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Extracting functionally accurate context-specific models of
Atlantic salmon metabolism
Håvard Molversmyr 1,2,3, Ove Øyås1,2,3, Filip Rotnes 1,2 and Jon Olav Vik 1,2✉

Constraint-based models (CBMs) are used to study metabolic network structure and function in organisms ranging from microbes
to multicellular eukaryotes. Published CBMs are usually generic rather than context-specific, meaning that they do not capture
differences in reaction activities, which, in turn, determine metabolic capabilities, between cell types, tissues, environments, or
other conditions. Only a subset of a CBM’s metabolic reactions and capabilities are likely to be active in any given context, and
several methods have therefore been developed to extract context-specific models from generic CBMs through integration of
omics data. We tested the ability of six model extraction methods (MEMs) to create functionally accurate context-specific models of
Atlantic salmon using a generic CBM (SALARECON) and liver transcriptomics data from contexts differing in water salinity (life stage)
and dietary lipids. Three MEMs (iMAT, INIT, and GIMME) outperformed the others in terms of functional accuracy, which we defined
as the extracted models’ ability to perform context-specific metabolic tasks inferred directly from the data, and one MEM (GIMME)
was faster than the others. Context-specific versions of SALARECON consistently outperformed the generic version, showing that
context-specific modeling better captures salmon metabolism. Thus, we demonstrate that results from human studies also hold for
a non-mammalian animal and major livestock species.
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INTRODUCTION
Within a cell, a multitude of biochemical reactions convert
available nutrients into the energy and building blocks required
to maintain vital processes and to grow. Metabolism is this vast
network of reactions, and the emergence of complete genome
sequences and high-throughput experimental technologies has
enabled scientists to study it on the system level1. Specifically, by
identifying and functionally annotating genes in genomes and
connecting them to reactions through gene-protein-reaction
(GPR) associations, the complete genome-scale metabolic network
of an organism can be outlined in a constraint-based model
(CBM)2,3. The scope and availability of CBMs has increased greatly
over the past few decades, largely thanks to databases of
metabolic reactions and models4,5 and methods for automated
reconstruction of microbial metabolic networks from genomes6.
Today, genome-scale CBMs are readily available for many
organisms ranging from microbes to multicellular eukaryotes7,
and a central goal is to integrate these models with omics data to
improve predictions8,9.
The mathematics of CBMs are based on the stoichiometric

matrix, in which columns represent reactions, rows represent
metabolites, and each entry is the stoichiometric coefficient of a
metabolite in a reaction. The other key ingredient is a flux vector
that represents the rates of all reactions in the network. Because
metabolism is much faster than other biological processes with
which it interacts, e.g., transcription and translation, metabolite
concentrations are assumed to be constant and a steady-state
constraint is imposed on the system10. Along with bounds and any
other linear constraints on fluxes, e.g., reversibility constraints
based on thermodynamics, this defines a space of infinitely many
solutions, each of which is a feasible combination of fluxes at
steady state. This space demarcates an organism’s achievable
metabolic states, and thus phenotypes, in a particular

environment11. Optimal states can be found by optimization
methods such as flux balance analysis (FBA)12, or the whole
solution space can be explored using unbiased methods13,14.
A typical CBM contains intracellular biochemical reactions,

transport reactions that move metabolites between cellular
compartments, and boundary reactions that allow metabolite
exchange with the environment. Furthermore, it is common to
add a biomass reaction that allows modeling of growth by
accounting for the required molecular building blocks and energy.
Maximal growth rate, i.e., maximal flux for the biomass reaction, is
often used as the primary objective function for FBA, but any
linear combination of reaction rates in the model can be
minimized or maximized12. Parsimonious FBA (pFBA) simply
maximizes growth rate before minimizing total flux15 but can
outperform methods that integrate CBMs with transcriptomics
data for microbial flux prediction16. On the other hand, it has also
been shown that omics integration can help predict fluxes more
accurately than pFBA for cancer patients17.
Despite the variable performance of transcriptomics-based

methods for flux prediction, it is clear that metabolic activities
do differ between contexts such as cells or tissues, and these
activities ultimately do depend on upstream processes such as
gene expression18. Generic CBMs, which aim to include all
metabolites and reactions found in any cell of an organism, are
therefore likely to be superfluous when analyzing specific
conditions of interest. Many methods address this by using
transcriptomics or other omics data to extract context-specific
models rather than to predict or infer fluxes. Context-specific
CBMs aim to represent metabolism under a particular set of
conditions and have been shown to be more accurate than a
generic human CBM19.
The utility of context-specific modeling has been demonstrated

through several applications. For instance, tissue-specific CBMs
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extracted from a genome-scale human CBM have been used to
study host-pathogen interactions20 and brain metabolism21 as
well as for drug target discovery in cancer22. Moreover, context-
specific plant CBMs have been used to study fluxes in mesophyll
and bundle sheath cells of C4 grasses during photosynthesis23, the
metabolic behavior of organs for production, storage, and
consumption of sugars during the generative phase of barley24,
and stress responses to drought in thale cress25. However,
context-specific modeling has not been applied to non-
mammalian animals such as fish.
Many different model extraction methods (MEMs) have been

developed, employing diverse strategies to create context-specific
models by reducing a generic CBM26. Commonly used MEMs
include MBA27, mCADRE28, FASTCORE29, iMAT30,31, INIT32, and
GIMME33, which can be categorized into the MBA-like, iMAT-like
and GIMME-like families26 (Supplementary Table 1). These six
MEMs, including their settings, have been thoroughly evaluated
for human modeling19,34,35, but it has not been clear whether the
results translate to other animals for which generic models exist.
In this study, we used the six MEMs with recommended settings

to build context-specific models from SALARECON, a generic CBM
of Atlantic salmon (Salmo salar) metabolism36, using liver
transcriptomics data contrasting life stages and feeds37. We
evaluated the context-specific CBMs in terms of their contents and
predictions, most importantly their ability to perform metabolic
tasks35,38, as well as required computation time. Our results show
that context-specific model contents and predictions depend
heavily on the choice of MEM, but three MEMs produced models
that captured significant differences between life stages and one
of these was much faster than the others. Context-specific CBMs
consistently outperformed SALARECON, supporting context-
specific modeling as an approach to explain omics data and
improve predictions.

RESULTS
Context-specific model contents and predictions
We used transcriptomics data from 208 Atlantic salmon liver
samples differing in water salinity (life stage) and dietary lipids
(feed)37. The fish were fed diets containing either fish oil (FO) or
vegetable oil (VO) and feed was switched for about half of the fish
at each life stage (FO-VO and VO-FO). For each sample and each of
the six MEMs, we extracted one context-specific CBM from
SALARECON. In total, we extracted 1248 context-specific models,
but five mCADRE models were discarded because they were non-
functional, leaving 1243 models. The context-specific CBMs varied
significantly in their contents as well as in their predictions (Fig. 1).
Specifically, models differed between MEMs in terms of gene,
reaction, and metabolite counts as well as predicted growth rates,
minimal total flux from pFBA15, and feasible metabolic tasks35,38.
Gene, reaction, metabolite, and feasible task counts were highly
correlated both between and within MEMs, and larger models
tended to predict higher growth rates with less pFBA flux than
smaller models (Supplementary Fig. 1). We found no evidence that
these statistics were significantly affected by life stage (Supple-
mentary Fig. 2) or feed (Supplementary Fig. 3).
MBA tended not to reduce the generic model as much as other

MEMs, keeping most of the 1108 genes, 718 reactions, and 530
metabolites from SALARECON but with comparatively wide
distributions for both contents and predictions. Perhaps the most
distinguishable MEM was mCADRE, which had bimodal distribu-
tions for all contents and predictions: most models were
substantially reduced, but some models preserved most of the
contents and predictions of SALARECON. Compared to the two
other MBA-like MEMs, the contents of FASTCORE models tended
to lie between the two mCADRE modes and toward the lower end
of the MBA distribution, but FASTCORE predictions were generally

more similar to SALARECON. A notable exception is that
FASTCORE models performed about half as many metabolic tasks
as SALARECON, similar to many MBA and mCADRE models. The
two iMAT-like MEMs were very similar across contents and
predictions, but iMAT models had a much wider distribution of
predicted growth rates than INIT models, all of which had
relatively low growth rates. GIMME models were generally most
similar to FASTCORE models in their contents, with narrow
distributions comparable to the iMAT-like family. Growth rates
and minimal flux predictions were close to SALARECON for all
GIMME models, but they performed few tasks compared to
SALARECON or the MBA-like family.
Looking more closely at the number of context-specific models

capable of performing each metabolic task, we found clear
differences between tasks, MEMs, and metabolic systems (Fig. 2).
MBA models tended to perform most of the 121 tasks performed
by SALARECON across all systems, reflecting the tendency for MBA
to produce models with more reactions than other MEMs. Both
MBA and the other MBA-like methods—mCADRE and FASTCORE
—had comparatively wide model count distributions, notably
spanning the whole range for metabolism of amino acids. The
remaining MEMs—iMAT, INIT, and GIMME—were all very similar in
terms of the number of models performing tasks. In general, very
few models built by these MEMs performed tasks related to
metabolism of amino acids, nucleotides, and vitamins, whereas
tasks in carbohydrate, energy, and lipid metabolism had a wider
range of model counts. The individual tasks that were most
frequently performed across all MEMs covered cellular respiration,
the thioredoxin system, nucleotide salvage, degradation of
ethanol and sugars, as well as synthesis of many amino acids,
S-adenosyl methionine (SAM), UDP-glucose, fructose-6-phosphate,
glycerol-3-phosphate, and malonyl-CoA (Supplementary Fig. 4).
For all MEMs except MBA, there was perfect agreement among
models on the feasibility or infeasibility of some tasks. Specifically,
all models agreed on two tasks for mCADRE, eight tasks for
FASTCORE, 32 tasks for iMAT, 62 tasks for INIT, and 27 tasks for
GIMME. We observed no significant effects of life stage
(Supplementary Fig. 5) or feed on the number of models
performing tasks (Supplementary Fig. 6).

PCA of reaction presence, task feasibility, and fluxes
To disentangle the contributions of MEM, life stage, and feed to
the contents and predictions of the context-specific CBMs, we first
applied principal component analysis (PCA) to binary matrices
indicating reaction presence (Fig. 3) and metabolic task feasibility
(Fig. 4). For both reactions and tasks, the first two principal
components (PCs) explained 38% of the total variance for
reactions and 43% of the total variance for tasks, and the scores
of models were fairly well-separated by MEM in the first two PCs.
Also, the first PC primarily explained variability within mCADRE
and MBA models, while the second PC explained more variability
between MEMs as well as within FASTCORE, iMAT, INIT, and
GIMME models. MEM explained most of the variance of the first
five PCs for reactions and the first four PCs for tasks, and these PCs
explained almost exactly 50% of the total variance. Life stage
explained 29% of the variance of the sixth PC from PCA of
reactions, but otherwise life stage and feed explained little
variance for the first PCs (Supplementary Figs. 7–10). We also
applied PCA to the matrix of fluxes predicted by pFBA, producing
similar results as seen for reactions and tasks but with less
variance explained by MEM and virtually no variance explained by
life stage or feed (Supplementary Figs. 11–13). For reactions, tasks,
and fluxes, the remaining PCs explained negligible variance with
small contributions from MEM, life stage, and feed (Supplementary
Fig. 14).
Hierarchical clustering of the reaction and task matrices

recapitulated the results from PCA with clustering mainly by
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MEM, but it also seemed to reveal further clustering by life stage
within at least some MEMs (Supplementary Figs. 15 and 16). We
therefore applied PCA to reaction presence and task feasibility
within each MEM to further interrogate differences between life
stages and feeds (Fig. 5 and Supplementary Figs. 17–40). For both
reactions and tasks, the first PC explained more than 10%
variance for MBA, mCADRE, and iMAT, and less than 10% for
FASTCORE, INIT, and GIMME. The first PC was dominated by
outliers for mCADRE and INIT, but INIT’s second PC for tasks also
explained more than 10% variance. For three MEMs, life stage
explained more than 20% variance for one PC from PCA of
reactions: 40% of the first for GIMME, 36% of the second for
FASTCORE, and 29% of the third for MBA. For tasks, life stage
explained 21% of the second PC for FASTCORE as well as 25% of
the second and 22% of the third for GIMME. For pFBA fluxes, we
found much less clustering by MEM than for reactions and tasks,
but GIMME and FASTCORE models formed fairly distinct clusters
(Supplementary Fig. 41). Life stage explained 12% of the variance
in both the first and the third PC for PCA within GIMME, which in
turn explained 16% and 5% of the total variance, respectively
(Supplementary Fig. 42). Feed explained very little variance across

all PCs for reactions, tasks, and pFBA fluxes, also within each life
stage (Supplementary Figs. 43–45).

Functional accuracy and computational efficiency
To evaluate the functional accuracy of the MEMs, we compared
metabolic task feasibility predicted by each extracted context-
specific CBM to binary task scores inferred directly from the
transcriptomics data that was used for extraction35,38 (Fig. 6 and
Supplementary Fig. 46). Specifically, we computed normalized
Hamming distances between task feasibility predicted by the
models and task scores inferred from the data. We found that
iMAT, INIT, and GIMME outperformed the other MEMs in terms of
functional accuracy, meaning that they tended to produce models
that predicted task feasibility similar to the inferred task scores. In
general, MBA models were the least accurate, with a wide
distribution covering larger distances than observed for most
iMAT, INIT, and GIMME models. Most models extracted by
mCADRE were more accurate than MBA models, albeit with a
long tail toward larger distances that likely reflected the
bimodality of mCADRE model contents and predictions.

Fig. 1 Contents and predictions of context-specific models. Distribution of context-specific model contents (a–c) and predictions (d–f) by
MEM. a Gene counts, b reaction counts, c metabolite counts, d predicted maximal growth rate relative to SALARECON, e sum of absolute
fluxes from pFBA relative to growth rate, and f feasible metabolic task counts. Kernel density estimates are scaled to the same width with
cutoffs at the extreme data points. Dashed lines indicate predictions from SALARECON.
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FASTCORE models covered the narrowest range of distances and
were less accurate than most mCADRE models. Importantly, all
MEMs outperformed the baseline defined by SALARECON, mean-
ing that they generally produced models that were more accurate
than the generic template model.
The iMAT-like MEMs and GIMME had very similar distributions

of distances between predicted and inferred task scores, perhaps
with iMAT and INIT outperforming GIMME very slightly. However,
looking at distributions of computation time for model extraction,
we found that GIMME was by far the most computationally
efficient of all the tested MEMs (Fig. 6). All extractions were
performed on the same desktop computer (see “Methods”).
GIMME was more than an order of magnitude faster than the
other MEMs and completed nearly all extractions in less than 0.1 s.
FASTCORE was also faster than most MEMs with all extractions
finishing within 2.6 s. The remaining MEMs were all less
computationally efficient with wider distributions: from 0.4 s to
2 min for iMAT, from 3min to 14min for MBA, from 2min to about
3 h 45min for mCADRE, and from 14 s to 2 h for INIT, which was
generally much slower than the other MEMs.

DISCUSSION
We found large variation in contents and predictions between
MEMs but not between life stages or feeds, which is in line with
results from systematic analyses with human models and data19,35.
Supporting some of our specific findings, one study found that
reaction and feasible task counts differed between MEMs largely
as we describe and that MEM explained much more variance in PC
scores from PCA of task feasibility than tissue or cell type35. The
only factors affecting context-specific model contents and
predictions more than MEM in these studies were rules for
applying constraints to the generic template model and thresh-
olds to the transcriptomics data19,35. However, we used their
recommended constraints and thresholds and therefore did not
test these factors (Supplementary Table 1). The fact that results
from human studies also hold for a fish demonstrates that MEMs
and their settings generalize to other animals than mammals.
MBA and mCADRE clearly differed from the other MEMs in

terms of context-specific model contents and predictions. MBA
models tended both to be closer to SALARECON and to have
wider distributions than models built by other MEMs. This could

Fig. 2 Number of context-specific models performing metabolic tasks. Number of context-specific models in which metabolic tasks were
feasible by MEM. Tasks are divided into six metabolic systems: a amino acid, b nucleotide, c carbohydrate, d energy, e lipid, and f vitamin
metabolism. Kernel density estimates are scaled to the same width with cutoffs at the extreme data points.
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Fig. 4 PCA of metabolic task feasibility. a–c Scores of the first two PCs, colored by MEM, with 95% confidence ellipses and intervals.
d Cumulative total variance explained by the first ten PCs and variance of PC scores explained by MEM.

Fig. 3 PCA of reaction presence. a–c Scores of the first two PCs, colored by MEM, with 95% confidence ellipses and intervals. d Cumulative
total variance explained by the first ten PCs and variance of PC scores explained by MEM.
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be at least partially explained by MBA preserving two core
reaction sets (high and medium confidence) rather than one,
which likely leads to larger models than other MEMs. Notably, the
distribution of growth rate predictions from MBA models was
bimodal even though all model content distributions were
unimodal. Bimodal distributions of predictions were also seen
for mCADRE models, but this could be explained by bimodal
distributions of contents. However, the causes of the observed
bimodality in contents are unclear. Taking all MEMs together,
growth rate predictions were bimodal and tended to either be
close to the maximum predicted by SALARECON or close to the
minimal growth rate requirement that was used for extraction.
FASTCORE and GIMME models preserved the growth rate and

pFBA flux of SALARECON to a larger extent than other MEMs. In
particular, FASTCORE preserved pFBA flux, likely because it is
based on a variation of pFBA29, and GIMME preserved growth rate
thanks to its default requirement of 90% growth rate relative to
the generic model33. The iMAT-like MEMs consistently produced
the smallest models, which is probably why iMAT and INIT models
had low growth rates, high pFBA fluxes, and low feasible task
counts. Indeed, this was a tendency across all MEMs: smaller
models produced biomass precursors less efficiently and

performed fewer metabolic tasks. The most obvious exceptions
were GIMME models, which performed fewer tasks than expected
based on reaction and metabolite counts, but these counts were
in turn larger than expected based on gene counts. The
explanation for this is that GIMME, unlike the other MEMs,
preserved all exchange reactions, which are not mapped to genes
but exchange metabolites with the environment.
There were also notable contrasts between MEMs in terms of

the number of models that were able to perform metabolic tasks,
reflecting the observed variation in model contents and predic-
tions. For example, tasks in all six metabolic systems tended to be
performed by the majority of MBA models, which were the largest,
and by many models from the other two MBA-like MEMs—
mCADRE and FASTCORE—which also produced comparatively
large models. For the iMAT- and GIMME-like MEMs, most tasks
were performed by a minority of models and several tasks were
infeasible in all models. Perfect agreement between models on
task feasibility was more common for iMAT, INIT, and GIMME than
for MBA, mCADRE, and FASTCORE. It is important to note that,
perhaps counterintuitively, models that perform many tasks are
not necessarily better than those that perform few. A good
context-specific CBM should ideally perform the tasks that are

Fig. 5 PCA of reaction presence and metabolic task feasibility within each MEM. Results from PCA of reaction presence (a–c) and task
feasibility (d–f) performed separately for each MEM. Sample variance explained by each PC and variance of PC scores explained by life stage
and feed are shown for the first ten PCs.
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actually performed by the organism in that context, i.e., tasks for
which there is evidence in literature and data.
Despite large variation in task feasibility, some tasks were

frequently performed across all MEMs, and we found remarkable
agreement between these tasks and metabolic processes known
to be important in the liver. For example, consistent feasibility of
cellular respiration and sugar degradation is in line with the liver’s
role as a hub that transforms dietary nutrients into energy and
building blocks for other tissues39. However, energy metabolism is
fundamental for any cell and its consistent feasibility could simply
be driven by growth requirements in the MEMs. Other observa-
tions are less likely to be artifacts, e.g., consistent feasibility of the
thioredoxin system, which can play an important role in reducing
oxidative stress caused by high-fat diets40, and nucleotide salvage,
which is a key part of the liver’s central control of nucleotide
synthesis41. The liver also synthesizes many amino acids, including
glutamate, glutamine, alanine, aspartate, and glycine, which were
most frequently synthesized by context-specific CBMs42. Consis-
tent feasibility of SAM synthesis reflects the fact that SAM is
essential for liver health and mostly generated in hepatocytes43;
UDP-glucose is a precursor for glycogen, which is synthesized and
stored in fish liver44; fructose-6-phosphate synthesis through the
pentose phosphate pathway is particularly important in the liver45;
glycerol-3-phosphate is a precursor for glycerolipids, which are
mostly synthesized in the liver46; and malonyl-CoA is essential for
primarily hepatic fatty acid synthesis47.
The liver is a very metabolically active organ, so detecting

processes that occur in that organ may not be surprising.
However, it is notable that the most frequently performed tasks
across MEMs were known to be important for liver metabolism.
This supports context-specific modeling as an approach for
studying tissue-specific metabolism, and it also suggests ensem-
ble modeling as a potential strategy for managing uncertainty and
making context-specific model predictions more robust. Specifi-
cally, one could use several different MEMs and template models
to build an ensemble of CBMs for each organism and context of
interest, i.e., from the same omics data, and predictions could be

based on agreement among models in the ensemble48. Ensemble
modeling could also help improve the models themselves by
applying machine learning to their contents and predictions49.
Indeed, recent studies have demonstrated context-specific
ensemble modeling with a single MEM50 and combined multiple
MEMs to build a single model51.
Comparing distributions of model contents and predictions, we

saw clear differences between MEMs but not between life stages
or feeds. This was unexpected, as we knew that many genes
related to metabolism were differentially expressed both between
fresh- and saltwater and between FO and VO37. To detect
contrasts between these factors among context-specific CBMs,
we first applied PCA to reaction presence and task feasibility.
Results were very similar for reactions and tasks, reflecting the fact
that task feasibility is determined by reaction presence. In both
cases, the first five PCs explained about half of the total variance in
the data, and variance in the scores of these PCs was mainly
explained by MEM. Life stage or feed explained comparatively tiny
amounts of variance, but hierarchical clustering revealed a
tendency for grouping by life stage within MEMs, leading us to
perform PCA separately for each MEM. This did indeed lead to PCs
capturing differences between life stages—most notably for
GIMME, FASTCORE, and MBA—but not between feeds. PCAs
within each MEM and life stage also failed to separate models
based on diet, possibly due to the simplified representation of
lipids in SALARECON. Future studies should expand lipid
metabolism in SALARECON to potentially detect differences
between feeds. These results show that choice of MEM is by far
the most important determinant for model contents and
predictions, but at least some of the MEMs are capable of
producing models that capture biological differences.
Besides reaction presence and task feasibility, we also applied

PCA and hierarchical clustering to pFBA fluxes, revealing less
clustering by MEM than for reactions and tasks and hardly any
variance explained by life stage or feed. GIMME and FASTCORE
models generally clustered together, and GIMME was the only
MEM with significant variance in PC scores explained by life stage.

Fig. 6 Metabolic task score distance and computation time. Empirical cumulative distributions of (a) normalized Hamming distance
between binary task scores inferred from data and task feasibility predicted by models, and (b) computation time required to extract models.
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Compared to reactions and tasks, pFBA fluxes were more similar
across MEMs, reflecting the fact that pFBA predicted a minimal
flux distribution that allows maximal growth rate. This means that
pFBA fluxes tend to be enriched in core pathways that generate
energy and biomass precursors, which are highly conserved across
conditions both evolutionarily and by MEMs.
Finally, we evaluated the functional accuracy and computa-

tional efficiency of MEMs. Context-specific models should be able
to perform metabolic tasks for which there is evidence in the data
used for extraction, and we therefore compared predicted task
scores to task scores inferred from the data. Even though the same
data were used to infer tasks and extract models, task feasibility
was not enforced in the extraction process for any of the MEMs.
Agreement between inferred and predicted scores tended to be
the highest for iMAT, INIT, and GIMME. These were also the MEMs
that produced the smallest models, meaning that smaller models
tended to be more context-specific than larger ones. FASTCORE
models were the most consistent, although they performed
slightly worse the iMAT- and GIMME-like models. MBA and
mCADRE both had long tails, and some models performed as
poorly as SALARECON, the generic template model. GIMME was an
order of magnitude faster than FASTCORE, which was in turn
faster than iMAT. MBA and mCADRE both required about equally
long computation times, while INIT was the slowest, requiring us
to terminate the procedure after 2 h. A near-optimal model was
always found within this time in a previous study19. The
differences in efficiency between MEMs are largely as expected
based on their optimization strategies: GIMME solves a fixed
number of linear programs (LPs), while other MEMs either solve
more LPs or much harder mixed-integer linear programs26.
There are many other MEMs available that were not system-

atically tested in this or other studies, including recent methods
that account for transcriptomic variability52, use ensemble
modeling to improve predictions50, or combine multiple methods
and settings51. Notably, some methods integrate metabolic tasks
into the model extraction procedure itself by requiring agreement
with inferred task feasibility for human models and data35,53. This
can increase consensus among context-specific CBMs across
MEMs35 but it does not necessarily improve model contents and
predictions relative to simpler methods such as GIMME17. There
have also been numerous efforts to develop MEMs that integrate
multiple types of omics data54. In this study, we only focused on
transcriptomics data, which is the exclusively accepted data type
of most MEMs54, and we used metabolic tasks to evaluate the
performance of MEMs that have been systematically tested for
human applications19,26,35. We found that several of the tested
MEMs captured expected task feasibility well without enforcing it
in the procedure, showing that simple MEMs informed only by
transcriptomics can capture key biological differences between
contexts. Moreover, all of these MEMs can be extended to
integrate tasks34 and multi-omics data54, so knowing which MEMs
likely provide the best baseline will be useful for future studies of
context-specific salmon metabolism.
Functionally accurate context-specific models are an important

stepping stone toward biotechnological applications. For livestock
production, context-specific models can provide a testing ground
for optimization of breeding and feed production within
constraints that take advantage of conservation laws for more
accurate interpretation of omics data55. Going further, tissue-
specific models could be connected to each other to allow
partially dynamic whole-body simulations56, which will be
necessary to capture energetics and growth at a scale which is
meaningful for production biology57. Such models will be
intermediate in specificity between the generic and sample-
specific, and carefully crafted metabolic task lists will be key to
their development.

METHODS
Transcriptomics data and template model
Transcriptomics data and corresponding metadata were down-
loaded from https://fairdomhub.org/assays/352. The data covered
81,597 transcripts across 208 Atlantic salmon liver samples
differing in water salinity (life stage) and dietary lipids (feed).
There were 112 samples from the freshwater life stage (pre-smolt)
and 96 samples from the saltwater life stage (post-smolt). The fish
had been fed diets containing either fish oil (FO) or vegetable oil
(VO) with a feed switch for 48 fish at each life stage (FO-VO and
VO-FO). A detailed description of the feeding trial and normal-
ization of raw read counts to counts per million (CPM) can be
found in the original publication37. The most recent version of
SALARECON36 was downloaded from its GitLab repository (https://
gitlab.com/digisal/salarecon) in February 2021. This version
contained the same reactions and metabolites as the published
version of SALARECON, but it had 29 fewer genes. In total, the
model contained 718 reactions, 530 metabolites, and 1104 genes
that were mapped to 1109 (14%) of the transcripts. We set the
bounds of exchange reactions to allow uptake and secretion of all
extracellular metabolites.

Extracting context-specific models
Six different MEMs were used to extract context-specific models
from the transcriptomics data and SALARECON: MBA27,
mCADRE28, FASTCORE29, iMAT30,31, INIT32, and GIMME33. We used
implementations of these MEMs from the COBRA Toolbox2 to
extract context-specific models with the function createTissueSpe-
cificModel. The implementation of mCADRE did not perform as
expected: if removing a reaction led to an infeasible solution, the
procedure stopped with an error. This issue was resolved locally
and later merged into the COBRA Toolbox (commit 6c1ba69). The
parameters needed to execute the different MEMs were set equal
to recommended values19,34,35 (Supplementary Table 1) where
available and default values were used otherwise. As the biomass
reaction is not directly associated with any genes, steps were
taken to ensure its inclusion in all extracted models. Specifically, its
lower flux bound was set to a sufficiently small but otherwise
arbitrary value of 1 h−1 for all MEMs. This growth rate was not
intended to be realistic and only relative growth rates were used
in the analyses. For GIMME, we kept the default requirement of
preserving 90% of the maximal growth rate of the template
model. The biomass reaction was added to the core reaction set of
FASTCORE and MBA, assigned a gene score greater than the
threshold for GIMME and iMAT, and assigned a specific weight for
INIT (Supplementary Table 1). Default flux bounds of ±1,000,
depending on reversibility, were used for all other reactions.
Model extraction was performed on a Lenovo ThinkStation P340
with an Intel Core i7-10700 (2.9 GHz) processor and 16 GB RAM.

Context-specific model contents and predictions
For each context-specific model, we counted the number of
genes, reactions, and metabolites, computed maximal growth rate
with minimal flux using pFBA15, and tested the ability to perform
metabolic tasks35,38. This was done in Python using COBRApy58.
We obtained a curated and standardized list of 210 metabolic
tasks covering seven metabolic systems (amino acid, carbohy-
drate, energy, lipid, nucleotide, and vitamin and cofactor, and
glycan metabolism) from the original publication35 and adapted
tasks from mammals to salmon by moving metabolites from
compartments not included in SALARECON to the cytoplasm and
by modifying the expected outcomes of amino acid synthesis
tests to match known essentiality36. We discarded tasks that could
not be performed by SALARECON, leaving 121 tasks that could
potentially be performed by context-specific models. We set the
bounds of the model to those specified for each task and checked
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if the task was feasible. Relative growth rate was computed by
dividing by the maximal growth rate of SALARECON. We normal-
ized pFBA fluxes by dividing them by maximal growth rate for the
extracted model as well as for SALARECON. We then computed
relative pFBA flux by dividing the total normalized pFBA flux of the
extracted model by the total normalized pFBA flux of SALARECON.

Gene scores and reaction activity levels
The raw gene expression data was first reduced to only contain
genes that were also present in the model. Subsequently, a gene
expression threshold was set to determine gene activity in the
samples, and any gene with an activity score above this threshold
was defined as active. Each gene was given an individual
threshold equal to the 90th percentile of its expression value
across all samples in the data set, as this has been documented to
yield better models than lower thresholds19. The 25th percentile
of the overall gene expression value distribution (i.e., all genes in
all samples) was set as the threshold for any gene with a threshold
lower than this percentile. A gene score was then computed for
each gene35,38:

Gene score ¼ 5 ln 1þ Expression level
Threshold

� �
(1)

A reaction activity level (RAL) was computed from the gene scores
for each reaction in SALARECON through the GPR associations,
specifically the maximum expression value amongst all associated
genes35,38.

Metabolic task scores
We computed binary metabolic task (MT) scores to determine
whether or not tasks were performed in each sample. First, we
computed MT scores from the transcriptomics data with reactions
and associated genes responsible for executing each task
determined by pFBA predictions from SALARECON15. These MT
scores were calculated as the mean RAL of reactions involved in
each task35,38:

MT score ¼
P

RAL
Number of reactions involved in the task

; (2)

and made binary by using the recommended threshold of
5 lnð2Þ38. Second, we used predicted task feasibility as binary MT
scores for each context-specific model. For each sample and MEM,
we computed the normalized Hamming distance between MT
scores inferred from the data and MT scores predicted by the
context-specific model.

Principal component analysis
Principal component analysis (PCA) was performed to assess the
impacts of MEM, feed type and life stage on model contents
(reactions) and predictions (metabolic task feasibility and pFBA
fluxes). We built three matrices in which the rows were models,
the columns were either reactions or tasks, and each cell indicated
reaction presence, task feasibility, or pFBA flux, respectively. Each
column was standardized to have zero mean and unit variance
before performing PCA. For each PC, the percentage of variance in
PC scores explained by the factors MEM, life stage, and feed was
determined by computing the Pearson correlation (r) between PC
scores and all possible orders of levels for each factor. The
maximal r across levels was squared to find the explained variance
(R2) for each factor19. We performed PCA once for the whole data
set, once for each MEM, and once for each life stage within
each MEM.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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