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A deep learning framework for quantitative analysis of actin
microridges
Rajasekaran Bhavna 1,2✉ and Mahendra Sonawane 1

Microridges are evolutionarily conserved actin-rich protrusions present on the apical surface of squamous epithelial cells. In
zebrafish epidermal cells, microridges form self-evolving patterns due to the underlying actomyosin network dynamics. However,
their morphological and dynamic characteristics have remained poorly understood owing to a lack of computational methods. We
achieved ~95% pixel-level accuracy with a deep learning microridge segmentation strategy enabling quantitative insights into their
bio-physical-mechanical characteristics. From the segmented images, we estimated an effective microridge persistence length of
~6.1 μm. We discovered the presence of mechanical fluctuations and found relatively greater stresses stored within patterns of yolk
than flank, indicating distinct regulation of their actomyosin networks. Furthermore, spontaneous formations and positional
fluctuations of actin clusters within microridges were associated with pattern rearrangements over short length/time-scales. Our
framework allows large-scale spatiotemporal analysis of microridges during epithelial development and probing of their responses
to chemical and genetic perturbations to unravel the underlying patterning mechanisms.
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INTRODUCTION
The apical surface of epithelial cells exhibits specialized actin-rich
features. These include microvilli observed on intestinal epithelial
cells that are required for absorptive function and stereocilia
present in the inner ear for mechanosensing1,2. Microridges are
another class of actin-based protrusions found on various non-
cornified squamous epithelia3–6. They form laterally long labyr-
inthine patterns on the apical domain of peridermal or outer
epidermal cell surfaces in zebrafish embryos. Ultrastructural
analyses have demonstrated that microridges are comprised of
actin filament networks3,5,7. Consistently, the function of the Arp2/
3 complex is essential for their formation and maintenance7–9.
Additionally, actin regulators such as cortactin, VASP8, Wasl,
Cofilin, Eplin, Filamin7, and non-muscle myosin-II (NMII)9,10 as well
as keratin cytoskeleton and Plakin cytolinkers11 localize to the
microridges. Microridges remain dynamic and actin is actively
treadmilling within them8,10,12,13. Besides, cell polarity proteins
such as aPKC and Lgl—regulators of apical and basolateral
domain identity, respectively—control the elongation of micro-
ridges10,14. These studies provide collective evidence that micro-
ridges are organized by F-actin, NMII, and regulated possibly by
other actin-binding proteins (ABPs) and cytoskeletal interactions.
However, their precise interactions and mechanistic control during
formation and maintenance remains elusive. As per the current
understanding, F-actin punctae or pegs are distributed on the
peridermal cells and apical constriction provides the necessary
force for the neighboring pegs to coalesce into microridges9,
which gradually evolve into labyrinthine patterns, under the
influence of Myosin-II activity7,9,10,13.
In reconstitution experiments, actin, NMII and their associated

motor proteins can be organized into various large-scale
patterns15,16. The concentrations, kinetic parameters of ATP, and
density of actin-related proteins contribute to their collective
behavior. Stable, stationary structures can form by self-assembly of
actin and related proteins near their thermodynamic equilibrium.

In contrast, in an active self-organizing system, different mechan-
isms can arise, in which the assembled structures reach an active
steady state without reaching thermodynamic equilibrium, as
energy is continuously consumed and dissipated15,16. In vivo
microridges remain in a non-equilibrium steady state by
continuously reorganizing their patterns constituted by an active
network of F-actin, NMII, and related proteins. One mode of
understanding the mechanism of microridge formation and
maintenance is to gain insight into their physical properties that
are both reflective of and contribute towards the process of self-
organization. Spatiotemporal fluorescence imaging, segmentation,
and tracking form powerful approaches to gain quantitative
insight into biophysical properties, including morphological and
dynamic characteristics.
Quantitative descriptions of dynamic processes require high-

quality image data followed by appropriate analysis methods17–19.
A major challenge for biologically relevant parameter extraction is
image segmentation that correctly identifies pixels within the
images. Depending upon image-content and morphological
features such as cell membrane, nuclei, or actin filaments, their
size, shape, density, and data dimension, rigorous image-based
techniques are tailored to accurately address specific tasks and
involve many carefully fine-tuned control parameters20–23. Often
segmentation errors at small spatial scales can yield downstream
errors leading to noisy results24. One way to circumvent this
problem is by training machine-learning models on feature
vectors extracted from annotated ground truth data representing
all possible variabilities25–28. Another subset of machine-learning
algorithms are the deep learning methods that utilize the general
principles of learning and, in this process, learn data representa-
tions with multiple levels of abstraction to discover intricate
patterns required for detection or classification. They have
remarkably outperformed feature-extraction-based algorithms
and surpassed human performance for hard problems28. Specifi-
cally, convolutional neural networks (CNN) are designed to
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process multidimensional data arrays, including multi-channel or
temporal data sequences28,29. They have been applied with
success for biological-image analysis for cell type classification30,
protein subcellular localization31, image restoration32, and cell
segmentation33–36.
We designed a fast and accurate large-scale CNN-based

quantitative framework for the analysis of microridge patterns.
We demonstrate that CNNs are adaptable and scalable to produce
trained segmentation models that can serve as high-end feature
extractors. From the experimental data, we estimated the bending
rigidity and population-level length-scale parameter of micro-
ridges. Our flow analysis elucidated the time-dependent accumu-
lation and dissipation of mechanical stresses within the underlying
networks of microridge patterns. Our computational analysis of
mobile high-intensity actin clusters revealed their influence on
localized pattern rearrangements. Importantly, the framework
allows a quantitative analysis of microridges, unraveling their
mechanism of formation and maintenance at different develop-
mental stages, response to perturbations and diverse genetic
backgrounds.

RESULTS
Live imaging of zebrafish epidermis and image processing
pipeline
The zebrafish epidermis is bi-layered by 48 hpf with the apical
surface of outer peridermal cells decorated with microridges
(Supplementary Fig. 1a). To facilitate high-quality live imaging of
developing microridges (Tg(actb1:GFP-utrCH)), we designed a
custom mounting device to fit zebrafish embryo dimensions at
48 hpf (Methods, Fig. 1a). Microscopy parameters were optimized
for achieving high spatiotemporal resolution of the epidermis
from head, yolk, and flank regions of the embryo. Temporal
changes in periderm cell height were sensitive to tissue regions
and embryonic development. Therefore, optimal filtering para-
meters were set for each microscopy movie to encompass
peridermal cells and exclude basal epidermal cells from the
segmentation analysis (Fig. 1b and Supplementary Fig. 1a–c).
Custom algorithms were written for periderm cell-membrane

segmentation to demarcate each cell by its boundary and extract
raw single cells patterned with microridges (Methods, Fig. 1c and
Supplementary Fig. 1d–g). The cell segmentation steps excluded
cells with incomplete edges (membranes) due to either low
contrast or non-uniform z-fluctuations. This was followed by cell
centroid distance-based tracking frame-by-frame (Fig. 1d and
Supplementary Fig. 1h). Cell-tracking information was used for
dynamic pattern analysis. We designed an automated microridge
segmentation pipeline (Methods, Fig. 1e, Supplementary Fig. 1i)
that formed the labeled training set for the CNN approach. The
patterned-cell extraction step provided a large training dataset for
CNN-based microridge segmentation (Fig. 1f). Mathematical
details of cell segmentation, cell tracking, and microridge
segmentation are described in Methods (Eqs. 1–7).

CNN-based microridge segmentation: tuning the training and
performance evaluation
A step-wise description of the CNN microridge segmentation
workflow is provided below (detailed in Methods). Using the
training set, we optimized the hyperparameters (Fig. 1g) to
achieve a trained network for microridge segmentation by
implementing a U-net encoder-decoder neural network architec-
ture (Fig. 1h) that has already demonstrated its efficiency in the
bio-medical segmentation field33,34.

Training set. The training set consisted of image pairs of
grayscale cell patterns and their corresponding annotated images
produced with the automated microridge segmentation pipeline.

The dataset formed an excellent repository for training the
network as the number of pixels that amounted to foreground
and background varied across different patterns. These, in turn,
served to determine the optimal set of hyperparameters to
achieve pixel-wise segmentation (Fig. 1f–h).

Optimizing hyperparameters. We applied median pixel image
normalization to balance the weight of foreground and back-
ground pixels during training to solve the binary pixel-
classification problem. Having produced microscopy data within
the laboratory, a data augmentation step ensured training
diversity to improve the learning process (Methods, Fig. 1g). The
network performance was sensitive to hyperparameters. After
initial testing of several combinations of hyperparameters, we
fixed the image size to 2562 (pixels), which scales to the receptive
field size and encoder depth of 6 and adjusted the learning rate to
10−4. Smaller receptive fields led to higher numbers of falsely
classified pixels, whereas optimal performance was obtained at
the cost of longer training time. We varied the mini-batch size
(MBS) that indicates the subset of data from the training set that is
used at each training iteration and maximum epochs (ME), which
is the number of iterations through the entire training dataset
during the training.

Network setup for training. We performed numerical tests by
varying (i) the fraction of the training dataset (95, 93, and 90%)
and ii) MBS and ME for each data proportion (Fig. 1g, h). The
trained network performance was evaluated by measuring the
accuracy on the remaining grayscale test images (5, 7, and 10%)
whose image pixels were assigned independently by the
microridge segmentation pipeline (Fig. 1i, j). The network training
time varied from 12–20 h depending upon the combination of
hyperparameters (e.g., training time increased with larger ME on a
GPU-enabled high-performance cluster.

Performance evaluation. For each set of hyperparameters, we
evaluated the segmentation accuracy by pixel-wise comparison of
labeled test images with the network-predicted pixel-wise entropy
loss (Fig. 1j, k). The mean intersection over union37 (mean IOU)
score (Methods) assessed the overall segmentation performance
(Fig. 1l). For most cases, an accuracy of about ~90% was
achievable. The numerical tests indicated higher segmentation
accuracy for smaller MBS and larger ME rather than otherwise
(Fig. 2a), suggesting that a repeated learning process was better
than giving a greater number of images in one iteration for such a
segmentation task. We selected the network trained with 93%
data proportion, MBS= 6 and ME= 800 that yielded “mean IOU”
of 95.2% (Fig. 2a) on the test data, indicating a reasonable
performance (Fig. 2b–g). The microridge segmentation per cell
was achieved within a minute on a GPU device using the trained
network. The pixel physical sizes (μm) of network-segmented
images were re-computed (Methods, Eqs. 8–10) prior to quanti-
tative analyses of their static parameters and their steady state
dynamic analysis.

CNN versus microridge labeling algorithm. The choice of noise
filters and their parameters depends upon the noise type and levels
within the acquired images21. All images were acquired with a
similar signal-to-noise ratio (SNR), and hence the same control
parameters for the labeling algorithm (Methods, Eqs. 1, 4) were used.
To demonstrate that CNNs can be more robust than the labeling
algorithm, we examined the trained network on images acquired at
different SNR (Supplementary Fig. 2a, b). The trained CNN
segmented these satisfactorily (Supplementary Fig. 2c, d), while
the labeling algorithm required fine-tuning parameters to avoid
over-segmentation and missing labels (Supplementary Fig. 2e–h).
We then artificially produced high and low-contrast grayscale

images, respectively preserving microridge morphology, while
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altering local pixel intensities (Methods, Supplementary Fig. 3a–c). The
de-noising steps were separately modified for the two contrast-type
images to produce microridge annotations, since the default
approach produced under-segmentation (Supplementary Fig. 3d–g).
The previously trained network produced only 30–35% Jaccard

similarity on the contrast-altered images (data not shown). One single
CNN trained on a contrast-altered dataset containing 3004 cells
reported a mean IOU of 84% (Supplementary Fig. 3h–p). Broadly,
trained CNN models are relatively more robust than the conventional
labeling approaches, particularly when handled by non-experts.
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Estimation of bending rigidity of microridges in vivo
Deciphering the chemo-mechanical properties of microridges is
pertinent to understanding the emergence and maintenance of
their patterns. We estimated their effective persistence length (Lp)
or the characteristic length scale at which a microridge bends, to
assess their inherent mechanical stiffness. The mechanical
responses such as bending, stretching, or compression of the
in vivo microridges is likely to be a consequence of active
fluctuations in actomyosin network forces, in addition to their
dynamic response to thermal fluctuations. Previously, such
measurements have been established in in vitro single actin
filaments and microtubules, purified extracts of DNA polymers
based on their thermal response38,39, and microtubules within
cells as a consequence of both thermal response and cytoskeleton
elements40.
We defined an effective Lp based on the overall curvature

distribution of microridges (Methods). For each skeletonized
microridge branch, (Fig. 3a, highlighted within a magenta box),
we obtained discrete x–y pixel coordinates traced along the
skeleton contour length (Lxy) (Fig. 3b inset) smoothened with a
Gaussian, followed by spline interpolation (Methods, Eq. 11–13,
Fig. 3c). For each curved segment, we computed the spacing (Δsk)
between adjacent points and the tangent orientation angle (θk)
(Fig. 3c), which together allowed the evaluation of the corre-
sponding local curvature (κ) (Fig. 3d) along the contour length
(Eqs. 14–18). We rescaled the curvature (κ) by the square root of
the segment lengths to obtain κs (Fig. 3e, Eq. 19) and fitted a
Gaussian into the distribution ðPðksÞÞ (Eq. 20, Fig. 3f), whose width
defines an effective Lp estimated as ~6.1 μm. The effective flexural
rigidity (Eq. 21) or bending rigidity of microridges was determined
as 2.52 × 10−14 Nm2. The internal forces generated by actomyosin
networks within the microridges govern their response under
active load, such as stretching, compression or even buckling. For
an isolated microridge of length L ~1 μm, with the estimated Lp,
under active load, the critical force (fc~ π2kBTLp/L2) would be about
0.25 pN, above which the microridges would readily buckle. This
critical force is less than for pure actin filaments that have
Lp ≈ 17 μm38 and thus fc of around 0.69 pN. Our analysis is based
on the mesoscopic properties of the network within the
microridges. A bottom-up approach, such as building in vitro (or
reconstitution) models, would require mimicking the meshwork
properties of microridges. Hence, an estimate of Lp describing the
mechanical properties of the molecular network is fundamental to
probing the role of constituent proteins and deciphering their
mechanisms.

Distinct population level microridge pattern length-scales
The emergent pattern of microridges is a signature of their
underlying molecular determinants. The concentration, diffusion,
and degradation rates of actin and interacting proteins can affect
the spacing, density and thereby the pattern length-scale and

pattern span characterized by the pattern wavelength. We
estimated the wavelength (λ) in the Fourier domain (Methods,
Eqs. 22–26) for cell patterns from both yolk and flank regions
(Fig. 4a, b indicate representative patterns respectively), yielding
median values of 0.66 and 0.60 μm, respectively (Fig. 4c). The
spatial arrangements of cell patterns from yolk and flank regions
were visually discernible with yolk cell patterns being more
crowded, comprising of several short-length microridges within
the center and longer microridges along the cell periphery,
whereas flank cell patterns typically comprised of less crowded
but longer microridges. We determined microridge mean branch
lengths (<Bl>) for each patterned cell (Methods) and found
relatively less variance within the yolk population than in patterns
from flank regions (Fig. 4d).

Microridge flow fields revealed the presence of periodic
tensile and compressive forces within actomyosin networks
Actin networks driven out of equilibrium by force generation
through NMII activity can lead to mechanochemical pattern
formation41–43. The interplay between active force generation and
force dissipation in a viscoelastic environment governs the
dynamic properties of such a system and the active stresses
could regulate steady flow patterns41,42. We performed a
spatiotemporal flow analysis of the evolving microridge patterns
to gauge the complex bulk dynamics and gain insights into their
underlying actin network remodeling process near 48 hpf. We
estimated the degree of mechanical stresses due to local
deformations by evaluating the pattern velocity flow fields and
the corresponding local strain rates. The tracked single cells
(Supplementary Movies 1, 2) formed input to the optic flow
wherein image intensity flow corresponded to material flow.
We selected a square region within a yolk cell center patterned

with microridges (Supplementary Movies 1, 3a and Fig. 5a) and
analyzed microridge configuration at two consecutive time points,
t1= 0 and t2= 0.6 mins (Fig. 5b, c). The microridge pattern at t1
superimposed by velocity vectors (magenta arrows) indicates
material flows (Eq. 27) between consecutive time points from t1 to
t2 (Fig. 5d and Supplementary Movie 3b panel-1).
The regions with longer magenta arrows (Fig. 5d) indicated

greater movements, signifying active forces arising from mole-
cular interactions driving the dynamic bulk events. These events
were: (i) elongations caused by pulling in the outward directions
along its length, or steered by fragmentation at the ends of a
microridge, either events leading to a change in length of a single
microridge, (ii) merging or splitting (similar to fusion or fission13)
involving several microridges. To examine these events, we
computed the velocity field divergence (D), (Eq. 28, Fig. 5e, and
Supplementary Movie 3b, panel-2). High +D (red) represented
regions with the loss of underlying components within the
microridges, hence local flow moving out from a region
(fragmentation or splitting events, considered together as

Fig. 1 Live imaging, image processing pipeline for a neural network approach for microridge segmentation. a Zebrafish embryo
dimensions were measured at 48 hpf and a custom-built embryo mounting device was designed for live image acquisition of one lateral side
of the head, yolk, and flank embryo regions. b Mean intensity of the filtered periderm cell slices at all time points. c Membrane segmentation
steps lead to demarcated cell boundaries and single-cell extraction. d Nearest centroid distance-based cell tracking allowed following each
cell’s microridge dynamics. e Fully-automated custom-built microridge segmentation algorithm formed the labeled set for the deep learning
segmentation strategy (Supplementary Fig. 1, Methods). f Convolutional neural network for microridge segmentation. The training set
consisted of pairs of extracted cell patterns and their binarized images, illustrated in (b, e). g Prior to training, data normalization and data
augmentation steps were implemented. Data were randomly partitioned into 90, 93, and 95% of the total set and various combinations of
hyperparameters are trialed in the training process. h The convolutional encoder-decoder architecture consisting of a convolutional encoder
and decoder layers (yellow and green), ReLU layers (gray), downsampling (purple), and upsampling layers (blue) yielded a trained network for
each set of hyperparameters. i, j The network accuracy was assessed on the remaining test dataset (10, 7, and 5%, respectively) by pixel-wise
comparison of network predicted and labeled outputs. k Trained network predictions on test data using pixel-wise entropy loss. l Labeled
versus network-predicted outputs for assessing the network performance. (Scale bars indicate 1 pixel as 0.1977 μm in b–e and after image re-
sizing for CNN to be 0.098 μm in f–k).
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shrinkage event), while low -D (blue) represented a gain of
microridge pixel regions or local flow coming into a region
(elongation or merging events, considered together as growth
event) between consecutive time points. To focus exclusively on
growth or shrinkage events, we determined the 2D-spatial
coordinates with large magnitudes of D (|D| > 0.12 min−1) and
extracted the velocity magnitudes at such locations. The mean
growth velocity (υgrowth) and the mean shrinkage velocity
(vshrinkage) (Methods) were (2.33 ± 1.39) × 10−2 μmmin−1 and
(2.34 ± 1.39) × 10−2 μmmin−1 for the yolk and
(2.04 ± 1.34) × 10−2 μmmin−1 and (2.05 ± 1.35) × 10−2 μmmin−1

for the flank pattern time series, respectively (Supplementary
Movies 1, 2).
The flow analysis provided mesoscopic pointers towards the

internal stresses within the actin meshwork, NMII and related
proteins involved in complex dynamic flows of actin microridges.
In principle, the actin cytoskeleton in the presence of NMII consists
of network filaments that could bear both tensile and compressive
forces. To examine the local material sources (large +D) and
adjacent sink (large �D) regions, we quantified the strain rate
tensor (S) components (Eqs. 29–31): shear (γS), tensile (ΛS

1) and
compressive (ΛS

2) strains, respectively (Fig. 5f–h). We estimated
pure elongation (λdev1 ) and pure shrinkage (λdev2 ) excluding local
area changes (Fig. 5i, j) from the deviatoric tensor Sdev (Eqs.
32–35).
We compared the same regions within Fig. 5d–j, marked by

dashed circles or arrows 1–3. The microridge elongation (arrow-1,
Fig. 5d) necessitates two opposite local velocity fields generating
two localized þD regions flanked by two adjacently located outer
�D regions accompanied by γS shear strain rates (area encircled
by dashed line-1, Fig. 5e, f). The complex internal strain fields
exhibited two local tensile strain regions (ΛS

1) and adjacent
compression regions (ΛS

2), additionally steered by deviatoric
elongation (λdev1 ) and deviatoric shrinkage (λdev2 ), respectively
(arrows 1, Fig. 5g–j). The localized strains transiently build-up
and dissipate immediately in the neighboring region. Next, we

examined arrow-2 (Fig. 5d), indicating a merging event of two
microridges with outflow velocities in all directions from a single
region and hence þD (dashed-circled region-2, Fig. 5e), leading to
localized tensile strains (arrow-2, Fig. 5g) and neighborhood
compressive strains (arrow-2, Fig. 5h), accompanied by deviatoric
shear components (Fig. 5i, j). We observed multiple directed flows
within the dashed-circled region-3, arrows-3 (Fig. 5d–j), indicating
complex strains within the neighborhood regions. All the flow
parameters across consecutive time points for the yolk and flank
cell patterns (Supplementary Movies 3b, 4a, b respectively)
indicated similar behavior. The microridges exhibited resistive
viscoelastic forces alternating between rapid extensions (resis-
tance to outflow) and compressions (resistance to inflow), causing
temporal periodic fluctuations. The area-deviatoric decomposition
of the S-tensor indicated that deviatoric shear strains, including
sliding movements and localized transient area changing events
both, contributed to microridge flows.
The overall principal strains (

ffiffiffi
2

p jjSjj� �
m

� �
t
) revealed temporal

periodic fluctuations in all cell patterns (Supplementary Fig. 4). We
then temporally averaged the principal strains for each cell
pattern (Supplementary Table 1) that indicated relatively greater
strain fields within the actomyosin networks of microridge
patterns of yolk than flank cells (11.15 ± 2.16 × 10−2 min−1 and
9.77 ± 1.64 × 10−2 min−1 for Supplementary Movies 1, 2 respec-
tively), suggesting that the stress distributions could be distinctly
regulated in different regions of the same embryo.

Dynamic actin clusters were associated with pattern
rearrangements over short length/time-scales
Interestingly, we observed high-intensity spots traversing along
the microridge lengths, indicating clustered actin speckles
exhibiting positional fluctuations. We performed microridge
tracking and computationally analyzed the intensity profile along
the microridge lengths (Eq. 36). The movement of clustered actin
speckles within a microridge (four consecutive time frames,
Fig. 6a–d) were quantitatively confirmed by their temporal

a

flank 
cell

yolk cell

b

c e

d

97.9%

98.2%

g

f

raw test images labeled networknetwork predicted  Trained 
network

Fig. 2 Trained network selection based on predicted accuracy versus network hyperparameters and visual inspection of pixel-wise
segmentation. a 3D stem plot shows how the mini-batch size (MBS) and maximum epoch (ME) affect the network performance, measured by
the mean IOU. For each proportion of the training set, the MBS and ME values were varied as (6, 9, 11, and 15) and (400, 500, 600, and 800) to
yield 16 combinations of these hyperparameters. Typically, better accuracy is achievable for smaller MBS and a larger ME, for which our tested
combinations of hyperparameters showed performances above ~90% mean IOU. b, c An exemplary single yolk and flank pattern (1 pixel is
0.098 μm and 0.08 μm), respectively, fed to the selected trained network. d, e Trained network-segmented outputs for MBS= 6 and ME= 800
using the 93% training dataset (1397 randomly chosen microridge patterns). f, g Pixel-wise overlap between images labeled using the
conventional microridge segmentation pipeline and network-segmented images, shown in green pixels and magenta pixels, respectively;
common regions in white (microridges) or black (background). The performance measure is given by mean IOU for each cell pattern.
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intensity profile analysis (Fig. 6e) and verified using a high-
resolution STED microscope (Fig. 6f), also observed along other
microridges (Supplementary Movie 5).
Plausibly, high-intensity clusters become unstable and hence

fluctuate in position. This may result in transient and localized
spontaneous positive microridge curvatures orthogonal to the cell
surfaces. These spontaneous positive curvatures could lead to
instabilities and height fluctuations44. To analyze the fluctuating
intensity spots, we computed the localized Gaussian curvature (K),
considering microridge intensity profiles to be proportional to
their heights (Eq. 37), illustrated within a sub-region of a pattern
(Supplementary Movie 6).
We determined the number of 2D-pixel coordinates of high

positive and low negative curvatures (|K| > 5) and found that the
localized high +K > 5 constituted ~70% of these, on average, per
cell pattern at all time points. We then carried out time evolution
of 2D-pixel location coincidence between ±K (intensity) and ±D
locations (significant flows). We found high-frequency counts of
+K locations at timepoint t overlapped with significant flow
locations from timepoint t to (t+ 1) (Supplementary Fig. 5). The
positional fluctuations of +K-locations in the form of high-
intensity clusters continuously altered adjacent sink/source
regions within a microridge; consequently, these were associated
with localized pattern rearrangements in the form of shrinkage or
growth events over short time scales. The short transient time
between accumulation and dissipation of mechanical stresses
could plausibly influence the formation and mobility of high-
intensity clusters at 48 hpf to recruit or retain other ABPs that may
influence the turnover and binding constants of subunits of actin.
However, the precise molecular cause and the mechanism that
drives this process remains to be further determined.

DISCUSSION
Image segmentation methods are central to transforming live-
imaging experiments into quantitative information, which facil-
itates better understanding of the dynamics of processes of
interest. Cell segmentation, tracking, and single-cell extraction
from microscopy images are generic methods adaptable for
quantitative studies of other cellular processes. CNNs were
successfully applied to cell segmentation that requires large
labeled datasets typically annotated manually33,34. Manual crea-
tion of pixel-level annotations for cell surface patterns becomes
increasingly laborious and prone to errors. Our automated and
flexible microridge masking algorithm alleviates labeler fatigue
and increases throughput. We manually verified grayscale cell
images with their annotations for segmentation quality prior to
the generation of training data. CNNs learn pixel-labels from
multiple images by adaptively learning spatial features via self-
optimizing their hyperparameters to produce robust segmenta-
tion. While altered image quality, either due to acquisition settings
or artificially induced contrast, required fine-tuning steps in the
labeling algorithm, a single trained CNN model can handle the
whole range of image qualities. Once trained, CNNs can serve as
high-end feature extractors, making them robust, versatile, and
accessible to non-experts. Our CNN strategy consequently
improved the data quality required for in-depth quantitative
analyses.
The effective persistence length (Lp) indicated the nature of

cytoskeletal networks underlying microridges in vivo, estimated to
be ~6.1 μm. Under in vitro conditions, pure microtubules, actin
filaments, and DNA show Lp of about 6 mm, 10 μm, and 50 nm and
behave as rigid rods, semi-flexible polymers, and very flexible
polymers respectively38,39. When actin filaments interact with

Fig. 3 Estimation of persistence length for in vivo microridges. a A magenta box demarcates the 2D sub-image of a skeletonized microridge
branch for estimation of Lp. b Microridge skeleton contours (blue) were smoothened using a Gaussian fit (red curve). The inset shows a
microridge skeleton (blue line) with the endpoints of the contour (magenta) used to obtain the boundary trace that returned the discrete x–y
coordinates. c A cubic spline interpolation on the Gaussian smoothened microridge trace contours preserved the sequence of points to give
several intermediate points. d Tangent angle (θk) along the length (ℓ) of the microridge. e Rescaled κs along the length (ℓ) of the microridge
contour. f Distribution of κs of microridges from 1052 cells (293, 1084, and 125 from the flank, yolk, and head, respectively) fitted to a Gaussian
distribution (red line trace), whose variance gives an estimate of the effective persistence length (Lp) as ~6.1 μm.
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other associated proteins, their Lp is considerably altered. In vitro
studies on F-actin and Fascin–actin bundles showed significantly
less thermal bending fluctuations in Fascin-associated actin than
in F-actin. The rigidity was sensitive to the ratio of F-actin and
Fascin bundles, as the stiffness increased with the increasing
concentration of actin bundling protein45,46. On the other hand,
cofilin-decorated actin filaments showed 5-fold lower Lp, suggest-
ing greater flexibility than native filaments47. Further, actin
filaments showed reduced Lp in the presence of phalloidin or
heavy meromyosin as compared to bare actin48. These studies
together indicated that interactions of actin with Myosin or ABPs
significantly affected their flexibility and mechanical properties.
The overall mechanical properties and the resulting force-related
parameters would be modulated by the molecular components7,8

within the microridges resulting in lower Lp.
F-actin pegs shifted out of equilibrium, possibly due to apical

constriction13 are driven into a steady state microridge patterning
process. Our work suggests additional factors that could influence
the evolution of microridge patterns. Our spatiotemporal analysis
indicated that 2D planar flows are driven by both tensile and
compressive forces and steered by localized shear strain rates
present within the microridges at 48 hpf. Temporal periodic
fluctuations of mechanical parameters could have implications in
mechanochemical feedbacks involving Rho family GTPases49

known to drive contractions of the actomyosin cortex in other
contexts. Further, we found greater strain fields within the
microridge patterns on the periderm cells over the yolk than the
flank regions, that can be attributed to various physical and
molecular differences present in the two regions. For example,
junctional organization on yolk versus flank50 does not develop in
the same manner, suggesting regional differences in signaling
mechanisms. The yolk periderm cells are held at a greater height

(from the basal epidermis) and reside over curved surfaces
(attributed to overall tissue curvature) in contrast to flank cells.
These together, in turn, could rework the underlying active
localized stress distributions within the cortex, thereby distinctly
remodeling the actomyosin networks and regulate microridge
pattern scaling and dynamics. Our comparison of yolk versus flank
pattern strain fields revealed that apart from generic features of
mechanochemical patterning9, the milieu in which cells reside
could regulate the stresses within the actomyosin networks.
The low Lp indicated that the critical force fc of microridges is

smaller in comparison with other classes of actin-based protrusions.
If the protrusive forces of polymerizing actin are not large enough,
then such a force could result in microridge growth in the lateral
direction rather than causing a significant increase in their heights.
Along the lateral directions, we observed and analyzed transient
high-intensity actin clusters in the form of spontaneous positive
microridge curvatures that exhibited positional fluctuations and
traversed at a speed of upto ~2.8 μmmin−1 along microridges
lengths. We anticipated that these unstable clusters influenced the
flow events. Concomitantly, we found that 2D-spatial locations of
high-intensity clusters coincided with locations of significant flows at
consecutive time points, suggesting that dynamic clusters could
sporadically lead to either growth or shrinkage events.
Although not determined experimentally, the collective inter-

action of actin regulators could lead to the formation of
spontaneous positive curvatures within microridges exhibiting
instabilities and height fluctuations. Recent works have elucidated
the role of NMII minifilaments in microridge remodeling by
promoting fission and fusion events13. Reconstitution studies have
depicted a novel picture of NMII minifilaments in organizing
various dynamic patterns15,16,51,52. NMII activity could drive a
network by a multistage coarsening process with NMII foci

Fig. 4 Population level comparison of cell patterns from yolk versus flank regions. Example of a network segmented a yolk pattern b flank
cell pattern, both shown in false color representing image intensities scaled between 0–1, indicated by the colorbar. c Box plot of pattern
wavelength (λ) parameter with estimated medians of 0.66 and 0.60 μm measured from network segmented binary cell images of yolk and
flank regions computed over 300 yolk and 293 flank cells, respectively. d Box plots of yolk and flank cell population mean microridge branch
lengths (<Bl>) per cell yielding median values of 1.68 μm and 1.60 μm, respectively quantified from their skeletonized microridge branches.
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processively running over actin clusters resulting into a dynamic
steady state52. This process could lead to actin filaments into
disorganized condensates characterized by a broad actin cluster-
size distribution51. As a result, at certain concentrations, actin
clusters subjected to NMII motors may themselves become highly
mobile51. It is likely that the interaction of NMII motors with F-actin
and other actin regulators like Arp2/3 results in dynamic high-
intensity clusters within the microridges. The positional fluctua-
tions of actin clusters could be a signature of dynamic re-
structuring of the relatively disorganized actomyosin network
around 48 hpf, that dictates pattern rearrangements over short
length/time-scales. As the pattern matures, microridges organize
into a parallel fashion by 96 hpf13. Further investigations are
required to link the molecular aspects of transient clusters driving
actin flows during pattern dynamics.
To summarize, our CNN framework allows large-scale quantitative

analyses to decipher the mechanisms of microridge pattern
evolution and maintenance. We have identified some of the key
aspects influencing microridge pattern dynamics. The persistence
length of microridges indicated the range of their force parameters.
Our comparative flow analysis elucidated patterns varyingly evolve
on different regions of the embryo, suggesting distinct regulation of
mechanical stresses within the actomyosin networks. Furthermore,
we discovered the transient presence of high-intensity clusters that
influenced pattern flows near 48 hpf. Further experimental and
theoretical investigations are required to understand the complex
interplay of actin, their associated proteins, the role of mechanics,
cell morphology, and the role of feedback signaling in shaping the
emergent pattern of microridges and their dynamics.

METHODS
Zebrafish strains
All zebrafish (Danio rerio) husbandry and experimental procedures
were performed in Tübingen (Tü) strain. We used previously

characterized zebrafish lines Tg(actb1:GFP-utrCH) provided by
Behrndt and colleagues53. Zebrafish were raised and kept under
standard laboratory conditions. The zebrafish maintenance and
experimental protocols used in this study were approved by the
institutional animal ethics committee.

Mounting zebrafish embryos for live image acquisition
Zebrafish embryos were mounted for live imaging to record the
dynamics of microridges on the periderm cells from 2–2.5 dpf
stages. An agarose-free flat mounting setup, custom fabricated at
the TIFR workshop, was used for imaging the lateral side of the
embryo. Live imaging was performed in an E3 buffer with 0.02%
ethyl-m-aminobenzoate methanesulphonate (Triacane). Live
images of the microridges on the periderm cells within the yolk,
head, and flank regions of the embryo were obtained using a 40x
dipping lens upright Zeiss confocal 880 microscope. The z-stack
images from the apical upto basal epidermis were continuously
obtained at time intervals of around ~0.5 min for each region
during live image acquisition. The images were acquired at a
preset room temperature with fluctuations between 25–27 °C. We
live imaged eight embryos in 15 different regions (6, 5, and 4
movies on yolk, flank, and head regions, respectively). All images
for results in this work were acquired with similar microscopy
acquisition settings, with lateral pixel size 0.1977 μm and axial
pixel size 0.5–0.6 μm, respectively. To demonstrate CNN robust-
ness, we used additional test images at 1.2 dpf acquired at a
lateral pixel size of 0.0988 μm and axial pixel size of 0.5–0.6 μm,
thus producing different quality images.

A custom-built image processing pipeline for microridge
segmentation
We describe the details of the image processing pipeline to
produce a segmentation mask of the microridges. The algorithm
consists of a two-step segmentation approach. In the first, we

Fig. 5 Microridge velocity flow field analysis reveals localized strain rate components within actin-myosin network for generating active
flow patterns. a A representative network-segmented cell with image intensities shown in false color. A preselected squared center region in
red is used to demonstrate the flow analysis. b, c Microridge pattern at t1= 0min and t1= 0.6 min, respectively. d Velocity vector field as
magenta arrows, indicating the flows from t1 to t2, shown overlaid on the pattern at t1. Higher velocities (larger arrows) coincide with either
elongation (from within) or fragmentation (at the ends) of a microridge, or merging or splitting of multiple microridges (shrinkage or growth
events). White arrows (1–3) indicate preselected regions for a detailed description of divergence and strain rates within the microridges shown
in e–g. e Divergence, D, shown within the squared region of (a), reaching both large positive and large negative (colorbar), indicating regions
with fragmentation or splitting and elongation or merging, respectively. Encircled regions 1–3 indicated regions of elongation, outflows, and
inflows, respectively. f The shear strain rate (γS) is shown within the same regions. g Tensile strains (ΛS1) indicated by arrows 1–3, transiently
developed adjacent to regions of elongation or next to outflow or inflow regions. h Localized compressive strains (ΛS2) adjacent to tensile
strains indicated by arrows 1–3, respectively. i Deviatoric elongation strains without change in local area (λdev1 ), arrows 1–3, respectively.
j Strains representing deviatoric shrinkage without change in the local area (λdev2 ), arrows 1–3, respectively.
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segmented the periderm cells, followed by cell tracking and
frame-by-frame linkage. This was then followed by a tailored
segmentation algorithm to label the intracellular pattern of
microridges within each cell, enabling a rapid annotation process.
The single periderm cell extraction patterned with microridges
formed the training datasets for convolutional neural network
segmentation.

Periderm cell image filtering
The images were obtained from periderm cells up to the basal
epidermis in the z-direction in XYZT formats (Supplementary Fig.
1a). In order to filter out the periderm slices from the basal
epidermis, we implemented a two-step image entropy-based
filtering.
The filtering parameter were adjusted separately for cells of

yolk, head, and flank images empirically for each confocal image
series because the movement along the z-direction (due to tissue
thinning along the z-axis) was different within different regions of
the embryo and varied across time. Additionally, the yolk cells are
relatively taller than the flank cells and this affected how quickly
we reached from periderm to basal epidermis in the z-direction.
First, the global entropy for each slice was computed using the
Shannon information content (Matlab function, entropy), since the
slices of periderm cells have relatively lower entropy than the
z-slices from the basal epidermis. Therefore, an entropy threshold
after a manual inspection was set to filter out periderm slices from
the basal epidermis. Secondly, the overlap between the periderm
of one cell and the basal epidermis of another cell within the same
slice caused signal distortions (primarily in the flank cells). In order
to filter out distortions, the local entropy within a 3 × 3 window

size (using Matlab function, entropyfilt) for the selected slices from
the previous step was computed. A pixel-level entropy threshold
was then used to filter out noisy pixels due to a signal from the
basal that corrupted the microridges and periderm cell mem-
brane. This step was not that crucial for the yolk cell patterns
because of their relatively greater cell heights from the basal
epidermis. The entropy filtering parameters were set after manual
inspection for each confocal image series, and kept constant
throughout all time points, to extract periderm cells only
(Supplementary Fig. 1b, c). The number of z-planes encompassing
just the periderm cells was determined automatically using the
entropy information.

Periderm cell segmentation
The mean intensity along the z-direction of filtered periderm slices
was computed and the data for image segmentation was reduced
to XYT dimensions (Supplementary Fig. 1d). We used a low pass,
linear, Gaussian smoothing filter given by,

g x; y;σð Þ ¼ 1=2πσ2
� �

exp � x2 þ y2
� �

=2σ2
� �

; (1)

with a standard deviation of σ= 0.7 pixels to reduce noise in all
the images.
Next, to demarcate the cell membrane boundary only, the

microridges were eliminated (momentarily) from within the cells.
For this, we applied a Butterworth high pass (BHP) frequency filter
of order n and cut-off frequency D0 defined as

H x; yð Þ ¼ 1

1þ ½D0=D x; yð ÞÞ�2n ; (2)
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Fig. 6 Actin clusters within the microridges exhibit positional fluctuations. a–d The raw image intensity (in false color) of a representative
microridge indicated the presence of actin clusters traversing along the microridge lengths across time frames. e Microridge tracking allowed
extraction of a one-dimensional intensity profile along the same microridge at each timepoint. Each line color indicates the intensity profile,
labeled by the time in minutes, showing the intensity fluctuations within the microridges. High-intensity peaks oscillate in position along
microridge lengths. f A high-resolution STED imaged with lateral pixel size 0.022 μm in x and y and z-depth of 0.22 μm confirmed the clustered
intensity spots within the microridges labeled with Utr-gfp.
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where D(x,y) is given by,

D x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � r

2

	 
2
þ y � r

2

	 
2
r

: (3)

Here, r, c are the image width and height in pixels, respectively
(Supplementary Fig. 1e) with parameters n= 1 and D0= 3 (https://
www.mathworks.com/matlabcentral/fileexchange/40579-frequency-
domain-filtering-for-grayscale-images). This step was followed by
image binarization and morphological operations to close any gaps
on the cell membrane due to varying image contrasts. The
parameters for morphological operators, imclose and strel Matlab
functions were adjusted depending on the image contrast, and then
kept constant throughout all time points for a single movie. Each
enclosed region (cell) bounded by the cell membrane was masked
using the complementary image (imcomplement function) as shown
in (Supplementary Fig. 1f).

Single periderm cell extraction
The Area and Solidity properties for each cell enclosed by
completed boundaries were computed. We implemented suitable
cut-off values on the “cell area” and “solidity” to eliminate cells
only partially visible at imaging borders. The cells for which the
cell boundaries were incomplete were automatically discarded in
this process. For the remaining selected cells, enclosed by
completed boundaries, the “BoundingBox”, “ConvexImage”, and
“Centroid” properties were computed. The BoundingBox finds
rectangular coordinates for each enclosed cell region. Each
“BoundingBox” coordinate corresponded to a single cell and
was used to extract rectangular regions of a cell using the imcrop
function on the original Gaussian smoothened image consisting of
both microridges and cell membranes. This allowed the isolation
of each cell with their microridges from the initial images
(Supplementary Fig. 1g). Cell shapes are typically polygonal,
however, the bounding box coordinates resulted in rectangular
selection around each cell. In order to mask the cell enclosed by
their membrane, the ConvexImage property was computed. The
ConvexImage is a binary image with only enclosed pixels of a cell
bounded by its membrane set to 1’s (Supplementary Fig. 1g). The
Hadamard matrix product of the cropped rectangular cell region
and its ConvexImage resulted in selective extraction of individual
periderm cells patterned with microridges over time (Supplemen-
tary Fig. 1g).

Periderm cell tracking
In order to track the same periderm cell frame to frame, a nearest
neighbor approach based on the Euclidean distance (cut-off
≤2.5 μm) between cell centroids at time tn and tn+1 was
implemented. The cell tracking allowed us to follow the same
cell patterned with their respective microridges as obtained from
the microscope (Supplementary Fig. 1h). The images of tracked
single cells patterned with their microridge formed the input to
the optic flow analysis and the dynamic spot intensity analysis of
microridges.

Microridge segmentation (labeling) algorithm: labeled images
for the training set
For each extracted periderm cell, we used a Gaussian smoothing
filter (σ= 0.7 pixels) given by Eq. 1 to smoothen the microridges
pixels and filter out low background noise from raw cell patterned
images. We convolved the resultant Gaussian smoothened image,
IM(x, y) with the derivative of Gaussian ∂g(x, y; σg) with σg= 0.7
pixels to obtain the microridge intensity gradient (https://
www.mathworks.com/matlabcentral/fileexchange/8060-gradient-
using-first-order-derivative-of-gaussian),

∇IM x; yð Þ ¼ ∂xg � IM; ∂yg � IM
� �

; (4)

where * denotes convolution (Supplementary Fig. 1g).
We computed the second derivative of the Gauss gradient

image to obtain the Hessian matrix at each pixel. The trace of the
matrix gives the image Laplacian given by,

La x; yð Þ ¼ ∂2IM
∂x2

þ ∂2IM
∂y2

: (5)

We considered only negative Laplacian values L(x,y),

L x; yð Þ ¼ La x; yð Þ
0

�
La x; yð Þ � 0

La x; yð Þ> 0
; (6)

in order to select regions with negative intensity emphasizing only
on microridges.
Subsequently, in order to obtain a smoothened image

segmentation mask, we fitted the L(x, y) matrix into a logistic
sigmoid function given by,

S ¼ 1

1þ exp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L x; yð Þj jp�� ��� � : (7)

As a next step, we generated a binary image using the
imbinarize Matlab function on image S. This resulted in a labeled
binary image (B) of microridges (Supplementary Fig. 1i). The image
processing pipeline described so far was used to create a labeled
training dataset for neural network pixel-wise semantic segmenta-
tion. Pairs of raw extracted cells patterned with microridges and
their corresponding labeled image (B) formed the training set for
the CNN-based microridge segmentation framework.

Training datasets for convolutional neural network
microridge segmentation
The extracted raw microridge cell images formed the input for
training the segmentation network. Corresponding annotated
images of microridges consisting of foreground pixels (micro-
ridges) and the background pixels formed the labeled training set
to determine the network parameters. We implemented a
semantic segmentation approach, which converts the image
segmentation problem into a pixel-level image classification
problem. The task was reduced to finding a binary classifier for
each image of the training set. Using this approach, we
constructed a labeled training set with images of microridges
within cells from regions of the yolk, head, and flank of the
embryo. We visually inspected each raw cell image with their
microridges and eliminated cells with occlusions or very bad
contrast on the microridges owed to microscope imaging to
maintain high-quality training dataset. Complete manual segmen-
tation was not considered for microridges, owing to their small
size and manual errors. We manually checked for segmentation
quality by inspecting each pair of grayscale cell image with their
annotated labels produced by the microridge segmentation
algorithm and discarded any incorrectly segmented cells (~38%)
from the analyses. This was much faster than investing in
complete manual segmentation to obtain the ground truth, yet
it provides a significant manual component to training data
generation. For the CNN segmentation, the dataset consisting of
raw and labeled image pairs was provided during training
(without any cell tracking information).
Several pattern configurations with varying but visually

discernible local contrasts were considered for the training set.
This enabled the network to achieve better learning on the tested
hyperparameters required to discern the pattern with a variety of
complexities. The dataset consisted of 1502 single periderm cell
images (293, 1084, 125 from flank, yolk, and head, respectively)
patterned with microridges. We varied the training set images
randomly by partitioning the dataset into 95, 93, and 90% as
training set and the remaining as test sets (75, 105, and 150
images, respectively) for all combinations of tested
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hyperparameters. For our segmentation problem, we used the
encoder-decoder segmentation architecture that performed
reasonably well on the dataset.

Hyperparameter tuning for training
We varied the size of the image, which scales to the receptive field
size initially. The original 2D microscope image frames were
acquired at 512 × 512 pixels for all the cells. For the CNN approach,
we trained the network with cell image dimensions of 1282, 2002,
and 2562. Similarly, we tested the encoder-decoder subnetwork at
depths of 2, 4, and 6. We tested the initial learning rate (ilr) for
10−3 and 10−4. Training of all network models was performed
using stochastic gradient descent with ilr= 10−4, receptive field
size set to 2562, and encoder-decoder subnetwork depth at 6. We
implemented the median pixel-weighted image normalization. A
data augmentation approach was included by image rotations,
translations, and reflections for all training sets and different
permutations of hyperparameters. Obtaining the best-
performance network required empirical analysis and hyperpara-
meter tuning. For each proportion of the training dataset (90, 93,
and 95%), we varied the mini-batch size (MBS) with values of (6, 9,
11, and 15) and the number of iterations or maximum epochs (ME)
with values of (400, 500, 600, and 800) that yielded 16
combinations of these hyperparameters. All the training models
were run by creating executables using MATLAB compilers to
accelerate the training process. The codes were run on a single
GPU (NVIDIA Tesla V100 16GB) node on a high-performance
cluster. We confirmed the performance of the trained network
with reported accuracy using a test dataset.

Segmentation performance evaluation metrics
We implemented the standard evaluation metrics for the
assessment of image segmentation network performance on test
datasets. These included mean pixel accuracy for each class for the
entire test dataset, image-wise and class-wise accuracies, and
Jaccard similarity coefficient37. The mean intersection over union
(mean IOU), or Jaccard similarity coefficient was used to bench-
mark the segmentation performance when comparing results
from different combinations of hyperparameters for all propor-
tions of the training set. The Jaccard similarity measures the
average IoU score of all classes in all images, and is the ratio of
correctly classified pixels by the network to the total number of
labeled and predicted pixels in that class. We then evaluated the
network performance for MBS and ME for each data proportion.

Generation of network-segmented cells patterned with
microridges
After successful training, the networks generated segmented
periderm cells patterned with microridges in the form of binarized
images (NB). We created a masked cell image (NM) given by the
Hadamard matrix product of cell patterns (IM) and the corre-
sponding network-produced image binary (NB),

NM ¼ IM: � NB: (8)

The masked image (NM) is defined on only those gray pixels in
the original image where the NB image takes values of 1.

Adjustment of pixel sizes of network-segmented images
All the input images were scaled to dimensions 256 × 256 in xy in
order to obtain high performance on the network training. The
original microscopy movies were acquired at spatial dimensions
512 × 512, and consequently, original cell sizes were of smaller
dimensions. The output of network-segmented microridge cell
images (NM, NB) were also of size 2562 pixels (~2.5 times than the
original cell in each dimension). Hence, prior to computing

quantitative parameters of microridges, we calculated the physical
pixel size in the x and y directions from the original cell
dimensions. All confocal images were acquired at pixel size,
psz= 0.1977 μm in both xy directions. Hence, for an extracted cell
image dimension (xo × yo), we rescaled the pixel sizes Δx and Δy in
microns in x and y according to new image sizes of 256 × 256,
given by,

Δx ¼ ðxo � pszÞ=256: (9)

Δy ¼ ðyo � pszÞ=256: (10)

Curvature analysis for estimation of microridge persistence
length
We describe a method to estimate the distribution of microridge
curvature in their dynamical steady state from the skeletonized
images of their branches. First, we discuss how to obtain the
microridge contour from the images to implement the curvature
estimation method. Then we use the experimentally determined
curvature distribution to estimate the persistence length and the
flexural rigidity that describes the inherent mechanical property
(characteristic length scale and bending rigidity) of the
microridges.

Microridge contour and their orientation
We identified the endpoint coordinate pixels for each microridge
skeleton. We then traced the skeleton boundary from one
endpoint to another to obtain discrete x–y coordinates (Lxy) along
the length of a microridge skeleton contour. To effectively reduce
measurement errors in the estimation of curvature, we imple-
mented a lower frequency curve using Gaussian smoothing fit on
the discrete x–y coordinates with a moving window frame= 5
(coordinates) and analysed all the contours with at the least 10 x–y
coordinate points to avoid any curve fitting errors. To ensure that
the smoothened curves closely followed the skeleton contours for
any arbitrary shaped microridge contour, independent of their
orientation within the image, we introduced a 2D rotation matrix
R(θR) for a given angle, θR,

R θRð Þ ¼ cosθR �sinθR
sinθR cosθR


 �
; (11)

where −π ≤ θR ≤ π, and rotated each skeleton coordinate Lxy
coordinate in the xy plane by an angle θR according to

Rxy θRð Þ ¼ Lxy � R θRð Þ: (12)

The orientation of the rotated skeleton trace Rxy θRð Þ now
depends on the angle θR. We varied θR over 21 different values
and for each, implemented the Gaussian smoothing to obtain a
new set of coordinates given by Lxkyk θRð Þ. From these, we selected
a single Rexey θRð Þ for which the smoothened curve was closest to
the skeleton contour, thus realizing,

min hD Lxkyk θRð Þ; Lxy
� �i; (13)

where “D” denotes the standardized Euclidean distances between
all points in Lxkyk θRð Þ and Lxy. We then implemented a cubic spline
interpolation method (cscvn function) that preserved the
sequence of points to give several intermediate points on the
Gaussian smoothened microridge trace contours, thereby redu-
cing the spacing between the data points on the microridge trace
contour for estimation of microridge persistence length (Lp).

Estimation of persistence length and flexural rigidity from
curvature distribution
The classical approaches for the estimation of Lp include the
Fourier shape-fitting method that depends on the number of
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estimated modes described for actin filaments and microtubules38

and the curvature distribution method described for DNA
chains39. For the microridge data, we followed the curvature
distribution method, since the Fourier shape-fitting method
requires the right number of modes to be fitted, which may not
work for all microridge configurations. For a discrete set of two-
dimensional coordinates (xk,yk) along the length of the micro-
ridges with (N+ 1) points, along the length of the curve (L), the
spacing Δsk between coordinates is given by

Δsk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxkþ1 � xkÞ2 þ ðykþ1 � ykÞ2

q
: (14)

The tangent angle for a set of N segments that connect the
points is given by,

θk ¼ tan�1 ykþ1 � yk
xkþ1 � xk

� �
: (15)

The arc length L along the microridge length is given by,

L ¼
XN
k¼1

Δsk : (16)

We then estimated φk, the angle between two consecutive
tangent vectors as

φk ¼ θk � θkþ1: (17)

The curvature (κ) was approximated for small angle changes
and small bond lengths at each coordinate over the average arc
length of the two adjacent segments by

κ � 2φκ

4sκ�1 þ 4sκ
: (18)

In a subsequent step, it will be inconvenient that the segment
lengths Δsκ, vary across our ensemble; hence we defined a
rescaled variable κs, such that,

κs � 2φκffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4sκ�1 þ 4sκ
p : (19)

We then defined the effective persistence length (Lp) based on
the width of the distribution ðP κsð ÞÞ in two dimensions, since the
probability of having a certain bending angle follows a normal
distribution in thermal equilibrium39. The distribution is then given
by

P κsð Þ ¼
ffiffiffiffiffiffi
Lp
4π

r
exp � Lp κs2

4

� �
: (20)

The variance of the distribution is inversely proportional to the
persistence length (Lp). The flexural rigidity ðEIaÞ, which char-
acterizes the propensity for thermal bending of a flexible
polymer38 can then be estimated from

Lp ¼ EIa
kBT

; (21)

where kB is the Boltzmann constant, T is the absolute temperature
in Kelvin (taken as ≈300 K, for the imaging temperature of
25–27 °C) and the microridge Lp was estimated from the
experimental data. Ε is actually the Young’s Modulus that relates
stress and strain within and Ιa is the second moment of the cross-
sectional area.

Pattern wavelength
We estimated the overall microridge pattern wavelength for the
yolk and flank cells in the Fourier domain. For this, we computed
the 2D Fourier transform of the network-segmented logical
images to determine the overall wavelengths of the microridge

pattern within each cell. The 2D Fourier transform of the image
I(x,y) was calculated using the Matlab fft2 function, to compute,

If kx; ky
� � ¼ 1

2π

Z
dx

Z
dy e�iðkxxþkyyÞ I x; yð Þ: (22)

The Fourier space of kx and ky ranges from -K to K, where K= π/
Δs, and Δs is the edge length of 1 pixel within the image. We
defined the characteristic pattern wave number (wn) by,

wn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

dkx

Z
dky ~k

��� ���2 IfN ðkx ; kyÞ
�� ��s

; (23)

where,

j k!j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
: (24)

The magnitude of the image Fourier transform was normalized
given by,

IfN kx ; ky
� � ¼ If kx ; ky

� ��� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR dkx

R
dky If ðkx ; kyÞ

�� ��Þq : (25)

The pattern wavelength λ, followed as

λ ¼ 2π
wn

: (26)

Branch lengths
The network-segmented images were converted to logical arrays,
and subsequently, a “skeleton operation” was used to obtain the
traces of the microridges. From the image skeleton, we estimated
branch lengths. Branch points were determined and subtracted
from the trace images to obtain the skeletonized branches. Branch
lengths were computed for each microridge branch by summing
up their total number of pixels within a cell. We computed the
mean branch lengths considering all the microridge branches for
each segmented cell pattern.

Velocity flow analysis
All the cells for this analysis were successfully tracked using a
nearest neighbor distance cut-off ≤2.5 μm between cell centroids
across time tn and tn+1, which removed any image drifts and
center of mass jitters. The optic flow analysis was carried out
within the local rest frame of each cell. Cells underwent small-scale
deformations due to local interactions with their neighboring cells.
We estimated the microridge growth velocity (vgrowth) and the
shrinkage velocity (vshrinkage). The growth velocity (vgrowth) inferred
from the image encompassed the merging velocity of adjacent
microridges and the local material assembly rates (leading to
single microridge elongation events), while the shrinkage velocity
(vshrinkage) accounted for the splitting velocity of microridges and
the local disassembly rates (leading to single microridge
fragmentation events); all four events are due to net actin
dynamics within the microridges. We implemented an optic flow
(Lucas–Kanade derivative of Gaussian) method using an inbuilt
Matlab function to determine the velocities (~v) from a time series
of spacing Δt from network-segmented cell patterns with intensity
values I by computing,

ΔI
Δt

¼ I t þ Δtð Þ � I tð Þ
Δt

¼ �~v � ~∇I: (27)

The image velocity divergence (D) was then computed as

D ¼ ∂vx
∂x

þ ∂vy
∂y

: (28)
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where ∂x and ∂y denote the spatial change in the x and y
directions. We implemented a convolution operation using a
smoothing kernel σ (where σ.*1, where σ= 1/9 and 1 is a 3 × 3
ones matrix) on the velocity component image matrices for
subsequent computations to eliminate low-level noise within the
image time series. We determined the regions of high positive
divergence and strong negative divergence in the images and
determined the velocities specifically at these locations. We then
averaged the velocity over all such locations to determine the
shrinkage velocities (vshrinkage) and growth velocities (growth),
respectively. The mean growth velocity (υgrowth) and mean
shrinkage velocity (vshrinkage) were computed by averaging over
the entire cell pattern and across all frames.
We computed the strain rate tensor (S) considering the

symmetric component of the velocity gradient, given by,

S ¼ 1
2

V þ VT
� �

; (29)

where the velocity gradient (V) is,

V ¼
∂vx
∂x

∂vx
∂y

∂vy
∂x

∂vy
∂y

24 35: (30)

The off-diagonal element of S are the shear strain rates (γS)
given by,

γS ¼ 1
2

∂vx
∂y

þ ∂vy
∂x

� �
: (31)

The eigenvalues Λ1 and Λ2 of S, such that Λ1 > Λ2 were
computed; Λ1 represent tensile strains, and Λ2 represent
compressive strains.
We evaluated the overall principal strains by quantifying the

magnitude of cell pattern strains, given by √2||S||, where ||S|| is the
matrix norm within microridge regions only,

ffiffiffi
2

p jjSjj� �
m

� �
t
such

that (~∇ �~v ≠ 0). We neglected the anti-symmetric part of the
velocity gradient tensor, which represents rotational components,
since localized rotational effects were not significant here on their
own, as observed in the microridge flow patterns under wild-type
conditions. The components of the S-tensor account for both
shape and area-changing strain components.

Area-deviatoric decomposition of the strain rate tensor
The decomposition of the 2D strain rate tensor (S) into area strain
tensor (Sarea) and deviatoric strain tensor (Sdev) can be written as,

S ¼ Sarea þ Sdev: (32)

The Sarea contains the area-changing, shape-preserving part,
whereas the Sdev contains the shape-changing, area-preserving
part of the total strain rate tensor (S).
The deviatoric tensor Sdev is a traceless second-order tensor

(trðSdevÞ ¼ 0) given by,

Sdev ¼ S� Sarea; (33)

where

Sarea ¼ 1
2
tr Sð Þ 1 0

0 1


 �
: (34)

The trace (tr) of the strain rate tensor (S) is the image velocity
divergence ðDÞ and also the Sarea tensor is given by,

tr Sareað Þ ¼ tr Sð Þ ¼ D ¼ ~∇ �~v: (35)

The components of Sdev are purely deviatoric deformations. The
eigenvalues of Sdev provide the deviatoric elongation (λdev1 ) or
deviatoric shrinkage (λdev2 ) without change in the local area. The
eigenvalues of Sarea are both equal, and equal to tr (Sarea)/2.

Measurement of fluctuations of intensity profiles within
microridges
For this analysis, we cropped the center regions of cells within the
yolk with relatively shorter microridges to obtain a temporal
intensity profile within them. We used the detected 2D centroid
positions after image segmentation. We wrote custom codes by
implementing a multiple hypothesis tracking method frame-by-
frame and solved using a linear-assignment problem (LAP)
approach with a maximum distance cut-off of ~2.3 μm to find
the same microridge in the next time frame. Briefly, a cost matrix
was computed between centroids of detected microridges that
considers all possible assignments between consecutive time
frames and assignment is obtained by solving the matrix for
minimal cost. A small distance cut-off ensured that tracking errors
due to long microridges merging and splitting events were
reduced considerably. The purpose of the tracking algorithm
implementation was to compute the time evolution of the
intensity profile along the microridges. For this computation, the
pixel intensity and the eigenvector along the microridge length
were used. Generic custom codes were written to obtain the
dominant 2D eigenvectors (https://www.mathworks.com/
matlabcentral/fileexchange/98894-image2dvectors) of each
tracked microridge from the images. For any branched microridge,
the intensity profile was assigned along the long branch,
independent of microridge orientation within the image. We
obtained the time evolution of the pixel coordinates [xp, yp] and
the corresponding intensity readout (Ipv) of microridges on the
obtained microridge tracks, and then transformed coordinates
into the frame spanned by their eigenvectors. The coordinate
along the microridge δl, is,

δl ¼ xpyp
	 


� e1
e2

� �
; (36)

where e1 and e2 are the components of the normalized
eigenvector that points along the length of the microridge. From
the mean intensities, we computed an intensity profile along the
1D direction of the microridge, (Ip), by summing the Ipv values for
each discretized δl.

Local Gaussian curvature of the microridge pattern on
periderm cell surfaces
We discretized the 2D space in (X, Y), and the Z height was taken
as the microridge intensity (I) readout at each point on the
periderm cell surface. We computed the first and second
derivatives at each point and the first (E, F, G) and second (L, N,
M) fundamental forms of the surface R3. Then, the localized
Gaussian curvature (K) was computed at each point on the cell
surface that corresponded to the localized intensity within the
microridges, given by,

K ¼ LN �M2

EG� F2
: (37)

Gaussian curvature (https://www.mathworks.com/
matlabcentral/fileexchange/11168-surface-curvature) was modi-
fied to compute the Gauss gradient with σ= 1.2 μm using
(https://www.mathworks.com/matlabcentral/fileexchange/8060-
gradient-using-first-order-derivative-of-gaussian) to extract the
first and second derivatives at each point in the image.

Quantitative parameter analyses of microridges from
network-segmented images
Using the best-performing trained network, we segmented
microridges of cell images with sizes of 2562 followed by rescaling
to the physical size of image pixels for each image prior to
parameter extraction. We considered 1502 cells from flank, yolk,
and head regions comprising thousands of microridges for the
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estimation of persistence lengths (Lp) of microridges. The
comparative analysis of static parameters of microridges included
the overall pattern wavelength (λ) and mean branch lengths (<Bl>)
on nearly equal numbers of cells from yolk and flank regions (300
and 293 cells) only. The movies for head regions were smaller in
number and hence were not included in the comparative analysis
and subsequent flow analyses to avoid any statistical bias. For the
steady-state dynamic parameter analysis, we used the time series
data from yolk and flank regions. We examined 9 movies with
tracks of varying length durations between 11minutes and
32minutes. All the computational analysis was performed in
Matlab (Mathworks) using custom codes.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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