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Effective dose window for containing tumor burden under
tolerable level
M. A. Masud 1, Jae-Young Kim2 and Eunjung Kim 1✉

A maximum-tolerated dose (MTD) reduces the drug-sensitive cell population, though it may result in the competitive release of
drug resistance. Alternative treatment strategies such as adaptive therapy (AT) or dose modulation aim to impose competitive
stress on drug-resistant cell populations by maintaining a sufficient number of drug-sensitive cells. However, given the
heterogeneous treatment response and tolerable tumor burden level of individual patients, determining an effective dose that can
fine-tune competitive stress remains challenging. This study presents a mathematical model-driven approach that determines the
plausible existence of an effective dose window (EDW) as a range of doses that conserve sufficient sensitive cells while maintaining
the tumor volume below a threshold tolerable tumor volume (TTV). We use a mathematical model that explains intratumor cell
competition. Analyzing the model, we derive an EDW determined by TTV and the competitive strength. By applying a fixed
endpoint optimal control model, we determine the minimal dose to contain cancer at a TTV. As a proof of concept, we study the
existence of EDW for a small cohort of melanoma patients by fitting the model to longitudinal tumor response data. We performed
identifiability analysis, and for the patients with uniquely identifiable parameters, we deduced patient-specific EDW and minimal
dose. The tumor volume for a patient could be theoretically contained at the TTV either using continuous dose or AT strategy with
doses belonging to EDW. Further, we conclude that the lower bound of the EDW approximates the minimum effective dose (MED)
for containing tumor volume at the TTV.
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INTRODUCTION
Drug resistance remains a major hurdle to improving patient
outcomes. Currently, a common practice in cancer treatment is to
provide the maximum possible dose to kill drug-sensitive cancer
cells with tolerable side effects1. This maximum tolerated dose
(MTD) therapy can rapidly eliminate drug-sensitive cancer cells.
However, drug-resistant cells may flourish because of the lack of
intra-tumor competition with drug-sensitive cancer cells2–6.
Several preclinical studies found that the administration of low
doses is more effective than MTD in controlling tumor volumes7,8.
The successful administration of MTD fractions in early phase trials
has shown to improve treatment outcomes9,10. This has inspired
the so-called metronomic therapy (MT), which utilizes a one-fixed
dosing schedule ranging from one-tenth to one-third of the MTD
to all patients11,12. Predicting the treatment dose remains an open
problem because of the heterogeneous response between
patients. Considering patient-specific tumor evolution, adaptive
therapy (AT) strategies have been proposed13.
AT is a type of evolutionary therapy that maintains a tolerable

level of tumor volume to maintain the competition between drug-
sensitive and drug-resistant cells. AT imposes treatment breaks or
reduces doses to hamper the growth of resistant cells by
leveraging competitive suppression by maintaining sufficient
drug-sensitive cells. AT has shown favorable outcomes in both
preclinical and clinical settings. AT trial by Zhang et al.14,15 showed
a median of 19.2 months delayed tumor progression in prostate
cancer compared to standard-of-care MTD (33.5 months in AT vs.
14.3 months in standard-of-care MTD). In this study, MTD was
applied until the prostate-specific antigen (PSA) level was reduced
to 50% of the initial level for each patient and then treatment was
held off until the PSA level returned to the initial level. Strobl et al.

showed that treatment holidays scheduled after 50% PSA
reduction could delay tumor progression for more than 6 months
compared to treatment holidays scheduled after reducing PSA to
the base level16. In an individual base model setting, the group
also reported that AT could delay the progression by about
4 months more when treatment was halted decreasing the PSA
level by 30% instead of reducing it by 50%17. Although the above
two results are obtained for different model settings and
parameter values, both indicate that less aggressive AT may delay
progression. Brady-Nicholls et al.18 and Kim et al.19 also showed
that a lower decline from the initial population during the
’treatment on’ periods could maintain high competitive stress
between drug-sensitive and drug-resistant cells, leading to
delayed progression. Moreover, Gallaher et al. reported an AT
strategy in which the treatment dose was adjusted at four
different thresholds with respect to the initial volume based on
the tumor response in each patient2 which supports the
assumption that containing a tumor at a higher volume could
delay progression by achieving more competitive stress on the
resistant strain. The preclinical AT study performed by Enriquez-
Navas et al. showed that dose modulation was more effective than
a treatment holiday strategy in maximizing competitive stress20.
They showed that an AT involving consecutive “high dose-low
dose” windows that contained tumor volume between 80–120%
of the initial volume significantly delayed disease progression in
84% of cases in a breast cancer xenograft model. The benefits of
containing tumors at higher volumes have also been theoretically
established21,22.
Given that maintaining a sensitive phenotype is required to

suppress resistance, one possible way to delay progression is to
maintain a tolerable tumor volume (TTV) rather than trying to
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eradicate it23. How much less dose would be enough to maintain
sufficient drug-sensitive cell populations and tumor volume under
control below the tolerable level for each patient? To address this
question, several studies have employed the dynamical analysis of
deterministic models and optimal control theory. One of the
earliest studies addressing the optimal treatment policy subject to
drug resistance showed that minimizing the growth rate of
resistant cells is the key to delaying progression24. Recent
theoretical studies have emphasized the importance of drug
holidays25,26. Cunningham et al. explored the optimal distribution
of a constant cumulative dose over a predetermined schedule (to
replicate patient clinical visits) to minimize the tumor volume,
tumor variance, and total resistant cell density27 in a set of virtual
patients. The virtual patients were divided into three categories
according to their response to treatment, as determined by the
competition coefficients and initial resistance. Finally, the study
recommended delaying treatment as much as possible and
administering the smallest possible dose when required, irrespec-
tive of the patient group. Moreover, it was shown that if
stabilization is possible, an increasing dose titration strategy leads
the tumor towards equilibrium28. Recently, a theoretical study by
Ledzewicz29 (with singular control and terminal payoff) and
another in vitro study by Bondarenko et al.30 reported a
biologically optimal dose to reduce resistance. In an in vitro
study, Carrere5 formulated an optimal control model with singular
control to reduce the tumor volume and reported the biologically
optimal dose as a periodically increasing dose titration. Addition-
ally, Carrere5 reported a dose threshold, with doses below which
the tumor can be contained at a stable tumor volume consisting
of all sensitive cells. However, whether this stable tumor volume is
below the patient’s TTV is crucial. So, the new question emerges,
how can TTV contribute to deciding a dose?
Further quantitative understanding is urgently required to

address this question. We developed a simple logistic growth
model of two different tumor cell populations to explore the
dynamics of tumor cell population growth and competition. By
analyzing the stability of the equilibria, we established the
conditions required for containing tumors within a tolerable
volume. Our analysis showed that if an equilibrium representative
of the TTV exists, administration of a fraction of the MTD
belonging to an effective dose window (EDW) may redirect the
cell population dynamics to the tolerable equilibrium and contain
the tumor for a long time. We applied our model and analysis of
EDW to a small cohort of melanoma patients whose tumor burden
change data were available from a previous study19. The fitting of
the model to the data generated a set of parameters for each
patient. To confirm parameter identifiability, both structural and
practical identifiability analyses were performed. We considered a
subset of patients whose tumor burden dynamics could be
explained using unique parameters. We proposed a fixed
endpoint optimal control model to characterize the time-
dependent minimum effective dose (MED) required to minimize
the tumor volume for each patient. Next, we solve the optimal
control model with the estimated parameter values which shows
that there may exist an optimal dose, and continuous adminis-
tration of a fraction of MTD may direct tumor growth towards a
TTV consisting of drug-sensitive cells only. Further, we simulated
AT for each patient by varying the treatment dose and treatment
break threshold (i.e., pause level). The time to progression (TTP) of
each patient under AT was affected more by the dose level than
the pause level. We observed that administration of a dose
belonging to EDW resulted in a more delayed TTP in either the
continuous or AT strategy. Most importantly, the optimal dose
required to contain cancer at the TTV is comparable to the lower
bound of the EDW, which we defined as the minimum effective
dose (MED). This study highlights the importance of TTV in dose
modulation over tolerable drug toxicity. An overview of our
workflow is illustrated in Fig. 1.

RESULTS
Mathematical model
Among many mathematical models that can describe tumor
growth31,32, we chose the logistic growth model because the
model was able to describe individual cell growth and cell-cell
competition most accurately33. We model the competition
between drug-sensitive and drug-resistant cell populations with
logistic growth as follows:

dSðtÞ
dt ¼ r 1� SðtÞþRðtÞ

K

� �
SðtÞ � δSðtÞ;

dRðtÞ
dt ¼ r 1� cSðtÞþRðtÞ

K

� �
RðtÞ:

(1)

Here, S(t) and R(t) denote the populations of sensitive (S-cell) and
resistant (R-cell) cells, respectively, at time t, and r is the intrinsic
growth rate of both S and R cells. The term δ > 0 is the drug-
induced death rate of S cells under treatment. In the absence of
therapy, δ= 0. The S- and R-cell populations share the same
carrying capacity K, the maximum size of the tumor owing to
resource constraints. Coefficient c is a competition coefficient that
determines the degree to which the S-cell population inhibits the
growth rate of the R-cell population. If c < 1, then the S-cell
population has a smaller competitive effect on R cells than R cells
have on themselves. A coefficient greater than 1 (c > 1) implies
that S cells have a greater competitive effect on R-cell growth than
R cells have on themselves. In this study, we assumed that c > 1
based on experimental evidence2.
The S-nullcline (set of points where dS

dt ¼ 0) and R-nullcline (set
of points where dR

dt ¼ 0) are given by

SðtÞ
K 1� δ

r

� �þ RðtÞ
K 1� δ

r

� � ¼ 1; (2)

SðtÞ
K
c

þ RðtÞ
K

¼ 1; (3)

S= 0, and R= 0. The model exhibits four equilibria, at which both
the S-cell and R-cell populations become constant (i.e.,dSdt ¼ 0 and
dR
dt ¼ 0). The trivial equilibrium is (S, R)= (0, 0) and the S-only
equilibrium is ðKð1� δ

rÞ; 0Þ. R-only equilibrium is (0, K). The
coexistence equilibrium is ð δK

rðc�1Þ ;
cK
c�1 ð1� δ

r � 1
cÞÞ.

Following the mathematical analysis of the model presented in
Supplementary Information (Section 1), we first defined the
effective dose window (EDW) subject to TTV, Ktol. We then applied
the model to eight melanoma patients to derive patient-specific
EDW and compared treatment outcomes under both continuous
and AT with different doses and pause levels. Finally, by
employing the optimal control theory, we derived a patient-
specific MED depending on Ktol that can indefinitely control tumor
volume.

Derivation of effective dose window
Mathematical analysis of the model (1) shows that the dynamics
precisely depend on three model parameters: the intrinsic growth
rate of S cells (r), the drug-induced death rate (δ), and competition
coefficient (c) of S cells over R cells (Supplementary Information
(Section 1)). The dynamics can be classified into the following
three categories and are graphically represented in Fig. 2.

● Case I (δ > r): The system exhibits monostable dynamics with an
unstable trivial equilibrium (S, R)= (0, 0) shown by the dashed
black line and a stable R-only equilibrium (S, R)= (0, K) shown by
the solid orange line in Fig. 2a and orange filled dot in Fig. 2d
(inferred from Theorem 1.1 and 1.3 in the Supplementary
Information). An S-nullcline did not exist in this case. All example
phase portraits converge to the R-only equilibrium.

● Case II ðr > δ> r c�1
c Þ: The system exhibits monostable dynamics

with an S-only unstable equilibrium ðKð1� δ
rÞ; 0Þ (shown by the
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dashed blue line in Fig. 2a and blue empty dot in Fig. 2c) in
addition to the above two equilibria (inferred from Theorem 1.1,
1.2, and 1.3 in the Supplementary Information). Although both
nullclines exist, they do not intersect, and hence, no coexistence
equilibrium exists. In this case, all phase portraits converge to
the R-only equilibrium.

● Case III ðr c�1
c > δ> 0Þ: In this case, as δ goes below the threshold

rðc�1Þ
c the null clines intersect at the coexistence equilibrium

ð δK
rðc�1Þ ;

cKð1�δ
r�1

cÞ
c�1 Þ shown by the dash-dotted blue (S cells) and

dash-dotted orange (R cells) lines in Fig. 2a, which is unstable
(Theorem 1.4 in the Supplementary Information). Concurrently,
the S-only equilibrium becomes locally asymptotically stable
(shown by the solid blue line in Fig. 2a and the blue-filled dot in
Fig. 2b). As a result, the system exhibits bistable dynamics with
locally asymptotically stable S-only and R-only equilibria and
unstable coexistent equilibrium (inferred from Theorems 1.1, 1.2,
1.3 and 1.4 in the Supplementary Information). The coexistence
equilibrium and trivial equilibrium lie on the separatrix of the
basin of attraction of the two locally asymptotically stable
equilibria. Recall that the set of points (i.e., initial condition)
starting from which the trajectories converge to equilibrium is

the basin of attraction of the equilibrium. The separating
boundary between the basins of attraction of the two equilibria
is the separatrix. In Fig. 2b, the solid black curve is the separatrix
that partitions the interior of the phase space into the basin of
attractions of the two stable equilibria (S-only equilibrium:
ðKð1� δ

rÞ; 0Þ, and R-only equilibrium: (0, K)). We observed that
the trajectories starting above and below the solid black line
(separatrix) converge to the S-only ðKð1� δ

rÞ; 0Þ and R-only (0, K)
equilibria, respectively.

In cases I and II, the drug-induced death rate was too high for
all S-cells to compete against R-cells. Consequently, S-cells die
out and the total cell population approaches the R-only
equilibrium. In these cases, the cancer cells grow to their

carrying capacity. In case III, the drug dose making δ< rðc�1Þ
c can

maintain a sufficient number of S cells to win the competition
against R cells and suppress their growth. As a result, R-cells die
out, and the total cell population approaches an S-only
equilibrium, provided that the initial cell combination belongs
to the basin of attraction of S-only equilibrium. Again, the
coexistence equilibrium lies on the separatrix, which depends

Fig. 1 Workflow: development of a mathematical model, integration with data by fitting the model to data, identifiability analysis on the
estimated parameters. Dynamical analysis of the model and the parameter estimates provide a ground for modulating dose depending on
the patient-specific TTV (Ktol). Three different treatment strategies: continuous therapy with a dose belongs to EDW (defined in equation (4)),
optimal dose continuous therapy (defined in equation (19)), and adaptive therapy (defined in equation (20)). S: drug-sensitive cell population
(the green circle), R: drug-resistant cell population (the orange circle), negative control line between S and R indicates competitive stress on R
by S. The vertical gray axis labeled S+ R represents the tumor volume, while the horizontal axis shows the time. Solid black on the horizontal
axis resembles treatment-on and the thin blue part resembles treatment-off. The orange horizontal solid line represents the TTV(Ktol) and the
dashed line shows the growth of the tumor volume. Continuous therapy represses the competition due to the continuous reduction of the S
cell population and ends up with a volume below the TTV(Ktol). The optimal therapy applies a dose that balances the competitive stress, the
drug, and TTV(Ktol). Adaptive therapy utilizes treatment on and off which tilts the seesaw on each side between the drug and S to R inhibition
during treatment on and off.
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on the drug-induced death rate δ. Thus, by modulating the drug
dose, the basin of attraction of the S-only equilibrium can be
expanded, and the dynamics can be directed towards the S-only
equilibrium (see an example case in section “Effect of dose
modulation on tumor cell population dynamics”). If the
trajectory approaches the S-only equilibrium ðKð1� δ

rÞ; 0Þ, the
cancer cells grow to a level below the carrying capacity under
therapy. In this study, we aim to contain tumors at a tolerable
volume (TTV, Ktol). Thus, if the S-only equilibrium is smaller than
the tolerable tumor burden ðKð1� δ

rÞ< KtolÞ in Case III (1c <1� δ
r ),

it can be claimed that cancer can be contained at a tolerable
level. Combining these results, we found that successful
containment requires a dose that satisfies the following
equation (4),

rð1� Ktol

K
Þ< δ< rð1� 1

c
Þ: (4)

We defined equation (4) as the effective dose window (EDW),
which is indicated by the horizontal double arrow in Fig. 2a. Our
analysis shows a suitable fraction of MTD belonging to EDW
(rather than MTD) could be more effective in containing cancer
cell population growth. The upper bound of EDW depends on the
growth rate r, and the competition coefficient c. The coefficient c
is assumed to be greater than one. As c increases, the upper
bound approaches r (as limc!1

rðc�1Þ
c ¼ r); however, the sensitivity

of the upper bound to c is very high when c is slightly above 1 (as
d
dc

rðc�1Þ
c ¼ r

c2 is a decreasing function in our domain of interest).

Additionally, the lower bound of EDW depends on the tolerance
level of the patient. Increased levels of tolerable tumor volume
decrease the lower bound of the EDW. It is to be noted that,
containing tumors at a tolerable volume is not necessarily
associated with early detection according to our model assump-
tion. In this study, we consider cases where untreated tumors
would likely comprise S-cells mostly, and the initial cell composi-
tion would belong to the basin of attraction of S-only equilibrium.
So, the tumor growth could be re-directed to the S-only
equilibrium with the choice of proper dose (∈ EDW) and hence
could be contained. To relate these findings to real-life scenarios,
we fitted the model (1) with the biomarker level data of melanoma
patients treated with MTD therapy.

Patient-specific effective dose window
As treatment response dynamics vary among patients, we
expected the EDW to be patient-specific. To demonstrate how
one can estimate patient-specific EDW, we applied our model to
publicly available patient data19. The data includes the temporal
evolution of the tumor burden of eight patients with advanced
metastatic melanoma. All patients were treated with continuous
BRAF/MEK inhibitors MTD but showed disease progression within
6 months of treatment. The tumor burden of each patient was
monitored with a serologic marker, called LDH (Lactate dehy-
drogenase). Melanoma does not have an ideal biomarker for
assessing tumor burden. LDH is the only serologic marker clinically
used for monitoring advanced melanoma in the US34. An analysis
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Fig. 2 Model dynamics. The upper panel (a) shows the bifurcation diagram. Ktol is the tolerable tumor volume (TTV), which is also assumed to
be the threshold tumor burden that determines tumor progression. The vertical gray dotted lines divide the domain into three parts, showing
the equilibria for Cases I, II, and III. The solid orange line shows the stable R-only equilibrium and the solid blue line shows the stable S-only
equilibrium. The dashed blue line indicates an unstable S-only equilibrium. The dash-dot blue and orange lines indicate the S-cell and R-cell
populations, respectively, in the unstable coexistence equilibrium. The solid black line represents the tolerable tumor volume and
corresponding drug-induced death rate. The horizontal double arrow indicates the EDW. The lower panel shows the phase diagrams for cases
III (b), II (c), and I (d) (from left to right). Triangular regions indicate the phase space. The dotted blue and orange lines represent the S- and R-
nullclines, respectively. The dashed lines with different shades of gray are the trajectories starting from different points in the phase space
where empty dots indicate initial conditions. The solid black curve (b) shows the separatrix in case III. The orange-filled dots show the stable
R-only equilibrium in all the cases. The blue-filled dot in Case III indicates a stable S-only equilibrium. The blue empty dot shows the unstable
S-only equilibrium in Case II. It is observed that the trajectories starting from the same three points (gray empty dots) evolve in a different
manner as δ changes. The assumed parameter values for the above diagram are r= 0.02, c= 3, K= 1000, and Ktol= 500, and the initial
conditions for the phase portraits are (S(0), R(0))= (800, 190), (200, 200), and (450, 500).
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of three clinical trials involving BRAF and MEK inhibitors with over
600 patients has shown that an increased level of LDH is
associated with poor treatment outcomes35. For simplicity, we
assumed that the LDH level is equivalent to the total number of
cancer cells (S(t)+ R(t)). We also assume that 1% of cells is resistant
to therapy, which belongs to the previously estimated range36.
Following the structural identifiability analysis discussed in the

section “Methods”, we determined that a unique set of parameter
values that fit the model to the data exists. Then, we estimated the
model parameters that fit the patient data (Fig. 3) by employing
the maximum likelihood method described in the section
“Parameter estimation”. To assess the practical identifiability, we
calculated the rank of the corresponding Fisher Information Matrix
(FIM) following method described in section “Methods”. It is
noteworthy that if the parameters are practically identifiable, the
rank of the corresponding FIM is full (i.e., the same as the number
of parameters). Because the model has four parameters, practical
identifiability requires the rank of the FIM to be four. The analysis
revealed that although the data fitting appears reasonable for all
eight patient cases, the rank of FIM is the same as the number of
parameters for only five patients (Patients 2, 4, 6, 7, and 8).
Moreover, we checked whether the profile likelihood (PLpi ðpiÞ
defined in equation (11)) of the patients has a global minimum.
The profile likelihoods of the parameters for patients 2, 6, 7, and 8
(in Supplementary Fig. 1) revealed the existence of a unique
minimum. For the parameter estimates for patient 4, although FIM
has a full rank of 4, practical identifiability was not proved through
the profile likelihood (row 3 of Supplementary Fig. 2). Thus, we
conclude that the parameters of patients 2, 6, 7, and 8 were
identifiable. Table 1 lists the estimated patient-specific para-
meters. The parameter values vary significantly from patient to
patient, which emphasizes the requirement for a patient-specific
treatment design.
In the clinic, Response Evaluation Criteria in Solid Tumor

(RECIST), version 1.1 are used to evaluate patient’s response to
cancer therapy37. In RECIST 1.1, if the sum of the diameters of
target clinical lesions increases by at least 20% from the initial sum
before therapy, the disease is called a progressive disease. If the

sum increases by less than 20% and decreases by less than 30%
(70% < tumor volume < 120% from the initial), it is called stable
disease. Inclined with RECIST criteria, we initially assume Ktol= K0
and estimate the lower and upper bounds of the EDW (columns 6
and 7 in Table 1) following the method described above.

Effect of dose modulation on tumor cell population dynamics
As discussed in the derivation of the EDW in the section
“Derivation of effective dose window”, the parameter δ plays an
important role in determining the intra-tumor composition at the
equilibrium. For all four patients, the estimated parameter δ is
greater than the upper bound of the EDW (Table 1, 4th column vs.
the last column), but less than the growth rate (Table 1, 4th
column vs. 2nd column). Therefore, the cell population dynamics
belong to Case II (Fig. 2c) for all patients, and the R-only
equilibrium is the only stable equilibrium that exists under MTD.
For all four patients, the cell population dynamics approached the
R-only equilibrium and the tumor eventually relapsed despite a
significant initial reduction in tumor volume following treatment
initiation. Reducing δ using a fraction of MTD (smaller δ within
EDW) could steer tumor dynamics to a more favorable outcome,
sensitive cell-only equilibrium, given that the initial composition
((S(0), R(0))) belongs to the respective basin of attraction. Because
we do not have an explicit characterization of the separatrix, we

Fig. 3 Fitting with biomarker (LDH) data. The circles indicate the data points for each patient and the solid line shows the model-predicted
dynamics of the LDH level in international units per liter (IU/L). FIM: Fisher information matrix. It should be noted that the second and fourth
data points in the case of Patients five and eight, respectively, were excluded while fitting, as these two instances resemble deviations from
the regular trend observed through the other data points, which could be a consequence of other physical problems. Owing to the lack of
detail in the patient’s history, we proceed with this assumption.

Table 1. Parameter estimates.

r (per-day) K δ (per-day) c rð1� K0
K Þ rð1� 1

cÞ
Patient 2 0.1318 580.8725 0.0890 2.2920 0.0503 0.0743

Patient 6 0.1815 798.6885 0.1376 3.1830 0.0276 0.1245

Patient 7 0.1829 663.0487 0.1283 2.3628 0.1040 0.1055

Patient 8 0.1655 544.2614 0.0968 1.7348 0.001 0.0701

Estimated values of the identifiable parameters (from the second column
to the fifth column). The last two columns show the lower and upper
bounds of the EDW.
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cannot yet determine if the initial condition of S and R cells for
each patient belongs to the basin of attraction of S-cell-only
equilibrium. However, the coexistence equilibrium, which
depends on the drug dose (δ), depends on separation. Moreover,
the S-nullcline and, hence, the S-only equilibrium, depends on the
drug dose (equation (2)). Therefore, the drug dose can be
modulated to expand the basin of attraction of the S-only
equilibrium to contain the initial point and reach a suitable S-only
equilibrium (tolerable tumor burden, e.g., initial tumor volume).
To further illustrate this, we presented a scenario for Patient 2

(Fig. 4). The R-nullcline (defined in equation (3)), shown by the
orange solid line in Fig. 4, is invariant to δ. The S-nullcline is
indicated by a dotted blue line for the MTD. The nullclines do not
intersect, and the only stable equilibrium is the R-only equilibrium
(filled orange circle). Therefore, the trajectory starting from the
initial point (gray diamond (◇)) approaches the R-only

equilibrium (filled orange circle), similar to Case II shown in
Fig. 2c. For a dose (for instance, 70% of MTD) in the EDW (equation
(4)), the S-nullcline (purple dotted line) and R-nullcline intersect at
the unstable coexistence equilibrium (the green asterisk (*)), which
lies on the separatrix. Trajectories starting above and below the
separatrix approach the S-only (purple circle) and R-only
equilibrium (orange circle), respectively. Because the initial S-R
cell combination (◇) belongs to the basin of attraction of the
S-only equilibrium, the cell population approaches the S-only
equilibrium (purple circle) (as we observed in Fig. 2b (Case III)).
When the population reaches S-only equilibrium, it remains at a
constant level. If the dose is decreased further, the S-only
equilibrium increases, the S-nullcline is shifted upward, and as a
result, the separatrix is shifted downward (which is shown by the
two arrows in Fig. 4). A dose with a drug-induced death rate below
the EDW results in an S-only equilibrium higher than the tolerable
tumor volume. Overall, if the dose is modulated so that the drug-
induced death rate belongs to EDW, continuous therapy with the
modulated dose (fraction of MTD) can contain the tumor at an
S-only equilibrium indefinitely.

Dose optimization
We have demonstrated that there may exist a patient-specific
EDW that can contain a tumor below a threshold Ktol. Next, we
investigated which dose in the EDW is optimal. To this end, we
applied the optimal control theory to derive the optimal dose that
contains the cancer growth potential indefinitely. The optimal
dose is the minimum dose that maintains the tumor burden at the
desired limit Ktol. We used the optimal control process described in
section “Optimal control”. We first solved the optimality system for
a range of different weight values B in the cost function given by
equation (15) for all four patients. For each value of B, we obtained
a time-dependent optimal dose u*. We numerically solved the
system for 1460 days (4 years). It is worth noting that the median
progression-free survival of patients with metastatic melanoma
under continuous MTD-targeted therapy ranges from
11–15 months38,39.
To illustrate this further, we considered the case of patient 2.

The surface plot in Fig. 5a shows the control profiles for different
values of B. The blue line shows the optimal dose (OT) that can
contain and maintain tumor volume at Ktol= K0 for B= 691.9.
Higher values of B(>691.9) result in a lower optimal dose and
consequently increase in dose at the end to meet the fixed
endpoint condition (14). Similarly, the opposite happens for
B < 691.9. It is to be noted that a control profile for any value of B is
practically applicable, as it refers to a fraction of MTD. This optimal
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Fig. 4 Dose modulates the basin of attraction. The triangular
region shows the phase space for patient 2. The initial cell
composition is shown by the gray diamond (◇). The solid orange
line shows the R-nullcline (equation (3)), which is invariant to δ, and
the solid orange circle represents the R-only equilibrium. The dotted
blue line shows the S-nullcline (equation (2)) with the MTD, and the
empty blue circle is the unstable S-only equilibrium. The dotted
purple line shows the S-nullcline (equation (2)) with 70% of the MTD
(belonging to the EDW (equation (4))), and the filled purple circle is
the stable S-only equilibrium. The solid black line indicates the
separatrix. The two arrows indicate the direction in which the
separatrix and S-nullcline are shifted when δ decreases.

Fig. 5 Time dependent dose and corresponding tumor evolution for patients 2. a The surface plot shows the time-dependent optimal (OT)
dose for a range of values of B for Patient 2. b The blue and black lines show the change in the total cancer volume with OT (contained at the
initial volume) and with MTD, respectively. c The blue and black lines show the change in the number of R-cells with OT (contained at the
initial volume) and with MTD, respectively.

M.A. Masud et al.

6

npj Systems Biology and Applications (2023)    17 Published in partnership with the Systems Biology Institute



dose could maintain tumor volume at the initial burden (Fig. 5b).
The blue line in Fig. 5b shows the tumor contained at the initial
volume, and the corresponding dose is shown in Fig. 5a by the
same-colored lines. The associated volume of the R cells is shown
in Fig. 5c. An MTD can rapidly decrease the tumor volume by
approximately 75 days. However, the tumor volume grows back
and relapses by approximately the 168th day and subsequently
reaches the carrying capacity. This is due to the growth of R cells
(Fig. 5c) and the extinction of the S cells due to MTD. In optimal
dose therapy, the dose contains the tumor volume at the initial
level (the blue line in Fig. 5b). The OT modulated the net S-cell
growth rate and inter-species competition in favor of the S cells.
As a result, R cells die, and cancer reaches the S-cell-only
equilibrium. We also obtained similar results for the other patients,
as shown in Supplementary Fig. 3. The optimal dose profiles to
contain the tumor at its initial volume are shown in Fig. 6 for all
patients.

Comparing the optimal dose continuous therapy with
adaptive therapy
Thus far, we have discussed the effect of continuous therapy with a
modulated dose (within the EDW). To compare the treatment
outcomes with treatment on and off AT, we simulated AT for all four
patients with various normalized dose and pause levels (please find
the definition of AT in the section “Adaptive therapy”). To illustrate
further, we showed the temporal evolution of tumor burden
changes with a fixed pause level of 0.5, and three different doses of
0.5, 0.7, and 0.9, respectively (Supplementary Fig. 4a). At any of the
three different normalized doses, the tumor volume failed to reach
the pause level of 0.5, resulting in no treatment vacation.
Depending on the dose level, the final tumor volume varied
significantly from 85% to approximately 160% of the initial volume.
A 50% reduction in dose from MTD (normalized dose 0.5) was not
sufficient to reduce tumor burden (Supplementary Fig. 4a an
increased blue line), but the dose was able to maintain tumor
volume at about 105% of the initial burden. Increasing the dose to
0.7 (70% of the MTD) decreased the tumor burden by approxi-
mately 15% from the initial burden (Supplementary Fig. 4a, red line).
A further increase to 0.9 reduced the initial burden more rapidly, but
later increased it to approximately 160% of the initial volume,
consisting of only the R cell (Supplementary Fig. 4a, orange line). If a
different pause level of AT is applied to patient 2, maintaining the
tumor burden below the initial level can be achieved. For example,
an AT with a normalized dose of 0.9 (90% of MTD) and a pause level
of 0.65 or 0.7 led to successful tumor burden control (Supplemen-
tary Fig. 4b, orange and red lines). A lower pause level (0.6) failed to
maintain tumor burden as the burden never reaches 0.6 of the
initial with 0.9 of MTD for the patient.
We simulated AT for all four patients with various pause levels

(50% to 90% of the initial volume) and normalized doses and
quantified the TTP for each case. The TTP for each patient is shown
in Fig. 7. It is worth noting that TTP is set to 1 if the tumor burden
increases from the start of the treatment. Interestingly, a patient-
specific dose window exists ([0.57, 0.84] for patient 2, [0.21, 1] for
patient 6, [0.815, 0.82] for patient 7, and [0.015, 0.74] for patient 8),
which results in maximum TTP irrespective of the PauseLevel (Fig. 7
yellow). For doses beyond this window, the pause level can change
the TTP. The dose level mostly determines the TTP. For patient 2, if
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Fig. 6 Time-dependent optimal dose for the patients 2, 6, 7, and
8. u*(t)= 1 corresponds to the MTD. Therefore, in all patients, we
observed that a time-dependent dose smaller than the MTD is
recommended for optimal therapy.

Fig. 7 The pause level does not affect the TTP for a window of doses. The TTP in days under AT with different pause levels and normalized
doses for patient (a) 2, (b) 6, (c) 7, and (d) 8. The color bar indicates TTP in days.
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an AT with a normalized dose between 0.57 and 0.84 resulted in the
same TTP of 1460 days regardless of the pause level (Fig. 7a, yellow
heat map between normalized dose levels of 0.57 and 0.84). A
higher normalized dose level required varying pause levels between
0.6 and 0.9 to achieve the same TTP (1460 days). For patient 6, a
normalized dose level below 0.21 leads to an increase in tumor
volume from treatment initiation (Fig. 7b blue shaded region). A
normalized dose higher than 0.21 resulted in a TTP of 1460 days
regardless of the varying pause level. For patient 7, we observed a
good spot in the normalized dose range of 0.815 to 0.82, which led
to a TTP of 1460 days (Fig. 7c). Interestingly, a normalized dose
higher than 0.82 decreased TTP. For patient 8, our simulations show
that a longer TTP could be achieved even with a very low
normalized dose (<0.05) (Fig. 7d). If the normalized dose was
increased from 75% to 85%, the pause level was slightly higher than
0.5 for a TTP of 1460 days. Taken together, our AT simulations show
that there exists a patient-specific dose window for a large TTP
irrespective of the pause level (e.g., 1460 days, approximately 4
years), which we denote as the EDWAT.

Defining patient-specific minimum effective dose
In the above section, we learned that there is a dosing interval for
each patient in which TTP is maximum and insensitive to the
pause level. We denote this as the EDWAT. To compare the
previously derived EDW (shown in columns 6 and 7 of Table 1)
with EDWAT and optimal dose u*(t), we normalize the EDW by
dividing with the respective value of δ because δ is the drug-
induced rate under MTD therapy. We refer to it as the normalized
effective dose window (NEDW). Figure 8 shows a comparison of
EDWAT (black dotted line) with NEDW (blue dashed line), and the
dose at the plateau of the optimal dose profile (asterisk (*)). For all
patients, the lower bound of EDWAT and NEDW coincided (up to
two decimal places) with the optimal dose. The upper bounds of
EDWAT and NEDW are the same, except for patient 6. Overall,
doses belonging to the EDW can extend TTP under both
continuous and adaptive treatments. Combining our analysis
from three different perspectives, we concluded that the optimal
dose that approximately coincides with the lower bounds of
EDWAT and EDW is the MED.

DISCUSSION
Treatment with a dose smaller than MTD has shown to be more
effective than MTD in several preclinical and clinical studies. For
instance, Mach et al. demonstrated that a dose of 20mg/kg reduces
the tumor volume to about 42% of the volume compared to the

tumor volume without treatment in the xenograft pancreatic cancer
models. Doubling the dose to 40 mg/kg was less effective (5% less
reduction)40. In a mouse model of ovarian cancer, MTD was found
to increase the tumor volume by approximately four times, while
20% of the MTD maintains a stable tumor volume of approximately
130% of the initial volume over a period of 3 weeks41. Low-dose has
also been found responsive over 4 years in the case study of a
metastatic castration-resistant prostate cancer patient42. A theore-
tical upper bound of dose for tumor containment has been
proposed in recent studies5,43. Viossat and Noble stressed the
competitive superiority of sensitive cells over resistant cells and the
existence of an equilibrium sensitive tumor volume21. However, it is
critical to assess if the stable tumor volume is below the tolerable
tumor burden.
This study develops a mathematical model-based approach that

predicts a patient-specific effective dose window, whose lower
bound is determined by patient-specific tolerable tumor burden,
and approximates the minimum effective dose to contain the
tumor at the burden. Depending on the level of tolerable burden,
the effective dose window for both continuous therapy and
adaptive therapy changes (e.g., Patient 2 case in Fig. 9). For
example, for patient 2, if the tolerable burden is high (e.g., 120% of
the initial volume, within stable disease range according to RECIST
1.1 criteria37), a dose belongs to 38% and 83% of MTD is enough
to contain the tumor at the level. However, if the tolerable burden
is low (e.g., 71% of the initial burden), more than 80% of MTD
needs to be applied to achieve the containment. If the tolerable
burden is lower than 70.59% of the initial, there is no effective
dose window which implies that the tumor cannot be contained
below the TTV. This is because a dose below the upper bound of
EDW will reduce the tumor to a stable volume that is higher than
TTV. In such cases, MTD would rather decrease the tumor volume
as rapidly as possible which will eventually relapse. Surprisingly,
adaptive therapy with doses belonging to the effective dose
window delayed tumor progression regardless of treatment pause
level. Existing literature suggests containing tumors between high
volume and high pause level can amplify the benefit of adaptive

Fig. 8 Effective dose window (EDW) and minimum effective dose
(MED). The blue dashed line and black dotted lines resemble the
NEDW and EDWAT. The orange asterisk (*) indicates the optimal
dose, designated as the MED. The dose windows for patient seven
are very narrow, which is magnified in the inset.
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Fig. 9 Doses adjusted to tolerable tumor burden. Effective dose
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lower inclined black line (the minimum effective dose). The vertical
blue lines show the effective dose window for adaptive therapy for
different TTV adopted from Supplementary Fig. 5. The orange
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therapy2,17–19. Our analysis shows that any pause level above 50%
of the initial volume can contain the tumor provided the dose
belongs to the effective dose window. Taken together, our results
provided a theoretical ground for deriving an effective dose
window for tumor containment with either continuous or adaptive
therapy, where the lower bound of the window can be adaptive to
tolerable tumor burden.
Tumor microenvironment holds a complex and unique ecology

that modulates treatment response44,45, which may alter EDW.
From equation (4), we observe that EDW is dependent on the
growth rate of tumor cells (r), carrying capacity (K), and
competitive superiority of sensitive cells (c). Thus, if microenviron-
mental factors can change these parameters in a whole tumor, the
EDW will be altered. For example, cancer-associated fibroblasts
(CAFs) may increase the growth rate of tumor cells46. Equation (4)
shows that both the upper bound and lower bound would
increase and a higher dose will be required if microenvironmental
factors (e.g., stroma) drive a higher intrinsic growth rate in a whole
tumor and vice versa. Also, proangiogenic factors or growth
factors may increase tumor carrying capacity47,48, which results in
an increase in the lower bound of EDW (i.e., MED). It is due to
higher carrying capacity allowing an increase in net growth rate,
which requires an additional dose to compensate. It is worth
noting that the effect of microenvironmental factors on the EDW
discussed here applies to a tumor where microenvironmental
factors are rather uniformly distributed. In a real tumor, however,
tumor microenvironmental factors are heterogeneously distribu-
ted49–53, which drive diverse treatment outcomes observed50,53,54.
Our analysis rests on the key assumption that the initial tumor

burden of the patient is not immediately life-threatening and it
could be reduced to a tolerable level. The definition of tolerable
tumor volume that is related to the quality of life is obscure55, as it is
associated with multidimensional factors, such as symptom burden,
age, cancer type, and patient expectations. For instance, in a
longitudinal study of approximately 500 patients with different types
of cancer, patients with stomach, esophageal, hepatobiliary, or head
and neck cancer had higher distress levels than other patients56. In
addition, in phase III trials of prostate cancer, it has been reported
that stabilizing the symptom burden is not correlated with the
survival rate57. However, in most solid cancers, maintaining the sum
of the diameters of the target lesions is a treatment response
criterion. According to the RECIST 1.1 criteria, a less than 20%
increase in the sum is defined as stable disease37. A recently
reported treatment outcome of AT demonstrated that chronic
control of the disease burden could be more effective in improving
patient survival14. A volume higher than the initial volume is shown
to be more effective than aiming at rapid reduction of tumor
volume with MTD therapy in theoretical (110% of the initial
volume2) as well as preclinical studies (125% of the initial volume20).
Our present approach combines the identifiability analysis and

optimal control to set a cornerstone for mathematical model-
informed clinical decisions. It shows that for the four patients (2, 6,
7, and 8) a fraction of MTD would have been sufficient for
containing the tumor, though the fraction varies from patient to
patient. For instance, patient 7 has a very narrow EDW compared
to other patients. Also, the lower bound of the EDW of patient 7 is
even higher than the upper level of the EDW of patient 8. This
emphasizes the idea of personalized treatment. Though several
successes with low-dose therapy in a clinical setting have been
documented recently42,58,59, personalized dose modulation still
needs effort. In the clinical setting, the deployment of our present
approach could be challenged by the evolution of the tumor
microenvironment and resistance. However, the framework we
proposed in the current study to determine personalized MED,
could potentially be incorporated in an evolutionary tumor
board60 in a clinical setting while dosing for each strike (first-
strike or second-strike61) is decided. Since our mathematical
model describes general cancer cell population growth with inter-

species competition, the present model could be applied to other
cancer types. Since the approach requires data on temporal tumor
burden changes during treatment on and off, the accuracy and
availability of serological biomarkers for the cancer types are
desired. For example, our approach can be applied to prostate
cancers (prostate specific antigen) and ovarian cancers (ovarian
cancer antigen 125). The model could be extended to comply with
a specific type of cancer. However, extending the model could be
limited by the model parameter identifiability issue, which could
further be overcome by the inclusion of other relevant patholo-
gical information in addition to biomarker data.
Our model is an abstract representation of tumors in a patient.

We assumed the tumor cell population was a homogeneous
mixture of two genetically fixed drug-sensitive and drug-resistant
cell populations. In real tumors, cancer cells may have a different
degree of drug resistance and drug sensitivity. Cancer cells may
also be phenotypically plastic and have acquired resistance62–64.
In addition, cancer populations are not well-mixed, but rather
spatially organized65–68, which can be modulated by heteroge-
neous tumor microenvironmental factors69,70. Also, tumor growth
and treatment response could be modulated by the immune
response71. However, the current clinical assessment of treatment
response is often performed by analyzing non-spatial tumor
burden data (blood level of tumor burden only). It is worth noting
that the patient data employed in this study is biomarker data of
total tumor burden. Therefore, although a more detailed model
with various cell compartments along with information regarding
immune activity may better represent the tumor, it would be more
complex with additional assumptions that cannot be supported
by blood biomarkers only.
In summary, our analysis of tumor dynamics identifies the

necessary conditions for the existence of an effective dose
window, where its lower bound is determined by patient-
specific tolerable tumor burden and corresponds to the minimum
effective dose derived by applying a fixed point optimal control
model. The application of our approach to patients with advanced
melanoma identified the personalized effective dose window.
Here, we identify such a dose by performing an identifiability
analysis and calibrating the model to each patient’s tumor burden
dynamic data. This study highlights the potential benefits of using
mathematical models in clinics by supporting personalized dose
modulation decisions. This mathematical model-integrated treat-
ment decision paradigm is crucial for personalized medicine
because it facilitates therapy dosing. Therefore, we advocate
integrating multiple principles, including predictive mathematical
models, to develop therapeutic strategies.

METHODS
Parameter identifiability and model parameterization
Parameter identifiability analysis assesses how well the parameters
of a model can be estimated by experimental or clinical data,
assuming that a mathematical model fits the data well with a
small error. The goodness of fit does not guarantee the reliability
of the estimated parameters. For instance, low-quality data with
high noise or a small number of data points may result in various
parameters that can fit the data almost equally well. Identifiability
analysis has become more important, particularly in modeling
biological systems with often partially observed noisy data72–74.
First, we performed a structural identifiability analysis to assess the
inherent properties of the model. Next, we fit the model to the
data and assessed the practical identifiability of the estimated
model parameters.

Structural identifiability. Structural identifiability is an inherent
property of a model that addresses the existence of a unique set
of parameter values given noise-free observations at all-time
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points75. To formally analyze the identifiability, we rewrote the
system (1) as

dx
dt

¼ f ðx; t; pÞ; (5)

yðtÞ ¼ x1ðtÞ þ x2ðtÞ; (6)

yðx; t;pÞ ¼ yðx; t;p�Þ ) pi ¼ p�i : (7)

The above equation resembles a one-to-one relationship
between the output and the parameters. This can be rephrased
as the injectivity of the map ϕ : p→ y, defining the model output
as a function of the parameters p76. We adopted a differential
algebra approach76–78 to address the structural identifiability of p,
which is summarized in the following steps.

1. Rewrite the model in terms of the output y and parameters
p to express the dependency of the observable on the
parameters. This is known as the input-output equation79.

2. Normalize the input-output equation by the coefficient of
the highest ranking monomial of y to deduce the monic
polynomial80.

3. Examine the injectivity of the coefficients of the monic
polynomial with respect to the parameters, which confirms
the structural identifiability of the model78.

This approach can be implemented using the free web application
COMBOS75, which has been used in several previous studies to
assess structural identifiability81–83. Therefore, we chose to use the
COMBOS75 web application to verify the structural identifiability.

Parameter estimation. We employed the maximum-likelihood
approach to estimate the parameters. We assumed that the tumor
burden V(tn) at time tn is a sample from the Poisson distribution
with mean y(tn; p). Using the probability mass function of the
Poisson distribution, we derived the likelihood of observing the
longitudinal tumor burdens V(t1), V(t2),… , V(tN) at times t1, t2,…
tN, as follows.

LðpÞ ¼ yðt1;pÞVðt1Þe�yðt1;pÞ

Vðt1Þ! :
yðt2;pÞVðt2Þe�yðt2;pÞ

Vðt2Þ! � � � yðtN;pÞ
VðtNÞe�yðtN ;pÞ

VðtNÞ!
(8)

Next, we formulated negative log-likelihood (NLL) as follows

NLLðpÞ ¼ �lnðLðpÞÞ ¼ �
XN
n¼1

VðtnÞ ln yðtn;pÞð Þ þ
XN
n¼1

yðtn;pÞ þ
XN
n¼1

lnðVðtnÞ!Þ:

(9)

An optimization algorithm was employed to identify the
parameters that minimized the above equation (maximizing the
likelihood). In this study, we employed the Nelder-Mead Simplex
method built into the MATLAB function fminsearch. It is worth
mentioning that, by minimizing NLL, we maximized the probability
of realizing the observed data.

Practical identifiability. Practical identifiability concerns the quan-
tity of data required to determine parameters, and whether, given
the amount of data, one can uniquely infer the parameter values.
The analysis was performed locally by perturbing the estimated
parameters to fit the data. Specifically, we utilized the Fisher
information matrix (FIM) and profile likelihood (PL) approaches.
To derive an FIM, we first calculated a sensitivity matrix M,

M ¼

Aðt1Þ
Aðt2Þ
..
.

AðtNÞ

2
66664

3
77775; (10)

where A(tn) is an nx × np matrix (nx is the number of state variables
and np is the number of parameters). An element of A(tn) is
defined by AjiðtnÞ ¼ ∂xjðtn;pÞ

∂pi
, n∈ {1, 2,… , N}.

FIM is defined as F=MTM, and its rank indicates the number of
identifiable parameters. A rank of np indicates that the number of
parameters np is practically identifiable84,85. A finite-difference
method was applied to approximate F. We perturbed each p̂i to

p̂þi ¼ ð1þ ϵÞp̂i and p̂�i ¼ ð1� ϵÞp̂i , where ϵ= 0.001. For this, we
simulated the model and numerically approximated the deriva-

tives AjiðtnÞ ¼ ∂xjðtn ;p̂Þ
∂p̂i

¼ xjðtn ;p̂þi Þ�xjðtn ;p̂�i Þ
2ϵp̂i

. Note that p̂i resembles the
estimated value of pi. Moreover, we computed the profile
likelihood for a parameter pi by varying the parameter over an
interval containing p̂i and fitting the remaining parameters86. The
resulting likelihood for each pi constitutes the profile-likelihood
function for pi. Mathematically, it can be written as

PLpi ðpiÞ ¼ min
pj ;j≠i

NLLðpÞf g; (11)

where pi 2 ½p̂ið1� ηÞ; p̂ið1þ ηÞ�, and η= 0.2. If all profile like-
lihoods show a global minimum at the estimated value of the
parameters, then the parameters are practically identifiable.

Optimal control
To optimize the drug dose, the following optimal control process
was employed. We multiplied δ by the time-dependent dose
modulation parameter u(t)∈ [0, 1] in model (1) and obtained the
resulting model (12).

dSðtÞ
dt ¼ r 1� SðtÞþRðtÞ

K

� �
S� uðtÞδSðtÞ;

dRðtÞ
dt ¼ r 1� cSðtÞþRðtÞ

K

� �
RðtÞ;

(12)

with the initial conditions of

Sð0Þ ¼ S0 and Rð0Þ ¼ R0; (13)

where S0 is the number of initial S cells, and R0 is the number of R
cells. We impose one more endpoint condition for the population
S at the end time point T as follows,

SðTÞ ¼ Ktol; (14)

where the symbol Ktol denotes tolerable tumor volume (TTV).
Here, control parameter u(t) denotes the required optimal dose
as a fraction of the MTD. In the optimal control problem, we aim
to minimize the tumor volume and keep it within a tolerable
volume (TTV) using a possible minimum fraction of MTD.
Following this aim, we model a fixed endpoint problem with
the cost functional (15)

JðuðtÞÞ ¼
Z T

0
gðt; S; R; uÞdt; (15)

where gðt; S; R; uÞ ¼ SðtÞ þ RðtÞ þ 1
2 Bu

2ðtÞ, and B is a constant
weight associated with the toxicity and cost of the dose. Our
objective is to find u*(t) such that

Jðu�ðtÞÞ ¼ min
u2U

fJ uðtÞð g; (16)

where U is the set of admissible controls, which are piece-wise
continuous, Lebesgue integrable, and satisfy the system (12) with
the initial condition (13), and endpoint condition (14). Here, our
aim is to find a minimum dose that minimizes the tumor volume
and steer the dynamics towards a TTV (Ktol) of the tumor
consisting of all S-cells. We considered the quadratic form of the
control term to deduce a time-dependent continuous dose. The
convexity of the integrand of the cost functional (15) implies
the existence of an optimal dose u*(t)87 (see the Theorem 2.1 in
the Supplementary Information). The sufficient condition for the
optimal solution is associated with the convexity of the
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hamiltonian ðHÞ (Theorem 3 in88). Proof of the sufficient
conditions for the present problem is derived in Theorem 2.2 in
the Supplementary Information (Corollary 1 in89, Theorem 2.1
in90). We used Pontryagin’s maximum principle91 to derive
the necessary conditions for the optimal solution, defined the
Hamiltonian ðHÞ in equation (17) from which we derived the
adjoint system (18), and characterized the time-dependent
optimal control in equation (19) (see Theorem 2.3 in the
Supplementary Information for details).
Hamiltonian,

H ¼ SðtÞ þ RðtÞ þ 1
2 BuðtÞ2

þ λ1 r 1� SðtÞþRðtÞ
K

� �
SðtÞ � uðtÞδSðtÞ

� �

þ λ2r 1� cSðtÞþRðtÞ
K

� �
RðtÞ:

(17)

Adjoint system,

dλ1ðtÞ
dt ¼ �1� λ1ðtÞ r 1� 2SðtÞþRðtÞ

K

� �
� uðtÞδ

� �
þ λ2ðtÞ rcRðtÞK ;

dλ2ðtÞ
dt ¼ �1þ λ1ðtÞ rSðtÞK � λ2ðtÞr 1� cSðtÞþ2RðtÞ

K

� �
;

(18)

subject to transversality condition, λ1(T)= θ1 (such that, S(T)= Ktol),
and λ2(T)= 0.
Time-dependent Control,

u�ðtÞ ¼ min 1;max 0;
δSðtÞλ1ðtÞ

B

� �� �
: (19)

The adaptive forward-backward sweep method (AFBSM)90 is
used to numerically solve the optimality system consisting of
equations (12), (18), and (19) subject to the initial condition (13)
and endpoint condition (14). AFBSM is an extension of forward-
backward sweep method (FBSM)90, where FBSM is applied for two
separate initial guesses of λ1(T), which generally produces
S(T) ≠ Ktol. After each FBSM step, the secant method is applied to
update the couple of initial guesses of λ1(T), which is again
followed by another FBSM step. This process continues until the
desired value λ1(T)= θ1 which produces S(T)= Ktol is obtained.

Adaptive therapy
To quantify the dose in a comparable scale with optimal dose,
u*(t), we use the term normalized dose which refers to a fraction of
MTD. We considered various doses and pausing levels of adaptive
therapy, defined as follows.

DOSEAT ðt; normalized dose; PauseLevel; KtolÞ ¼
normalized dose ´MTD until SðtÞ þ RðtÞ< PauseLevel ´ ðSð0Þ þ Rð0ÞÞ;

0 until SðtÞ þ RðtÞ � 0:999Ktol;

�
(20)

where normalizeddose and PauseLevel ∈ [0, 1]. We simulated the
treatment until the tumor volume reached the pause level relative
to the initial volume, and held the treatment off until the tumor
burden increased up to 99.9% of Ktol. We assume Ktol as the
progression threshold, and time to tumor progression (TTP) is
defined as the time when the tumor exceeds this threshold.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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