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Employing active learning in the optimization of culture
medium for mammalian cells
Takamasa Hashizume1, Yuki Ozawa1 and Bei-Wen Ying 1✉

Medium optimization is a crucial step during cell culture for biopharmaceutics and regenerative medicine; however, this step
remains challenging, as both media and cells are highly complex systems. Here, we addressed this issue by employing active
learning. Specifically, we introduced machine learning to cell culture experiments to optimize culture medium. The cell line HeLa-S3
and the gradient-boosting decision tree algorithm were used to find optimized media as pilot studies. To acquire the training data,
cell culture was performed in a large variety of medium combinations. The cellular NAD(P)H abundance, represented as A450, was
used to indicate the goodness of culture media. In active learning, regular and time-saving modes were developed using culture
data at 168 h and 96 h, respectively. Both modes successfully fine-tuned 29 components to generate a medium for improved cell
culture. Intriguingly, the two modes provided different predictions for the concentrations of vitamins and amino acids, and a
significant decrease was commonly predicted for fetal bovine serum (FBS) compared to the commercial medium. In addition, active
learning-assisted medium optimization significantly increased the cellular concentration of NAD(P)H, an active chemical with a
constant abundance in living cells. Our study demonstrated the efficiency and practicality of active learning for medium
optimization and provided valuable information for employing machine learning technology in cell biology experiments.
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INTRODUCTION
It is increasingly important to develop approaches that can
efficiently optimize culture medium, as developing culture
medium for mammalian cells is essential in the medical and
biopharmaceutical fields1. In addition to developing cell lines2–4,
culture media have been intensively studied to improve the
performance of developed cell lines5. The composition of the
culture medium, e.g., carbon sources, amino acids, fatty acids,
vitamins, trace elements, and salts6, usually must be optimized for
cell growth and production7–9. However, it is challenging to
optimize medium because the influence of components in
medium on cellular metabolism is complex10. The conventional
one-factor-at-time (OFAT) method fine-tunes the medium com-
ponents individually11, but this approach is time-consuming and
inefficient. The statistical method design of experiments (DOE) is
efficient when less than 10 medium components must be
adjusted12. Response surface methodology (RSM)13,14 uses the
quadratic polynomial approximation, which may be too simple to
represent the comprehensive interaction between the medium
and cell15. Machine learning (ML) has been used to overcome
these limitations16.
ML has generally been used to develop predictive models

based on the relationships among features of a given dataset. Its
workflow commonly involves processing input data, training the
underlying model, and predicting new data17. In recent years, ML
has been increasingly applied in biological studies18, particularly
for analyzing large or highly complex datasets16. As a representa-
tive example, the cell culture medium is a highly structured
dataset that commonly comprises hundreds of components as
variable features. Optimizing medium components is essential for
performing cell cultures, which are widely used in the food
industry, pharmaceutical development, medical therapy, etc12.. ML
has been tested for medium development19,20 and has shown

higher performance than that of DOE and RSM, the commonly
used approaches15,21.
The efficiency of medium optimization should depend on the

prediction accuracy of the ML model. Active learning has been
proposed as a method to improve prediction accuracy with a
small dataset by allowing ML models to select data for
training22,23. This approach has been practical in drug discov-
ery24–26 and has successfully been used to optimize the buffer
composition for protein biosynthesis in a cell-free system27.
However, applying active learning to optimize media for
mammalian cell culture remains under investigation. For instance,
in the past 20 years, 37% of studies on the development of
medium for CHO cells considered only one additive, 37% used
OFAT, 15% used DOE, and none used machine learning or active
learning28. Researchers that optimized the medium for other cell
lines used ML algorithms without active learning19,29. Whether
active learning can be applied to optimize the culture medium of
mammalian cells is an intriguing topic.
In the present study, active learning combining explanatory ML

with experimental validation was used to optimize the medium
composition to improve cell culture28,30. Although all medium
components influence cell growth and production, when con-
sidering the contributions of medium components to cell culture,
researchers have mainly focused on amino acids, which are critical
for cell viability, growth, and bioproduction31,32. The other
components remain largely under investigation. To address this
issue, the present study employed a gradient-boosting decision
tree (GBDT), a white-box ML algorithm, instead of the widely used
black-box ML algorithms, e.g., neural networks (NNs). Owing to its
high interpretability, GBDT has been broadly used in the fields of
medicine33–35, pharmacy36, ecology37, and so on. Our previous
study used GBDT to explore the contribution of medium
components to bacterial growth and successfully observed the
chemical dependence of different components as the survival
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strategy38. By applying GBDT in active learning to optimize the
medium for mammalian cells, we can identify the contribution of
individual medium components to cell culture.

RESULTS
Experimental design for acquiring the training data
The cell line HeLa-S3 was used in the study, as it could grow in
suspension mode and was thus easy to evaluate. The initial cell
concentration was determined at 104 cells/ml, as lower and higher
concentrations led to an extended culturing time (Fig. 1A) and
reduced growth rate (Fig. 1B). Quantitative evaluation of the cell
culture was achieved through testing multiple methods, i.e.,
counting the cell particles (Multisizer), cell imaging analysis
(BioStudio-T), chemical reaction assay (CCK-8), and cell stain and
counting (Haemocytometer). When comparing these methods to
the most reliable and commonly used method using Haemocyt-
ometer, the methods using Multisizer and CCK-8 were preferred
according to the correlation coefficients (Fig. 1C). Considering the
time needed for operation and the measurement range of cell
concentration (Fig. 1D), the chemical reaction assay using CCK-8
upon the cellular NAD(P)H abundance was selected, in which the
cell concentration was evaluated through the absorbance at
450 nm (A450). This method was efficient and convenient for
acquiring an extensive dataset for ML, as it could be performed in
a high-throughput manner. In addition, the medium components
subjected to optimization were determined according to the
composition of the commonly used Eagle’s minimum essential
medium (EMEM), which comprised approximately 31 components.
Except for phenol red and penicillin‒streptomycin, 29 compo-
nents were used to prepare the medium combinations for active
learning (Fig. 2A). The concentration gradients of these compo-
nents were varied on a logarithmic scale to acquire a broad data
variation and were not biased from biological measurements or
experimental experience. Through the wide range of chemical

concentrations, ML could search the medium combinations that
were never tested by conventional medium optimization. Finally,
cell culture in 232 medium combinations was performed, and the
temporal changes in cell culture were measured at 24- or 48-h
intervals (Fig. 2B). Biological replicates (N= 3–4) were conducted
for each sampling point, resulting in thousands of A450 records.
Note that any potential manual (personal) bias in preparing the
medium combinations irrelevantly affected the cell culture, as the
commercially purchased and the lab-made media (EMEM) showed
approximately equivalent cell concentration and viability (Fig. 2D).

Regular and time-saving modes of active learning for medium
optimization
Active learning was performed to search for the medium
combination that improved cell culture. As a regular mode of
active learning, A450 of the cell culture at 168 h was used for the
training because it was roughly the time point at which saturated
cell concentration was reached (Fig. 1A). The GBDT model was
used to predict the medium combinations leading to a better cell
culture, i.e., higher A450, and the learning loop was started with
the dataset comprising 232 medium combinations (Fig. 2C). Every
18–19 predicted combinations were subjected to experimental
validation. The experimental results were added to the training
data. The procedures for model building, medium prediction,
experimental validation, and training (Fig. 2C) were repeated four
times (Fig. 3A). As a result, both the A450 values of the cell culture
and the accuracy of the GBDT models were elevated. The cell
culture was significantly improved in round 3 and remained
comparable after round 4 (Fig. 3A). We assumed that either the
methodology or the cell culture reached its limitation. Note that
for the following round of ML, the tested media were not better
than EMEM, i.e., 74% and 58% showed better cell culture than
EMEM in rounds 3 and 4 (Supplementary Fig. 1A). The best media
were always better than EMEM after round 3 (Supplementary Fig.
1B). The prediction accuracy improved gradually as the number of

Fig. 1 Determination of experimental approaches for data collection. A Temporal changes in cell culture and cell viability at various initial
cell concentrations. The color gradation indicates the variation in initial cell concentration. Standard errors (s.d.) of biological replicates (N= 4)
are indicated. B Cell growth rates evaluated by exponential approximation. The color gradation indicates the variation in the initial cell
concentration. C Various methods for cell counting. Spearman correlation coefficients and p values are indicated. The dotted lines represent
the linear regression shown with the equations and R2. Errors (s.d.) of biological replicates (N= 2) are indicated. D Time required to evaluate
the cell culture in a 96-well microplate. The time for the experimental measurement was evaluated, i.e., after the 96-well microplate was
removed from the incubator for measurement to when the measurement of cell abundance (A450, counting, etc.) of a microplate was
completed.

T. Hashizume et al.

2

npj Systems Biology and Applications (2023)    20 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



rounds increased (Fig. 3B and Supplementary Fig. 2A). Thus, active
learning successfully fine-tuned the medium combination asso-
ciated with increasing ML accuracy.
Subsequently, whether the active learning loop could be

shortened was tested. As the data acquisition step (168 h) was
time-consuming, it was investigated whether A450 of the cell
culture at an earlier time could be used to predict the cell culture

at 168 h. Significant correlations in A450 were detected between
the earlier time points (48, 96, and 144 h) and the endpoint at
168 h (Fig. 4A). Although A450 at 144 h showed the best
correlation to that at 168 h, the time point of 96 h was selected
because the time was effectively shortened. Consequently, A450
of the cell culture at 96 h was employed as a time-saving mode for
active learning. The 232 medium combinations associated with

Fig. 2 Experimental data acquisition and active learning. A Medium components and their concentrations used in the initial dataset for
active learning. Every four to five concentration gradients, varying from zero- to 10–100-fold of the concentrations in EMEM, were set for each
chemical component. Only one component was changed in each medium combination, and a total of 232 combinations were finally acquired
and used as the initial dataset. Color gradation indicates the concentration gradients shown on a logarithmic scale. B Schematic drawing of
the experimental procedure for experimental data acquisition. C Flowchart of active learning for medium optimization. D Comparison of
commercially purchased and laboratory-made EMEM media. The upper and bottom panels show the number of viable cells and the viability,
respectively. HeLa cells cultured in 24-well plates for various times (24–336 h) are shown. Standard errors (s.d.) of biological replicates (N= 2)
are indicated. The red lines indicate the slope of 1.

Fig. 3 Regular mode of active learning for medium optimization. A Boxplots of A450 of the cell culture at 168 h. Every 18–19 medium
combinations predicted by the GBDTmodel using the culture data at 168 h are tested. Mean values for biological replicates (N= 3) are shown.
The gray horizontal line indicates the cell culture with EMEM. An arbitrary unit is shown as a.u. B Boxplots of the prediction accuracy of the
GBDT model built in each round. Mean absolute error (MAE), representing the average of the absolute difference between predicted and
measured A450 values, was calculated by fivefold nested cross-validation. “All” indicates the accuracy evaluated using the entire dataset from
the initial to Round 4. Asterisks indicate statistical significance by Mann‒Whitney’s U-test (p < 0.05). The boxplots show the median (center
line), interquartile range (bounds of box), the range of typical data values (whiskers), and outliers (circle).
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the A450 values of the cell culture at 96 h were employed as the
initial dataset for active learning. Both the A450 of the cell culture
at 96 h and the prediction accuracy were improved (Fig. 4B, C and
Supplementary Fig. 2B), as observed in the regular mode.
Intriguingly, A450 of the cell culture at 168 h was significantly
increased (Fig. 4D), even though ML used the culture data
acquired at 96 h. The medium combinations for improved cell
culture were successfully achieved when the culture data was
used earlier than necessary, which shortened the hundreds of
hours needed for medium optimization in the present case
(Supplementary Fig. 3). Note that no significant improvement was
achieved even if the additional round was performed with the
time-saving mode (Supplementary Fig. 4). In addition, the
correlation of A450 at 96 h to that at 168 h was higher in active
learning (Supplementary Fig. 5). The changing ratio of A450
between 96 and 168 h followed the high ratio, despite the initial
bimodal distribution of high and low changing ratios observed for
A450 between 96 and 168 h (Supplementary Fig. 5). This result
indicated that the initial data distribution slightly affected the ML.
These results demonstrated that the time-saving mode was
practical for ML-assisted medium optimization to improve cell
culture.

Contribution and composition of optimized medium
components
The contribution of medium components to cell culture was
estimated using GBDT. All datasets acquired through active

learning, i.e., 302 and 403 medium combinations in the regular
and time-saving modes, respectively, were used (Supplementary
Figs. 6 and 7). The importance of each component in the two
modes was estimated. The top ten components that mainly
contributed to cell culture partially overlapped (Fig. 5A, B). This
result indicated that both the regular and time-saving modes
fine-tuned similar components, e.g., metal salts and FBS, for
improved cell culture. This finding partially explained why the
medium optimization at 96 h improved cell culture at 168 h.
Intriguingly, NaCl and CaCl2, but not FBS, were the primary
components that determined the cell culture in the regular and
time-saving modes, respectively. Although FBS usually contains
calcium ions39 and 1–3 mM CaCl2 is generally supplied in cell
culture6, adjusting the concentration of calcium ions is essential
for cell growth because either excess or deficient calcium ions
induce cell apoptosis40–43. In addition, high osmotic pressure,
which is caused by the high concentration of NaCl in the
medium, arrests cell growth44. The results indicated that the
cellular permeability, which is regulated by NaCl and CaCl2,
might present the highest priority in cell culture rather than the
growth factors provided by FBS.
The compositions of the best ten media predicted with the

regular mode, which optimized A450 at 168 h, and the time-saving
mode, which optimized A450 at 96 h, were compared. The
concentrations of most components in the media predicted by
the two modes were comparable to those in EMEM (Supplemen-
tary Fig. 8). Six components showed significant differentiation in
concentrations of either amino acids or vitamins between the two

Fig. 4 Active learning for medium optimization in time-saving mode. A Relationship of the cell culture at various time points. Correlations
of the cell culture at 168 h to those at 44, 96, and 144 h are shown in orange, blue, and purple, respectively. The cell culture was evaluated at
A450. Spearman correlation coefficients and p values are shown. Standard errors (s.d.) of biological replicates (N= 3) are indicated. B Boxplot
of A450 of the cell culture at 96 h. Every 18–19 medium combinations predicted by the GBDTmodel using the culture data at 96 h were tested.
C Boxplot of the prediction accuracy of the GBDT model built in each round. MAE was calculated by fivefold nested cross-validation. “All”
indicates the accuracy evaluated using the entire dataset from the initial to Round 4. D Boxplot of A450 of the cell culture at 168 h. Every
18–19 medium combinations predicted by the GBDT model using the culture data at 96 h were tested. Mean values for biological replicates
(N= 3) are shown. The gray horizontal lines indicate the cell culture at 96 or 168 h with EMEM. Asterisks indicate statistical significance by the
Mann‒Whitney U-test (p < 0.05). The boxplots show the median (center line), interquartile range (bounds of box), the range of typical data
values (whiskers), and outliers (circles). An arbitrary unit is shown as a.u.

T. Hashizume et al.

4

npj Systems Biology and Applications (2023)    20 Published in partnership with the Systems Biology Institute



modes (Fig. 5C). This indicates that the regular and time-saving
modes specifically optimized amino acids and vitamins, respec-
tively. Interestingly, the concentration of FBS in all 20 media
predicted by the two modes was one order of magnitude lower
than that in the commonly used EMEM6, although the composi-
tions of other components were varied in these media (Fig. 5D).
FBS contains a variety of factors essential for cell growth, such as
trace elements (vitamins and minerals), hormones, free radical
scavengers and mitogenic growth factors45, which are absent in
the basal media46. Generally, 10–20% FBS in the media is suitable
for cell culture, as reported in enterocytes47, stem cells48, and
hybridomas49. This reduced amount of FBS should be a preferable
trend, considering the risk of contamination, the cost, and the
batch-to-batch variability in cell production50,51. Arginine in the
regular mode and choline, pantothenic acid, niacinamide, and
pyridoxal in the time-saving mode were significantly different
between the regular and time-saving modes (Fig. 5D). This
indicates that in regular mode, the amino acids necessary for cell
survival in the late phase of culture were adjusted, while in time-
saving mode, the vitamins that protect cells from oxidative stress
in the early phase of culture were adjusted. In conclusion, different
chemical components, with vitamins in the early phase and amino
acids in the late phase, may affect cell culture.

Comparison of the optimized media to the original medium
The optimized media showed higher A450 than that of the
original medium EMEM, regardless of the regular and time-saving
modes. The best ten medium combinations (i.e., those that
showed the highest A450) predicted with the regular and time-
saving modes were prepared to experimentally verify the cell
culture at 168 h. The predicted media showed better performance,
i.e., higher A450, than that of the original medium EMEM (Fig. 6A).
Thus, both modes resulted in successful medium optimization,
although a better performance was obtained by the media
predicted with the regular mode than those predicted with the
time-saving mode.
In addition, a direct comparison of the optimized medium to

the original medium was performed. The best of the 20 predicted
media was selected for comparison with the commercially
purchased EMEM. The cell culture was performed in a 1-mL
volume as a scale-up compared to the culture volume used in
active learning. The selected medium showed higher A450 (Fig.
6B), as well as increased A450 per cell (Fig. 6C), which failed to
improve the viable cell concentration (Supplementary Fig. 9).
Active learning of medium optimization likely increased the
cellular abundance of NAD(P)H more significantly than the total
abundance of NAD(P)H. This finding made us reconsider whether
the commonly used chemical assay for cell culture solely provides

Fig. 5 Contribution and composition of the optimized media. A Relative contribution of medium components to cell culture at 168 h
(regular mode). The top ten components and the sum of the remaining 19 components, i.e., Others, are indicated. Fivefold cross-validation of
GBDT in the regular mode was applied. Standard deviations of five replicates are indicated. B Relative contribution of medium components to
cell culture at 96 h (the time-saving mode). The top ten components and the sum of the remaining 19 components, i.e., Others, are indicated.
Fivefold cross-validation of GBDT in the time-saving mode was applied. Standard deviations of five replicates are indicated. C Chemical
component concentrations in the optimized media predicted by the regular and time-saving modes. The six chemical components, in which
the concentrations were significantly different between the two modes, are shown. The green and blue circles represent the media optimized
by the regular and time-saving modes. D Abundance of FBS in the optimized media. The concentrations of FBS in the optimized media
predicted by the regular and time-saving modes are indicated as green and blue circles, respectively. The gray horizontal line indicates the
serum concentration in the commercial EMEM medium.
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the cell concentration. The methodology used for experimental
data collection plays a crucial role in the final output of the
improved parameters.

DISCUSSION
Cell culture is a time-consuming process in medium development.
A much longer time is usually necessary for mammalian cell
culture than biochemical reactions using cell extracts and bacterial
cultures. Medium composition is often quickly optimized by
statistically reducing the experimental test conditions52. An
alternative approach to acquire the experimental dataset for ML-
assisted medium optimization is shortening the data acquisition
time for quick optimization. The present study was a challenging
trial to reduce the experimental time. The information on the early
phase culture successfully predicted the output of the late phase
culture (Fig. 4). This indicates that time-saving active learning is
practical in accelerating medium development. Nevertheless,
further verification is necessary to ensure that the current
approach is practical in optimizing culture media for biomedical
applications and biopharmaceutical production, which is highly
essential53.
In the present study, active learning of medium optimization

successfully increased cellular NAD(P)H abundance but not the
concentration of cells, which was unexpected. NAD(P)H abun-
dance is proportional to the number of viable cells54 based on the
assumption that NAD(P)H abundance per viable cell is constant.
However, our results showed that the cellular NAD(P)H abundance
could be increased by optimizing the medium (Fig. 6). We assume
that the optimized media was beneficial for metabolism and
increased NAD(P)H abundance in cells. The upper limit of cellular
NAD(P)H abundance might be why active learning failed to
increase A450 after round 4 (Fig. 3). In an alternative view, the
cellular capacity of NAD(P)H could be addressed by active
learning. This finding provided us with an ideal approach to
search for the biological limitation of living cells, e.g., the highest
growth rate, through active learning. Additionally, the results
demonstrated that the ML-combined medium optimization was
highly sensitive to the biological parameter, e.g., cellular activity or
amount, that was chosen as the variable in ML.
High priorities of vitamins and amino acids were predicted by

the two modes when determining the cell culture. As the time-
saving and regular modes used the culture data at 168 h and 96 h,
diverse components predicted by the two modes might reflect the
cellular physiological differentiation in the early and late phases. In

the time-saving mode, five of the ten determinant components
were vitamins (Fig. 5), which are closely related to the cellular
NAD(P)H abundance mediated by the stress response component
reactive oxygen species (ROS). The choline pathway synthesizes
serine and glycine, which are necessary for antioxidant glu-
tathione synthesis55 and were absent in the media. Pyridoxal
inhibits the formation of superoxide radicals56. Pantothenic acid
prevents ROS-induced apoptosis57. Niacinamide is known as the
amide of niacin, a precursor of NAD+ and NADP+58. The high
priority of these vitamins indicated that they play a crucial role in
deciding the early phase of cell culture. In the regular mode, the
determinants were tyrosine, arginine, and glutamine. The
abundance of amino acids was reported to be related to cell
viability59, as an excess amount was reported to accumulate toxic
metabolites60. Metabolisms of the three amino acids were found
to produce ammonia, 4-hydroxyphenylpyruvate, and dimethylar-
ginine61, which are toxic to cells62,63 and cause growth inhibition64

or cell apoptosis65,66. The high priority of these amino acids
strongly suggested that an adequate amount was essential to
maintain balanced metabolism for cell viability in the late phase of
cell culture. Taken together, we assumed that the amino acids
promoted cell growth in the late phase and that the vitamins
protected the cells from oxidative stress in the early phase. Further
transcriptome and metabolome analyses are essential to clarify
the differentiated requirement of amino acids and vitamins in
various cell culture phases.
The study demonstrated that active learning was effective in

medium optimization and that using time-saving mode with data
from the early culture phase was practical. Nevertheless, whether
active learning can be used for media development for other cell
lines or substance production remains to be examined. As a quick
reference, once the media optimized for the HeLa cell were tested
with another cell line CHO, an increase in cellular NAD(P)H
abundance was observed (Supplementary Fig. 10). Although the
optimized media were useful in culturing different cells, media
optimization using the target cell line is preferred to obtain the
best performance of cell culture. Additional training data are
needed for constructing the ML models. Living cells fluctuate even
under stable conditions67,68, and their working principles remain
largely unclear. ML-assisted medium optimization is assumed to
be limited within the cell line and the purpose of culture for
growth or production. Employing additional parameters related to
cellular physiology, e.g., cell size and gene expression, may lead to
a better and more efficient ML model for medium optimization.

Fig. 6 Performance of the ML-optimized media. A Comparison of the optimized media predicted with the regular and time-saving modes.
The top ten media, which showed the highest A450 absorbance of cell culture, are shown. The dashed line indicates the cell culture in EMEM.
The boxplots show the median (center line), interquartile range (bounds of box), the range of typical data values (whiskers), and outliers
(circle). B Comparison of A450 between the selected and EMEM media. The selected medium is the medium that achieved the highest A450 in
round 3 of the regular mode. The concentrations of choline and pyridoxal were tenfold higher and those of folic acid and FBS were tenfold
lower in the selected medium compared to EMEM. Thiamine was absent in the selected medium. Standard errors (s.d.) of biological replicates
(N= 2) are indicated. C Comparison of cellular A450 between the selected and EMEM media. The ratio between the mean A450 and the mean
number of viable cells is shown. An arbitrary unit is shown as a.u.
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In addition to biological restrictions, additional issues should be
considered to improve the accuracy of ML with fewer experi-
ments. First, uncertainty sampling is commonly employed to
improve ML models in active learning23. In the present study,
uncertainty sampling was absent in the datasets, as only the
medium combinations for better cell culture were selected for
experimental validation in active learning. Therefore, additional
experimental data of worse cell culture, such as uncertainty
sampling, for training was necessary to improve the accuracy of
ML models to further develop the culture medium. Second, the
overfitting or underfitting issues, which occurred once the ML
models were too complex or too simple17, were thought to
influence the performance of ML. The success in ML-assisted
medium optimization revealed that the ML model built in the
present study was neither overfitting nor underfitting. Here, the
ML model was built using existing Python libraries with adjusted
hyperparameters. Although most ML algorithms were developed
outside the biological field and used for nonbiological purposes16,
our results demonstrated that it was possible to construct ML
models accurately processing biological data using existing
libraries without requiring highly professional computational
techniques. The simple application of ML to medium optimization
was achieved due to a considerable effort to fine-tune the
experimental operations and obtain biological data that fit ML
technology. The present study provided an example of how to
apply ML to biological studies. Although many issues remain, the
successful trial provides valuable knowledge to further develop
ML-assisted medium optimization for biomedical applications and
biopharmaceutical production.

MATERIALS AND METHODS
Cell line and culture
The commonly used mammalian cell line, HeLa-S3, was obtained
from the RIKEN Cell Bank (Tsukuba, Japan). Cell culture was
performed at 37 °C in a CO2 incubator (E-50, As One) supplied with
5% CO2

69. Cells were cultured in multiwell plates (Iwaki) with a
culture volume of 0.5 or 1 mL in 48- or 24-well microplates,
respectively. Multiple wells were used for biological replicates. The
cultured cells were detached with PBS (-) (Wako) supplemented
with trypsin-EDTA (Sigma). The cells were collected by centrifuga-
tion and resuspended in cryopreservation solution (Wako) with
trypan blue (Wako). The cells were counted in a haemocytometer
(DHC-N01, Nano Entek) with a microscope (ECLIPSE Ts2, Nikon)70.
The number of viable cells was evaluated accordingly.

Preparation of cell stocks
Cell stocks for repeated cultures were prepared to reduce
experimental errors71. The cells stored in liquid nitrogen were
thawed at 37 °C and suspended in 4ml of Eagle’s minimum
essential medium (EMEM, Wako) for medium exchange. Subse-
quently, the cells were collected and suspended in 10mL of EMEM
supplemented with 1% penicillin‒streptomycin solution (Wako)
and 10% FBS (Japan Bio Serum). The cells were cultured in 10 cm
dishes (Violamo) for two days at 37 °C in a CO2 incubator and were
counted in a haemocytometer, as described above. The cell
culture was divided into 1 mL, dispensed into 1.2 ml cryotubes
(Biosigma), frozen at −80 °C for 24 h, and finally stored in liquid
nitrogen for future use. As a result, dozens of identical cell stocks
were prepared.

Preparation of medium combinations
The medium combinations were prepared with 31 commercially
available compounds, in which choline chloride and pyridoxal
hydrochloride were from Tokyo Chemical Industry, FBS was from
Japan Bio Serum, and the remaining compounds were from Wako.

The abundance of penicillin‒streptomycin and phenol red were
maintained at 1% and 0.03 mM, respectively. The concentrations
of FBS were changed in the range of 0.1–10%. The remaining 28
components were changed zero- to 10–100-fold of their
concentrations in EMEM. In brief, four to five different concentra-
tions were used for each component, and the changes were
roughly on a logarithmic scale, because a broad range of
concentration gradients benefited the ML-assisted optimization38.
The medium combinations were prepared by mixing the stock
solutions of the chemical compounds, which were individually
prepared in advance, with highly pure water (Direct-Q UV, Merck).
The stock solutions were sterilized by sterile syringe filters (Merck)
with hydrophilic PVDF membranes of 0.22 µm pore size,
dispensed in a small volume and stored at −20 °C for future
use. Note that all medium combinations were prepared immedi-
ately before use, and the stock solutions were used once. All
medium combinations tested in the present study were summar-
ized in Supplementary Data 1 and Supplementary Data 2 for the
regular and time-saving modes, respectively.

Cell counting according to single-particle analysis
A particle size analyzer (Multisizer 4, Beckman Coulter) was used to
count the number of cells. The cell culture in a 48-well microplate
(Iwaki) was suspended in 10ml of ISOTON II (Beckman Coulter).
Every 100–500 µl of the suspended solutions were flowed for
particle analysis, according to the manufacturer’s instructions.
Particles within the range from 8 to 12 µm in diameter were gated
as the cells. The mean value of the biological replicates was
calculated as the cell concentration.

Cell counting by imaging analysis
The cells cultured in a 48-well microplate (Iwaki) were imaged with
BioStudio-T (Nikon) according to the manufacturer’s instructions.
The image of the cell culture was analyzed with the software NIS-
Elements (Nikon), and the number of cells was evaluated
automatically.

Temporal changes in cell culture evaluated by chemical assay
The cell culture was performed in 200 µl with 96-well microplates
(Iwaki), and the culture conditions were described above. As
explained elsewhere72, only the wells in the middle of the plate
(60 wells) were used for cell culture to prevent evaporation.
Multiple microplates of identical cell cultures were prepared for
temporal evaluation of the cell culture. These plates were
subjected to the chemical assay sequentially at 48, 96, 144, and
168 h. Ten microlitres of CCK-8 (Dojin) was added to the cell
culture and incubated at 37 °C for one hour, according to the
protocol. Finally, 20 µl of 0.1 M HCl was added to arrest the
reaction, and the absorbance at 450 nm was measured with a
plate reader (Epoch 2, BioTek). A450 was used as the relative cell
concentration for machine learning.

Data processing
Absorbance reads of the chemical assay were exported from the
plate reader and processed with Python, in which the mean A450
of biological replicates was calculated using “mean” in the
“numpy” library. The actual A450 of the cell culture was calculated
by subtracting the mean A450 of the medium. The datasets
obtained in the present study are summarized in Supplementary
Data 1 and 2.

Machine learning
The gradient-boosting decision tree (GBDT) algorithm was used in
machine learning (ML), which was performed with Python. The
“GradientBoostingRegressor” from the “ensemble” module of the
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“scikit-learn” library was used to construct the ML model, where
the medium components and the A450 of cell culture were
employed as the explanator and the objective variables,
respectively. Fivefold cross-validation and grid search were
performed to search for hyperparameters, which used “Grid-
SearchCV” in the “model_selection” module of the “scikit-learn”
library. The hyperparameters were searched for “learning_rate”
from 0.001 to 0.5 in increments of 0.005, “max_depth” from 2 to 5
in increments of 1, and n_estimators fixed at 300. The other
hyperparameters were used by default. In addition, the “feature_-
importances_“ attributed to the GBDT model constructed in the
outer fivefold cross-validation was used to calculate the feature
importance. Gini feature importance was used, which was
calculated by computing the mean squared error (MSE) at each
node of the decision tree and then calculating the degree to that
of reduced MSE by partitioning by features73,74. Five replicates
were performed, and the mean values were used as the final
evaluation.

Active learning for medium optimization
Active learning in either regular or time-saving mode was
performed with a supercomputer, the Cygnus system (NEC LX
124Rh-4G). The A450 values obtained at 168 h and 96 h during cell
culture were used as objective variables in the regular and time-
saving modes, respectively. According to the ML model con-
structed with the initial training dataset, approximately 10 million
candidate medium combinations were obtained by altering the
concentrations of the medium components with four to five
variations. By inputting the 10 million candidate media into the
ML model, the relative cell culture, represented by A450, was
predicted. The top 18 or 19 medium combinations of high A450
were selected and subjected to experimental verification. The
experimental results were added to the training dataset for the
following learning and prediction. Learning, prediction, and
validation were performed repeatedly to achieve improved cell
culture, that is, as high A450 as possible. In addition, the
experimental results were used to evaluate the prediction
accuracy of the ML models.

Evaluation of the ML models
Fivefold nested cross-validation was performed to calculate the
prediction accuracy of the ML models, in which the hyperpara-
meters in the inner 5-fold cross-validation were adjusted using
grid search. The five scores computed in the outer 5-fold cross-
validation were used for prediction accuracy. Three metrics were
employed to evaluate the prediction accuracy: mean absolute
error (MAE), coefficient of determination (R2), and root mean
square error (RMSE). MAE and R2 were calculated using the
“mean_absolute_error” and “ r2_score “ in the “metrics” module of
the “scikit-learn” library. RMSE was calculated using “mean_-
squared_error” in the “metrics” module of the “scikit-learn”. The
square root of the MSE was calculated using “sqtr” in the “numpy”
library.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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