (5 out of 13 compared to 7 out of 73, hypergeometric
test, p ¼ 0:0015) consistent with the notion that bacteria
belonging to this genera are able to degrade plant polysacchar-
ides and utilize the metabolic byproducts present in the LFPP diet.
Unexpectedly, we found two ECNs y4ðtÞ and y5ðtÞ that

represented profound nonoscillatory behavior in abundance
fluctuations. y4ðtÞ represented an overall drift in abundance (see
Supplementary Information section 3) over the time series and
y5ðtÞ represented a U-shaped recovery (see Supplementary
Information section 3). The loadings corresponding to these two
modes were significantly correlated across subjects (Spearman
correlation coefficient r ¼ 0:37 ± 0:16; averaged across mice). The
top five OTUs with most negative and positive loadings Φ4

(omitting OTUs that were also in the top five negative/positive for
loadings Φ5Þ experienced a significant, irreversible increase and
decrease throughout the time course of the experiment respec-
tively (Fig. 3c, top). Thus, while the dynamics of most gut bacteria
in this community exhibit rapid and reversible changes in
response to dietary oscillations, there exist certain bacteria that
exhibit irreversible changes over time. In contrast, the top five
OTUs with most negative and positive loadings Φ5 (omitting OTUs
that were also in the top five negative/positive for loadings Φ4Þ
experienced an inverted U-shaped and a U-shaped abundance
profile (Fig. 3c, bottom). Interestingly, OTUs that exhibited these

nonoscillatory behaviors differed significantly from subject to
subject (Supplementary Table 5).
EMBED can identify OTUs that exhibit universal dynamics and

those that exhibit subject-specific behavior. Each OTU within
each subject-specific ecosystem is characterized by a K-
dimensional vector of loadings corresponding to the K ECNs.
OTUs whose loading vectors are similar across all subjects have
similar dynamics across subjects and vice versa for OTUs with
different loading vectors. To identify these universal and
subject-specific OTUs, we computed the average distance
across all pairs of subjects of the OTU-specific loadings vectors.
This average distance also correlated strongly with the average
distance of the subject-specific OTU-abundance trajectories
(inset of Fig. 3e). In Fig. 3e, we plot the average abundance of
ten OTUs with the most similar Φ loadings (bottom) and the 10
most dissimilar Φ loadings (top). The black lines show the OTU-
averaged abundances for individual subjects and the colored
bold lines (green and orange) show the average across subjects.
As seen in Fig. 3e, the top ten OTUs whose dynamics were
similar across all subjects strongly preferred the HFHS diet.
Notably, these OTUs are overrepresented by the genus
Oscillibacter (4 out of 10 compared to 5 out of 73, Hypergeo-
metric test p ¼ 9 ´ 10�4). Interestingly, this overrepresentation
was observed only at the genus and the family level and was
not observed at higher taxonomic classifications (Supplemen-
tary Table 6). Moreover, no other genus or family was
overrepresented. This strongly suggests a specific genus level
preference to high-fat high-sugar diet in the genus Oscillibacter
that can override subject-specific ecosystem parameters.
Notably, Oscillibacter are known to prefer high fat47 as well as
high-sugar diets48. Future work is needed to further establish
the mechanistic connection between Oscillibacter and HFHS
diets. Notably, beyond these specific associations, we found
that OTU-specific dynamics across subjects was not driven by
the phylogeny (Supplementary Table 7 and Supplementary
Information section 4).

ECNs identify modes of recovery of bacteria under antibiotic
action
Broad-spectrum oral antibiotics have significant effects on the gut
flora both during and after administration. Specifically, micro-
biome abundance dynamics following antibiotic administration
can potentially exhibit a combination of several typical behaviors
which may reflect different survival strategies7,9,11,49. These
include quick recovery following removal of antibiotic, slow but
partial recovery, and one-time changes followed by resilience to
repeat antibiotic treatment. The temporal variation in abundances
of any bacteria could be a combination of these typical behaviors.
Moreover, given that the gut ecosystems differ across different
hosts, the response of specific bacteria to the same antibiotic
treatment could vary from host to host. To better parse the major
modes of gut bacterial dynamics associated with antibiotic
administration, we analyzed the data collected by Ng et al.10.
Briefly, six mice were given the antibiotic ciprofloxacin in two

Fig. 3 The effect of dietary oscillations on microbiome dynamics. a Temporal profiles of the five inferred ECNs. Blue and red panels show
periods of time of administered LFPP and HFHS diets respectively. b The scatter plot of the feature Φ1 corresponding to the first ECN and the
average abundance of OTUs. c Top: The average abundances of five OTUs with the most negative and the most positive Φ4 values. (Bottom)
The average abundances of five OTUs with the most negative and the most positive Φ5 values. For each subject, the abundances of the
identified OTUs were first mean-normalized for each OTU, then averaged across the OTUs (faint lines). The bold lines show abundances
averaged across all subjects. d Top: A hierarchical clustering of OTUs using the two oscillatory loadings Φ2 and Φ3 identifies three major
groups of OTUs (colored). (Bottom) Mean relative abundance of OTUs in the three groups using the same colors as the top panel. The
abundances were first mean-normalized on a per OTU basis, then averaged across subjects for each OTU, and then averaged across all OTUs in
any given group. The error bars represent standard errors of mean estimated using the considered OTUs. e Abundance variation in top 10
OTUs that exhibit universal dynamics (green) and top 10 OTUs that show subject-specific dynamics (orange) as identified by the average
subject-to-subject variability in OTU-specific Φ loadings.
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regimens (days 1–4 and days 14–18) and fecal microbiome
samples were collected daily over a period of ∼30 days
(Supplementary Fig. 10).
We found that a very small number K = 4 ECNs was sufficient

to capture the data with significant accuracy (average taxa
Pearson correlation coefficient r ¼ 0:80 ± 0:2, average commu-
nity Pearson correlation coefficient, r ¼ 0:98 ± 0:01) (Supple-
mentary Fig. 6). Similar to the diet study, the inferred ECNs were
unique (Supplementary Fig. 7) and robust to missing samples
(Supplementary Fig. 8 and Supplementary Table 3) as well as
variation in OTU inclusion criteria (Supplementary Figs. 9 and
Supplementary Table 4). As shown in Fig. 4a and consistent
with the diet analysis, ECN y1ðtÞ was relatively stable through-
out the study (Supplementary Information section 3) and the
corresponding loading vector Φ1 was strongly correlated with
the mean OTU abundance over time (Spearman correlation
coefficient r ¼ �0:57 ± 0:07Þ (Fig. 4b). We found the remaining
several ECNs to follow broad classes of behaviors in response to
periods of stress. Indeed, ECNs, y2ðtÞ appeared to represent an
inelastic one-time change followed by a relatively stable
response (Supplementary Information section 3). ECN, y3ðtÞ
represented the opposite, it responded to the antibiotic
treatment the second time but not the first time. In contrast,
ECN y4ðtÞ represented elastic changes in the microbiome,
potentially representing abundances reproducibly decreasing
(or increasing) with the action of the antibiotic but quickly
bouncing back to pre-antibiotic levels when it was withdrawn
(Supplementary Information section 3).
These salient dynamical features were captured when we

clustered the OTUs using the loadings Φ2 �Φ4 using Ward’s
linkage (Fig. 4c), which identified seven major groups of OTUs

with distinct dynamical behaviors (Fig. 4c, d). Interestingly, while
some of the groups simply reflected behaviors of individual
ECNs, others could be understood according to their relative
contributions across multiple ECNs. For example, the behavior of
OTUs in groups 1 and 3 aligned with ECN y2ðtÞ, albeit with
opposing trends. Group 1 OTUs flourished during the first
antibiotic treatment but the second treatment did not elicit a
similar response. In contrast, OTUs in group 3 diminished in their
abundance after the first antibiotic treatment but were resistant
to subsequent antibiotic action.
OTUs in groups 2, 5, 6, and 7 displayed highly elastic dynamics

in response to both periods of antibiotic administration. Group 2
OTUs was overrepresented by the genus Akkermansia (all 2 out of
41 OTUs are in Group 2, Hypergeometric test p ¼ 0:026) flourished
during the antibiotic treatment but decreased their abundance in
a reversible manner when antibiotics were withdrawn. Notably,
species from this genus are known to be rare in the human gut
but only colonize it following treatment with broad-spectrum
antibiotics, including ciprofloxacin50. OTUs in groups 5, 6, and 7 in
contrast diminished their abundance in the presence of antibiotics
in a reversible manner. Group 6 was overrepresented by the genus
Blautia (3 out of 6 compared to 5 out of 41, Hypergeometric test
P= 0.017), while group 7 was overrepresented by the genus
Aestuariispira (all 2 out of 41 OTUs are in Group 7, Hypergeometric
test p= 0.0073). Finally, group 4 comprised OTUs that were
exquisitely sensitive to initial antibiotic administration, whose
abundance did not make any meaningful recovery. These OTUs
were overrepresented in the genus Coprobacter (2 out of 5
compared to 3 out of 41, Hypergeometric test p= 0.035). These
specific associations need to be further investigated.

Fig. 4 Effect of antibiotic treatment on the gut microbiome. a K ¼ 4 ECNs describe the microbiome of mice on antibiotics. The shaded
region indicates the first and second doses of ciprofloxacin. b The scatter plot of the feature Φ1 corresponding to the first ECN and the
average abundance of OTUs. c A hierarchical clustering of OTUs using loadings except for Φ1. Seven major groups of OTUs with similar
dynamical responses are identified from the clustering. d In every group and for each subject, the abundances of the identified OTUs were
first mean-normalized at the OTU level. The faint lines represent subject-specific average over OTUs. The bold lines represent average across
subjects. Error bars represent standard errors of mean estimated using the considered OTUs. e Average subject-to-subject variability in OTU-
specific Φ loadings for the seven identified groups.
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Notably, OTUs in groups 5 and 7, groups that represent
slower and partial recovery compared to OTUs group 6,
exhibited significant subject-to-subject variability as quantified
by both the average subject-to-subject variability in OTU-
specific Φ loadings (Fig. 4e) and the subject-to-subject
variability in OTU-specific abundance trajectories (Supplemen-
tary Fig. 10). While these OTUs exhibited qualitative dynamics
of recovery across all subjects (Supplementary Fig. 10), the time
course and the extent of recovery varied from subject-to-
subject. These findings are corroborated by recent studies that
show imperfect and subject-specific recovery of bacterial
abundances following antibiotic treatment11,51–53. Interestingly,
unlike the diet study, the OTUs in the same dynamical group
shared phylogenetic similarity (Supplementary Table 7 and
Supplementary Information section 3).

DISCUSSION
Bacteria in host-associated microbiomes live in complex
ecological communities governed by competitive and coopera-
tive interactions, and a constantly changing environment.
Extensive spatial and temporal variability and coordinate
changes in abundances in response to environmental perturba-
tions are a hallmark of these communities. Dimensionality
reduction can leverage these fluctuations, but its use towards
understanding microbiome dynamics has thus far been limited.
In this work, we presented EMBED, a dimensionality reduc-

tion approach specifically tailored to identify the ecological
normal modes in the dynamics of bacterial communities that are
shared across subjects undergoing identical environmental
perturbations. Identified ECNs shed insight into the underlying
structure of bacterial community dynamics. By applying EMBED
to several times series datasets representing major ecological
perturbations, we identified immediate and reversible changes
to the gut community in response to these stimuli. However,
EMBED also identified more subtle, longer-term, and perhaps
irreversible changes to specific members of the community, the
mechanisms, and consequences of which would be interesting
to pursue further. Notably, while EMBED can learn accurate
lower-dimensional representation in any longitudinal data
(Supplementary Fig. 11), the inferred ECNs are likely to be
easily interpretable when individual hosts are experiencing the
same environmental perturbations.
One of the ECNs in the studied datasets (Figs. 3 and 4) was

consistently found to be constant over time. This ECN also
reflected the temporal mean abundance of individual OTUs. We
can potentially leverage this insight and absorb this ECN in the
lower-dimensional model. Specifically, we can model the
departure from the mean abundance as a Gibbs–Boltzmann
distribution. That is, instead of Eq. (1), we can model OTU
abundances as

qos tð Þ ¼
μos
Ωst

exp �
XK

k¼1

ztkθkos

 !
: (5)

where μos is the temporal average abundance of OTU “o” in
subject “s”. This way, we model only the fluctuations around the
mean abundance and potentially reduce the dimensionality of our
description even further. We leave this for future studies.
One key parameter in EMBED is the number of components K.

A large K will necessarily fit the data better, potentially fitting to
noise and unimportant idiosyncrasies in the data. How do we
decide the appropriate number of components? In this work,
we chose K based on the qualitative elbow method54

(Supplementary Fig. 12). However, going forward, more
rigorous approaches can be implemented. EMBED is a
probabilistic model and information-theoretic criteria55 could
be used to identify the correct number of components. These

criteria seek a balance between an increase in the number of
parameters and the accuracy of fit to data (likelihood). We note
that the total likelihood of the data in our model is linearly
proportional to the sequencing depth. However, the reported
sequencing depth is typically over-inflated compared to the
true nucleotide capture probability of the experiments leading
to an inflated estimate of the total likelihood. This issue has
been well discussed in single-cell RNA sequencing (see e.g.,56).
One approach to solve this in the context of the microbiome is
to obtain technical repeats15 which can in turn allow us to
estimate the true technical noise.
The presented formulation of EMBED specifically focused on

identifying dynamical features of the microbiome in hosts that
were subjected to the same strong environmental perturbation.
However, in many cases, the perturbations may be weak, for
example, a gradual shift in diet57, or completely absent, for
example, when studying maturation of gut microbiomes of
infants58. In such cases, we expect a significantly higher host-to-
host variability in microbiome dynamics. In this case, EMBED can
be reformulated to capture this variability. Here, instead of the
tensor decomposition in Eq. (2), we can model the microbiome
dynamics using a tensor decomposition as follows:

qos tð Þ ¼
1
Ωst

exp �
XK

k¼1

ztkθokΓsk

 !
: (6)

In Eq. (6), ztk are time-specific embeddings, θok are species-
specific embeddings, and Γsk couple these embeddings to specific
subjects. We leave this generalization to future studies.
While EMBED was specifically developed to study microbiomes,

it reflects a more generalizable framework that can easily be
applied to other types of longitudinal sequencing data as well. We
therefore expect that EMBED will be a significant tool in the
analysis of dynamics of high-dimensional sequencing data beyond
the microbiome.

METHODS
Inference of ECNs from longitudinal data
We consider that abundance of O bacterial operational taxonomic
units (OTUs) are measured over a period of T days in S subjects.
We model the read counts nosðtÞ of OTUs “o” on any given day t in
subject s as a multinomial distribution. The likelihood of observing
the data is given by

L ¼
Y
s;t

Ns tð Þ!Q
o
nos tð Þ!

Y
o

qos tð Þnos tð Þ
(7)

where Ns tð Þ ¼
P

o nosðtÞ is the total read count on a given day
and qos tð Þ are the underlying propensities for individual OTUs. We
model these propensities using the exponential Gibbs–Boltzmann
distribution which allows us to capture large variations in OTU
abundances29.

qos tð Þ ¼
1
Ωst

exp �
XK

k¼1

ztkθkos

 !
(8)

where ztk are time-specific latents that are shared by all OTUs and
subjects, and θkos are OTU-and subject-specific loadings that are
shared across all time points. The number K of latents/loadings is
chosen such that K � O; T thereby achieving a lower-dimensional
description of the time-series data. We obtain the zs and the θs
using the maximum likelihood approach. While most microbiome
abundance data are compositional, new techniques are being
developed to measure absolute bacterial loads15. EMBED is
naturally equipped to model measurements of abundances. To
do so, we use the absolute abundance instead of the daily total
read count Ns tð Þ in Eq. (1) (Supplementary Fig. 13).
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To that end, we write down the log-likelihood of the data:

ln ¼ const:þ
X
t;o;s

nos tð Þlog qosðtÞ: (9)

The constant term of the likelihood does not depend on the
parameters and can thus be omitted in likelihood maximization.
Simplifying using Eqs. (7) and (8), we have

ln ¼ �
X
t;o;s;k

Ns tð Þxos tð Þztkθkos �
X
t;s

logΩst: (10)

Here xos tð Þ ¼ nosðtÞ=NsðtÞ is the relative abundance of OTU o at
time t. We obtain the gradients

∂ln
∂ztk

¼ �
X
o;s

NsðtÞ xos tð Þ � qos tð Þð Þθkos and (11)

∂ln
∂θkos

¼ �
X
t

Ns tð Þztk xos tð Þ � qos tð Þð Þ (12)

We use gradient ascent algorithm to find the latents and the
loadings that maximize the likelihood. In the analyzed datasets, the
read counts on all days were equal. Therefore, we performed
gradient ascent by normalizing the log-likelihood by the total read
count and using relative abundances on the left-hand side of Eqs.
(11) and (12). A learning rate of η 2 ½0:001; 0:005� ensured that the
inference was stable. When investigating the accuracy of EMBED-
based reconstruction of community composition (Fig. 2), we stopped
the inference when the relative gradients of both zs and θs were less
than 10�3 or if the maximum number of iterations exceeded 105.
When analyzing the diet and the antibiotics datasets, we stopped the
inference when the relative gradients of both zs and θs were less
than 10�4 or if the maximum number of iterations exceeded 106.
For a given K, using the microbiome data xos tð Þ and starting

from random initialization, we first simultaneously infer the
latents ztk and the features Θkos: We observe that the T ´ K
matrix z of latents can be multiplied by an invertible matrix B
zzBð Þ and the corresponding matrix K ´O ´ S matrix of features
can be multiplied by the inverse B�1 ΘB�1Θ

� �
and the

abundance predictions from the model do not change. There-
fore, we use the Gram–Schmidt procedure to orthogonalize the
matrix of latents such that zz0 where z0Tz0 ¼ IK is an identity
matrix. For an inferred matrix of latents z, we found out the
matrix multiplier B¼ zþz0 where z0 was the orthogonal matrix of
latents obtained after the Gram–Schmidt procedure and zþ is
the Moore-Penrose pseudoinverse of matrix z: Once B is
identified, we also transform the Θ matrix (ΘΘ0 ¼B�1Θ). At
the end of this procedure, we end up with orthonormal latents
z0 and corresponding features Θ0 that correspond to the same
abundances as z and Θ. For the sake of simplicity of notation,
we drop the primes.
Next, we model the dynamics of the orthonormal latents using

a linear dynamical system:

ztþ1;k ¼
X
k0

Akk0ztk0 þ uk þ ηkðtÞ (13)

where we assume that Akk0 ¼ Ak0k and ηkðtÞ are Gaussian distributed
uncorrelated noise vectors: hηk t1ð Þnk0 t2ð Þi ¼ δ12δkk0 where δab is the
Kronecker delta function. Our task is to find the symmetric
interaction matrix A and the vector u that fits this model. We
achieve this using squared error minimization. We write

E A;uð Þ ¼
X
t

ztk � zpredtk

� �2
(14)

where ztk is the inferred latent and zpredtk is the corresponding
prediction using zt�1;k and Eq. (13). We restrict the summation
only over time points t such that measurements are available for

time points t and t � 1. When there are no missing time points/
samples, Eq. (14) can be minimized analytically. However, in real
microbiome time series, samples are often missing. In that case,
we propagate the latents for the missing samples using the
dynamical Eq. (13). This makes the problem nonlinear as the
dynamical propagation involves matrix multiplication. Therefore,
to obtain a matrix A that minimizes the error in Eq. (14), we use
simulated annealing. Once the matrix A is identified, we transform
the orthonormal latents ztk into ecological normal modes ytk as
described in the Results section.
The scripts for obtaining ECNs y and corresponding loadings Φ

from read count data can be found at: https://github.com/mayar-
shahin/EMBED.
In short, the steps involved in inferring the ECNs and the

corresponding loadings are as follows.

a. Start with the T ´O ´ S OTU-table and a chosen latent space
dimension K. Randomly initialize the T × K matrix of latents z
and the K ´O ´ Smatrix of features Θ. In our implementation
on github, we stack multiple subjects to create a K ´ ðO ´ SÞ
matrix.

b. Perform gradient ascent using Eqs. (11) and (12) to obtain
the latents and the features.

c. Use the Gram–Schmidt procedure to obtain an orthonormal
set of latents z0 from the original latents z. Obtain the K ´ K
rotation matrix B¼ zþz0 and transform the features
Θ0 ¼B�1Θ. The new orthonormal latents z0 and features Θ0

fit the data to the same degree of accuracy as the original
latents z and features Θ.

d. Find the symmetric interaction matrix A by minimizing the
squared error in Eq. (14) using simulated annealing.
Diagonalize the interaction matrix A¼ vTΛv. Obtain the
ECNs, yt ¼ vzt and the corresponding loadings Φ¼ vTθ.

We note that in the current work, our goal was to use the
dynamical model to obtain a reorientation of the latent variables,
rather than fitting the latent variables to a decaying first-order
dynamics. An alternative approach to simultaneously fit the
dynamical model and the embedding model to the data.
Specifically, we can write the total likelihood

L ¼
X
t;o;s

nos tð Þlogqos tð Þ �
β

2σ2
X
t;l

zk t þ 1ð Þ �
X
k0

Akk0zk0 tð Þ � uk

 !
:

(15)

that combines both model fit to data and the dynamics of the
latent variables. In Eq. (15), we have assumed a Gaussian
distribution for the noise in the linear dynamics with standard
deviation σ: We denote by β the hyperparameter that dictates the
relative contribution of the data likelihood and the latent
dynamics to the overall likelihood. Notably, β is a hyperparameter
and is not a priori known. Therefore, our calculations can therefore
be thought of as a limit where β is small.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data and code related to the manuscript are available at https://github.com/
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