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The economy of chromosomal distances in bacterial gene
regulation
Eda Cakir 1,2, Annick Lesne 3,4 and Marc-Thorsten Hütt 2✉

In the transcriptional regulatory network (TRN) of a bacterium, the nodes are genes and a directed edge represents the action of a
transcription factor (TF), encoded by the source gene, on the target gene. It is a condensed representation of a large number of
biological observations and facts. Nonrandom features of the network are structural evidence of requirements for a reliable
systemic function. For the bacterium Escherichia coli we here investigate the (Euclidean) distances covered by the edges in the TRN
when its nodes are embedded in the real space of the circular chromosome. Our work is motivated by ’wiring economy’ research in
Computational Neuroscience and starts from two contradictory hypotheses: (1) TFs are predominantly employed for long-distance
regulation, while local regulation is exerted by chromosomal structure, locally coordinated by the action of structural proteins.
Hence long distances should often occur. (2) A large distance between the regulator gene and its target requires a higher
expression level of the regulator gene due to longer reaching times and ensuing increased degradation (proteolysis) of the TF and
hence will be evolutionarily reduced. Our analysis supports the latter hypothesis.
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INTRODUCTION
Approaches from Systems Biology have led to remarkable
progress in understanding bacterial gene regulation1–3. Instru-
mental in this progress is the formal representation of gene
regulation as a network of gene-gene interactions mediated by
TFs, which allowed identifying some design principles underlying
this class of biological processes. Among these are the role of
small regulatory devices like coherent feedforward loops ensuring
noise buffering4, feedback loops and incoherent feedforward
loops implementing adaptation to long-term stimulation1,5,
groups of genes under a common regulation as a suitable
structure to run temporal programs6,7, as well as the functional
relevance of a hierarchical organization of the interactions8.
One of the remarkable conceptual approaches put forward by

network science is the possibility to ask in a systematic fashion
about the nonrandom features of a given network. In this way,
diverse systems can be compared on a quantitative level using
unified statistical tools. Provided a suitable null model is used,
such nonrandom features can often be associated with functional
requirements of the network and/or an optimization installed in
the network by some evolutionary pressure. It was for instance the
statistical observation of a high abundance of feedforward loops
in gene regulatory networks6 that preceded their mechanistic
interpretation as noise-buffering devices in the coherent case and
’pulse generators’ in the incoherent case.
However, we are far from a comprehensive understanding of

bacterial gene regulation. In particular accumulating evidence
points to the need of considering the regulatory network as a
spatially embedded structure, where the spatial organization of
the circular bacterial chromosome contributes to the overall
regulation of genes9–13. This challenge, among others, has to date
prevented for example the creation of predictive models of
bacterial gene expression patterns and the achievement of a
mechanistic understanding of bacterial gene regulation. Relating

the network representation with the chromosomal organization in
real space is a decisive step along this way.
The fact that the transcriptional regulatory network (TRN) needs

to be considered as a spatially embedded network is particularly
clear for a bacterium, as there transcription and translation are not
localized in different cellular compartments. This allows us to
leverage methods from network science, designed for the analysis
of spatially embedded networks, for an even further-reaching
statistical investigation of these nonrandom features14,15. Figure 1
introduces this view of the TRN in its chromosomal embedding.
The pioneering work by Warren and ten Wolde16 first studied

the spatial embedding of the transcriptional regulatory network
and interpreted some of its nonrandom features from a biological
perspective. In addition to this early work, a lot is already known
about the nonrandom features of this spatially embedded
network. Regulated and non-regulated genes have markedly
different statistical distributions along chromosome17. Genomic
distances among target genes of the same TF are smaller than
expected at random16. The chromosomal axis defined by the
origin of replication and the terminus of replication (Ori-Ter axis)
is an important organizer of gene activity12,13 and also shows up
in statistical properties of the TRN13. In contrast to other spatially
embedded networks, the TRN does not show a systematic
decrease of link density with genomic distance15. Genomic
neighborhood and TRN explain gene expression patterns in a
complementary fashion, suggesting a buffering mechanism
between two types of regulation, one related to the TRN and
the other to chromosomal structure11. We here extend this
line of investigation by studying the interplay of network features
and spatial organization and their correlation with gene
expression levels.
Direct imaging of the E. coli chromosome shows a circular

structure18 that shades the view of a highly condensed nucleoid19.
Local heterogeneities are observed along this circle. Its circular
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shape fluctuates in time and from cell to cell, however with a
variation of not more than 30% in width and length (perimeter),
supporting an average picture of a circular chromosome18. We can
expect the position of genes in the circular chromosome to be
evolutionarily optimized. One functional aspect to this positioning
of genes is the implementation of temporal programs via the order
of genes locally on chromosome12. This is apparent in the
organization of groups of genes in operons (cluster of a few
adjacent genes contributing to the same biological function) and
other aspects of the clustering of genes on smaller or larger
chromosomal scales16,20–23.
A still unexplored level of evolutionary optimization is the

wiring economy of the TRN. The hypothesis of a parsimonious
usage of ’wiring’ (spatial distances along edges) in a network, due
to construction, maintenance, and (signal) transportation costs,
has been intensely discussed in Neuroscience, where the notion of
’wiring economy’, i.e., the minimization of the total wiring length
(i.e., the wiring cost) with regard to the signal transportation
efficiency, has been introduced24–27.
In order to assess the wiring economy of the TRN, we resort to

methods developed and applied in the context of the cellular
network formed for nutrient transportation by the slime mould
Physarum polycephalum28 and brain networks on the level of
cortical areas27. This is achieved by addressing the statistical
question, whether the distances in space spanned by the edges of
the network (often referred to as the ’wiring’ of the network) are
typically larger or smaller than expected at random. We also
compare these observations with the signaling capabilities of
the network (below defined as ’regulatory span’) and discuss the
biological implications of these observations (e.g., how these
nonrandom features will be reflected in gene expression data).
We define the regulatory span as the percentage of nodes directly
or indirectly reached by each TF. One might formulate refined
versions of this regulatory span, e.g., by weighting direct and
indirect targets differently.
Two distinct hypotheses can be formulated:

(1) The local regulation of genes takes place via chromosomal
structure, as determined by the distribution of supercoiling
energy along the chromosome29,30 and locally stabilized by
the binding of structural proteins or nucleoid-associated
proteins (NAPs)9,31. This hypothesis suggests that dedicated

TFs are more likely to be associated with long-distance
regulation, rather than short-distance regulation, leading to
the expectation of high total wiring length (i.e., low wiring
economy).

(2) The limiting factor for the regulation of genes via TFs is the
cost of producing sufficient numbers of each individual TF
to reach its targets (in spite of the dilution due to spatial
diffusion and the possibly long-reaching time, entailing a
risk of proteolysis of the TFs), thus favoring more proximal
targets and hence the expectation of low total wiring length
(i.e., high wiring economy). At the same time, this hypothesis
—due to the hypothesized evolutionary pressure on the
number of produced TFs—would also suggest a discernible
correlation between distance and gene expression level.

Here we test these two broad, general pictures of the wiring
economy of bacterial gene regulation against data for the
bacterium E. coli.

RESULTS
Wiring economy and processing steps
As a first step, we investigate, whether the spatial distances
covered by the edges of the network (wiring lengths) and the
average number of processing steps from source nodes (regula-
tors) to target nodes (regulated genes) are larger or smaller than
expected at random.
We perform our analysis on the TRN and the coregulatory

network (CRN, i.e., the network where nodes are the genes/
operons and edges are the links between gene/operon pairs
regulated by a common transcription factor; see Methods) of
E. coli (see Fig. 2a, b). To analyze the TRN and the CRN both on
gene and operon levels, we employ three TRN and four CRN null
models (see Methods) and generate 1000 random networks per
each null model. While the node swap and the random node
position methods randomize spatial distances, but do not alter the
network (and hence retain the number of processing steps) both
edge swap methods discard these features and randomize source-
target node pairs.
As seen in Figs. 3a and 3e, the wiring lengths of the original

(gene-level and operon-level) TRNs are significantly smaller than
the wiring lengths of the generated randomized networks

Fig. 1 Transcriptional regulatory network (TRN) of E. coli. a Via the chromosomal coordinates of each gene, the TRN can be represented as
embedded in a circular space given by the bacterial chromosome. Nodes represent genes. Blue, red, grey directed edges from the regulator
genes to the target genes represent the action of activating, repressing, dual/unknown transcription factors (TFs), respectively. b Magnified
view of one spatial region containing the operons lacZYA and mhpR-lacI (gene name colors represent operon membership). c Standard
EcoCyc50 visualisation of the operons highlighted in (b).
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(with z-scores between − 14.86 and− 13.68 on the gene level).
Even though source-target node pairs (edges) or node positions
are randomized via three different methods, we observe similar
wiring length distributions for each null model, which indicates
that both source-target pairs and node positions, i.e., both the

association between regulators and regulated genes and their
positions, play an important role in improving wiring economy.
We investigate this nonrandom property of the embedded

network also by performing all the analyses using genomic
distance instead of wiring length (see Methods) to account for

Fig. 2 Schematic representation of the main quantities of our investigation. a TRN. Directed edges represent the regulatory action of the
TF encoded by the regulator gene/operon, pointing to the regulated gene/operon. Red edges highlight the regulation of nodes D, E, F, G, and
J by node A. b CRN. Nodes are the genes/operons, as in the TRN, but edges connect pairs of genes/operons coregulated by a third gene/
operon. Nodes D, E, F, G, and J are all connected (red edges) due to their joint regulation by node A. c Wiring length (WL) and Genomic
distance (GD). The wiring length of the edge from node A to F corresponds to the spatial (Euclidean) distance between the centers of the
nodes A and F (WL = 1.93). For each pair of connected nodes, we also consider the arc length between the centers of the nodes, i.e. genomic
distance (GD = 2.62). d Regulatory span of node G. e, f Number of processing steps in the TRN (e) and the CRN (f). The number of processing
steps is the average number of steps along the shortest path between nodes. In the TRN, for the node pair (D, K), the number of steps along
the shortest path D-L-H-E-K is 4. In the CRN nodes C and J are linked via four processing steps. This number is 1 for node pairs related by an
edge (direct neighbors).
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one-dimensional sliding of TFs along the DNA. The results are
consistent with the observation in Fig. 3, showing that regardless
of the TF’s target ’search method’, the network displays high
wiring economy (Supplementary Figure 2).

It is conceivable that setting constraints in numerically
generating networks to prevent self-regulation may create a bias
towards higher wiring length at randomized networks (the
elimination of interactions that originate and end at the same

Fig. 3 Comparison of the original network ( ) and null models (dots colored according to null model type) in terms of wiring length and
number of processing steps in the TRN (a,b) and the CRN (c,d) on the gene (a,c) and operon (b,d) levels. a Gene-level TRN. Original network
has a significantly lower wiring length than the randomized networks with an average z-score of− 14.38. The number of processing steps is
also lower in the original network, compared to its randomized counterparts (z-score =−2.37). b Operon-level TRN. Results are consistent with
the gene level (wiring length average z-score =−7.05, processing steps z-score =−2.20). c Gene-level CRN. The original network has
significantly lower wiring length than the randomized networks with an average z-score of−21.05. The number of processing steps is much
higher than expected at random (average z-score = 42.15). d Operon-level CRN. Results are consistent with the gene level (wiring length
average z-score =−6.21, processing steps average z-score = 17.44). e Processing step z-scores. f Wiring length z-scores.
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operon, see Methods, Section 4.1). We studied the impact of this
constraint and found no significant impact on wiring lengths
(Supplementary Figure 3).
The real CRN also has a significantly lower wiring length than

randomized networks with z-scores between− 34.88 and− 11.53.
The null model CRNs derived from randomized TRNs (see
Methods) have the highest wiring lengths (Fig. 3c, d). Since the
source and target node pairs are not conserved and the edges
are randomized by swapping, network properties like modularity
are not preserved in this method. For these null model CRNs, the
average number of edges is 14.5% higher than in the real CRN
(and, by construction, the other null model CRNs). This supports
the view that coregulated genes tend to lie closer to each other
and coregulated gene subgroups tend to be regulated by the
same regulators. Destroying this clustering on the TRN level results
in increased variability of coregulated gene subgroups and an
increase in the number of edges in CRN. From a biological
perspective, the choice of this null model (CRNs derived from
randomized TRNs, rather than directly randomized CRNs) is
motivated by the view that the CRN is rather a relational structure,
while the actual biological ’hardware’ resides in the TRN.
These results are confirmed by analyzing networks on the

operon level (z-scores between− 7.15 and− 6.98). As in Warren
et al. 16, our analyses show that pairs of operons that are
connected in TRN tend to be closer to each other than expected
at random.
In terms of processing steps, Fig. 3 shows that the average

number of steps required to reach target nodes is less in the real
TRN than in randomized networks (z-scores are− 2.37 and− 2.20
at gene and operon level respectively). However, the regulatory
span, i.e., the percentage of nodes (directly or indirectly) reachable
from a source node, is also relatively low. While 28.2% of the
nodes are reachable on average in the (gene-level) randomized
networks, the regulatory span for the real (gene-level) TRN is at
10.4% (Supplementary Figure 4).
By going beyond direct links, the number of processing steps,

as well as the regulatory span reveal, to what extent a
transcription factor (source node) potentially affects systemic
components further downstream of the direct regulation. This
comparison of number of processing steps and regulatory span
suggests a clear overall picture: In order to ensure a lean and
efficient network, the number of descendants is low, but the
number of processing steps is enhanced.
The number of processing steps of the real CRN is higher than

expected at random (Fig. 3c, d). However, it should be noted that
the TRN-level randomization does not conserve the number of
edges in the randomized CRNs.
Summarizing these observations, the TRN—the ’hardware’

implementing regulation—unites efficient processing (lower-
than-random average number of processing steps), very efficient
wiring (much lower-than-random total wiring length) at the
expense of parallelized information distribution (lower-than-
random regulatory span). The CRN—the structure underlying
coherent activity patterns—is spatially compact (lower-than-
average wiring), but shows less efficient processing (higher-than-
random average number of processing steps), suggesting the
possibility to decouple sub-patterns of activity.

Interpretation and functional significance
The effect of distance on the efficiency and reliability of
transcriptional regulation has long been studied. Since the work
by Riggs et al.32 and Berg et al.33, it is acknowledged that proteins
could find their target sites via a combination of one-dimensional
sliding along the DNA and three-dimensional diffusion through
the cytoplasm. It is also known that for the 1D component of the
search process, the search time of a TF can depend on the
initial position of the TF, i.e., the position of the regulator gene34.

The average search time is estimated to be faster if a TF could find
its target site via 1D sliding (≈0.3 sec) rather than a combination of
1D sliding and 3D diffusion (≈150 min)21. Moreover, degradation
of TFs (proteolysis) is expectedly present (such degradation is
unavoidable, as mechanisms for setting the system back to a
default state and adapting the regulation by TFs to different
situations). Assuming a first-order kinetics, the degradation is
exponential with time.
The distance between the regulator gene and the regulated

gene affects the speed and reliability of transcriptional regulation
in bacterial cells substantially35. Efficiency and consistency of
gene regulation depend on how close the regulator gene is to
the site on DNA the TF has to bind, i.e., the promoter region of
the regulated gene21. Pulkkinen and Metzler showed in their
study35 that the effect of the distance on the regulation efficiency
is significant, i.e., the shorter the distance, the stronger and faster
the response. It was also claimed that for efficient gene
regulation, the TF concentrations should be high, and the high
TF concentrations can be reached through gene proximity. These
constraints promote the colocalization of the regulator genes and
their targets on the genome. Similarly, at the operon level, the
fact that the coregulated operons tend to colocalize is also
highlighted by Warren and ten Wolde16 by comparing the
network with randomly created ones.
Prompted by this collection of indirect evidence relating

source-target distances with gene expression and by our result of
a strong preference in the TRN of short source-target distances,
we now analyze the rate of gene transcription, which provides a
measure of the network transcriptional regulation capacity, and
its relationship with the spatial distance between the regulator
and regulated genes by investigating the correlation between
the TRN wiring economy and the expression levels of TFs. We use
a highly structured RNA-seq dataset, which contains 278 gene
expression profiles36.
We investigate the possible relationship between wiring length

and the expression level of the regulator genes (source genes in
the TRN). The total wiring length of the outgoing edges from each
regulator and the expression level of each regulator are found to
be significantly correlated (Fig. 4, Spearman correlation coefficient:
average= 0.4165, p values of all profiles: < 1.18 × 10−4, average =
1.31 × 10−6). Considering the significant correlation, it can be
argued that with the effect of limiting noise and increasing
reliability, the wiring economy is enhanced. Long-distance and
correspondingly long wiring length are associated with an
increase in gene expression level.
As with many statistical associations of dynamical data (here:

gene expression data) and network structure (here: the spatially
embedded TRN), it is not possible to disentangle the various
contributions. Correlation between expression levels and total
wiring length is highest among the quantities we analyzed, but
also (in descending order) maximal wiring length, the out-degree,
and the average wiring length show highly significant positive
correlations with gene expression levels (see Supplementary
Table 1), with the maximal wiring length being, for a given
regulator, the maximal spatial distance to its target genes.
Gene expression data, at present, do not allow for such

detailed assessment (which could, however, be envisioned for
single-cell measurements), but it is nevertheless informative to
look in more detail at the relationship between the gene
expression levels and distances expected from general con-
siderations. The object relating these two quantities is the
reaching time of a transcription factor with respect to its target
site. A starting point for a corresponding theoretical framework is
outlined in Supplementary Text 1.
As an application of our spatially embedded view of the

bacterial gene regulatory network, we use our framework to
disentangle the biological nature and function of two related
categories: the standard Regulons37 and the recently introduced
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iModulons36. Regulons are defined as groups of genes regulated
by one regulator37. The concept of iModulons denotes gene sets
that represent independently modulated signal processing units
derived by applying independent component analysis to RNA-seq
datasets. Genes are grouped into such sets by observing patterns
in the transcriptome expression data. Specifically, iModulon
detection involves blind source separation, i.e., the separation of
environmental conditions and internal regulation via unsuper-
vised machine learning.
In Sastry et al.36 the authors find that the iModulons are similar

to, but distinct from, Regulons. Around 66% of the identified
iModulons have significant overlaps with Regulons. Here we show
that the embedded-network perspective allows us to uncover
different organizational principles behind these two types of
regulatory units in bacterial gene regulation. In order to evaluate
iModulons from the perspective of embedded networks, we
employ the (larger) network compiled in the original iModulon
publication36, rather than the standard RegulonDB network from
ref. 38. Figure 5 summarizes the results.
Our analysis shows that from a regulatory perspective (i.e.,

evaluating the spatial embedding of the TRN), iModulons are
unspecific in their spatial organization, while Regulons are spatially
localized. In the case of coregulation (i.e., evaluating the spatial
embedding of the CRN and thus assessing the capacity to generate
coherent activity patterns) both units are spatially tightly clustered
(i.e., their average wiring length is much shorter than expected at
random). These nonrandom features of Regulons and iModulons
are further evidence of the involvement of space in the
organization of bacterial gene regulation. Furthermore, the
embedded-network analysis reveals a discriminating feature
between the two types of regulatory units: Regulons are spatially
compact in regulation (as evidenced by the shorter than-random
wiring length of the corresponding TRN subgraphs) and compact in
co-activation (as indicated by the shorter-than-random wiring
length of the corresponding CRN subgraphs). On the other hand,

iModulons show a low wiring economy in regulation, but a
substantial wiring economy in co-activation.

DISCUSSION
Several technicalities make this investigation of TRNs challenging:
(1) It is not clear, whether this statistical analysis should be
performed on the level of genes or the level of operons. We do
both and find that the results are quite similar, suggesting that the
organization of bacterial genes into operons is not directly affecting
the wiring economy of these networks. (2) It is not clear, whether
the relevant network for the discussion of wiring economy is the
TRN with its regulatory interactions or rather the CRN with its links
representing associations of genes due to common regulation.
Again we perform our analysis on both networks.
A limitation of our analysis is that even in the case of a well-

investigated model organism, like E. coli, our knowledge about
transcriptional regulation is incomplete. In fact, current estimates
in RegulonDB38 assume that substantial parts of the network are
still missing. We can only address this limitation by continuing to
monitoring the features analyzed here in future versions of the
TRN, when they appear (see, e.g., ref. 39).
A crucial step in such an investigation is the choice of the null

model. A null model here is the ensemble of random graphs the
original network is contrasted with. A null model is characterized
by the set of network properties it preserves. Clearly, when the
null model is too different from the original network, then almost
any network property will seem nonrandom. One therefore needs
to be very explicit in the construction of the null model, which
features of the original network are preserved and which are
randomized. In addition, discarding through randomization
different features of the original network can provide further

Fig. 5 Comparison of total wiring lengths for iModulon and
Regulon subgraphs in the TRN and CRN. We calculate the
wiring lengths of iModulon/Regulon subgraphs as the sum of
wiring lengths for all edges between the nodes in the subgraphs,
ensuring that the main regulators are in the considered subgraphs
(The main regulator(s) is added to the subgraph if it is not one of
the nodes in the considered subgraph.). The total wiring length
is the sum of the wiring lengths of all iModulon/Regulon subgraphs
in the TRN/CRN. For the z-scores listed here, we employ the network
compiled in the original iModulon publication36 and generate 1000
randomized networks using the node swap method (see Methods).

Fig. 4 Scatterplot of the expression levels of the regulator genes
as a function of total wiring length of outgoing edges from each
regulator gene to all its target nodes (regulator total wiring
length). The gene expression levels positively correlate with the
regulator total wiring lengths (average Spearman correlation across
all RNA-seq datasets (see Methods): 0.4165; average p value: 1.31 ×
10−6; maximal p value: 1.18 × 10−4).
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insight into the driving mechanisms behind the identified
nonrandom features.
Here we opted for three null models: (1) Degree-preserving

switch randomization. This method has been developed in ref. 40

and employed in ref. 6 and ref. 41. Even though the exact degree
sequence of the graph is preserved, higher-order network
properties like modularity are destroyed. When assessing for
example the small subgraph distribution of a random modular
graph with standard switch randomization as a null model, an
artifactual nonrandom distribution of small subgraphs would be
observed42. (2) Assigning random chromosomal positions to all
genes without altering the network. This null model is
particularly relevant for the assessment of wiring economy, as
the distances covered by each link in the network are efficiently
randomized. However, this particular null model does not
preserve the highly nonuniform gene density across the circular
chromosome. (3) Randomly positioning genes, but retaining the
original list of gene positions (iterative gene swapping). In this
case, both the network and gene density are conserved, but
distances are still randomized.
We explored a fundamental principle of bacterial gene

regulation, namely its spatial embedding. For both the transcrip-
tional regulatory network (TRN) and the coregulatory network
(CRN), we investigated their wiring economy, a concept popular in
the analysis of neural connectivity patterns. We find high wiring
economy (shorter than-random spatial distances of regulatory
interactions) in the transcriptional regulatory network of the
bacterium E. coli, suggesting an evolutionary pressure to avoid
long-distance regulation. We can hypothesize that this evolu-
tionary pressure is due to the cost of producing mRNAs, as high
mRNA levels are required to diffusively reach distal regulatory
targets. This interpretation is confirmed by the scaling of average
transcriptome levels (as measured in RNA-seq experiments) with
the distance between the source and target genes in the TRN.
Future works could take benefit from single-cell RNA sequencing
in situ that are developed and will soon be routinely available43.
Our findings suggest that gene expression levels need to be

corrected for source-target distances before functional interpreta-
tion. This can have implications for the statistical assessment of
differentially expressed genes and for network inference algo-
rithms operating on transcriptome profiles.
Our two initial hypotheses do not conflict with each other. Even

though our results show strong support for one hypothesis, the
other hypothesis (enhanced long-distance regulation by TFs) may
also be valid while being just masked by the much stronger
nonrandom feature of high wiring economy. Detecting such
nonrandom features on multiple scales would require a careful
statistical assessment of the whole probability distribution of
genomic distances between a TF and its target genes. This calls for
a new class of null models capable of preserving the nonrandom
network features on one scale, in order to quantify nonrandom
features on a different scale.
The results presented here can serve as a starting point for a

range of further investigations: validating these findings in other
bacterial systems, a step currently impeded by the lack of detailed,
high-quality data on TRNs in other organisms; extension to
eukaryotic organisms (e.g., yeast, for which some information on
the TRN is available44), where the spatial organization is far more
complex and its regulatory contribution, though undisputed, is
hard to quantitatively assess.
When high-resolution single-cell data of chromosome structure

and chromosome dynamics will become available, one can start
exploring these questions beyond the circle approximation
employed here, in order to study the interplay of chromosomal
dynamics and TF-based gene regulation in further detail45,46.
On the more theoretical side, a direction of future work is to

investigate the robustness of the wiring economy discovered here
with respect to random fluctuations of chromosomal organization.

METHODS
Transcriptional regulatory network (TRN) and coregulatory
network (CRN)
The statistical analysis of the TRN of the bacterium E. coli is performed
considering the TRN as a simple directed graph, either on the gene or the
operon level. The nodes of the constructed networks represent genes
(gene level) or operons (operon level) and directed edges represent the
transcriptional regulation between these nodes. In the gene level TRN, for
instance, since the gene acrR encodes the protein AcrR to regulate
the gene acrB, there is a directed edge from node acrR to node acrB. In
the operon level TRN, since the gene acrR in the operon acrR encodes the
protein AcrR and regulates the gene acrB in the operon acrAB, there is a
directed edge from the operon acrR to the operon acrAB.
We compile the TRN using the dataset from RegulonDB v10.538, a

comprehensive database that provides information on transcriptional
regulations of E. coli K-12. To create a directed simple graph, multiple
interactions between the nodes and the interactions originating and
ending in the same operon (both, for the gene-level and the operon-level
TRN) are removed from the network. The resulting TRNs consist of 4601
interactions between 1841 genes on the gene level and 1942 interactions
between 910 operons on the operon level.
We assume that the chromosome is circularly embedded in 2D space.

The polar coordinates of the nodes on a unit circle are calculated using the
positions of the genes along the chromosome in terms of base pairs.
We also perform our analysis on the CRN of E. coli on gene and operon

levels. In the CRN, nodes are the genes/operons, as in the TRN, but edges
are the links between pairs of genes/operons coregulated by a third gene/
operon. The simple undirected coregulatory graph is the representation of
the coregulated pairs. Such a CRN visualizes the capacity of connected
units to display a coherent pattern of activity. A statistical comparison of
the CRN and TRN representations of the gene regulatory system has been,
for example, performed in ref. 47. Figure 2a, b illustrate these two network
types in a schematic fashion.
We use the NetworkX Python package for the creation and manipulation

of the regulatory networks48.

Performance indicators: wiring length, genomic distance,
number of processing steps, and regulatory span
Considering the chromosome to be circularly embedded in 2D space, the
spatial (Euclidean) distance between the centers of the nodes, i.e., wiring
length, serves as a proxy for the time spent in diffusing through the cytoplasm.
One-dimensional sliding along the DNA is investigated by calculating the arc
length between the centers of the nodes, i.e., genomic distance.
The total wiring length is computed as the sum of wiring lengths for all

edges in the network. The same applies to the total genomic distance.
Note that in contrast to the chromatin organization in eukaryotic
organisms, here the genomic distance (along the circular chromosome)
and the spatial distance (in space) are related: A high genomic distance
implies a high spatial distance.
In a simple directed graph (TRN), the average number of steps along the

shortest paths for all source and target node pairs is denoted as the
number of processing steps. Regarding CRNs (simple undirected graphs),
the average number of steps is defined as the average number of steps of
the largest connected component. A schematic illustration of these
performance indicators is given in Fig. 2c, d.
Another measure to evaluate graph connectivity is the regulatory span.

Regulatory span is the average number of reachable nodes from regulators
(directly or indirectly) compared to the total number of nodes in a network.
Note we do not compute the regulatory span for the CRN, as it is not a
meaningful quantity there, due to the undirected nature of this network.

Null models
We employ the standard switch randomization algorithm40, i.e., edge
swapping, to create uniformly distributed directed random networks
preserving in- and out-degrees. We keep the node positions fixed and
randomize the edges by swapping (Supplementary Fig. 1b). Multiple
interactions (parallel edges) and self-regulations (originating and ending at
the same gene/operon) are not allowed, as in the original network.
The number of swaps required to create a random graph and the

number of random graphs are determined by comparing the results of
various combinations. We varied the number of null model graphs
between 100 and 4000 checking for the robustness of our results. Results
are shown for 1000 random graphs. We use the edge swap algorithm also
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to create randomized undirected CRNs. In this method, we randomize the
edges of the original CRN by swapping. This method is denoted as “Edge
Swap Random CRN" in the Results. The second method employed to
generate a randomized CRN has two steps. First, we generate a
randomized TRN using the edge swap method, and second, we build
the CRN of the randomized TRN. This null model acknowledges the TRN as
the ’hardware’ from which the relational structure, the CRN, is derived. The
arguments in favor of this null model are similar to those motivating
randomization of metabolite-centric metabolic networks on the level of
the bipartite (metabolite-reaction) graph (see ref. 49).
As an additional consistency check for our data analysis pipeline, we

create a randomized TRN (referred to in the following as ’base model’) and
perform all analysis steps on this network, with the expectation that no
nonrandom features will be discovered. Specifically, we generate
randomized TRNs using the nth generated network as the input (reference)
network to generate the (n+1)st network. Then, we build the CRN of each
randomized TRN to check the consistency of the randomized CRNs. The
aim is to test whether employing randomized networks as a base model
affects the difference between the original and the randomized networks’
wiring lengths. If the randomization model is biased, the average total
wiring length of the generated graphs are expected to be significantly
different than the generated ones observed in Fig. 3. However, both
generated random TRNs and CRNs show similar wiring length distributions
with the ones observed in Fig. 3 with z-scores− 15.40 on TRN level and−
33.83 on CRN level (Supplementary Fig. 5).
The second method employed to generate random networks is the

node swapping method. Two nodes (genes or operons, according to the
level of TRN) are selected randomly, and the positions of the selected
nodes are swapped. We perform on average 100 swaps per node. In this
method, the set of node positions, as well as the interactions between the
nodes, are preserved, i.e., the source and target nodes of the edges remain
the same (Supplementary Fig. 1c). Randomized CRNs are constructed
based on the randomized TRNs generated by node swapping.
In the random node position case, we assign random chromosomal

positions to all nodes (genes/ operons) without altering the interactions
between nodes. As in the node swapping case, the source and target
nodes of the edges remain the same (Supplementary Fig. 1d). Randomized
CRNs are constructed based on the randomized TRNs generated using the
random node position method.

Gene expression data
We use the Precise dataset, which offers 278 high-quality E. coli RNA-seq
expression profiling datasets from over 15 studies. The dataset contains
20% of RNA-seq datasets available in NCBI GEO33 for E. coli K-12 MG1655
and BW2511336. RNA-seq provides a time-averaged and population-
averaged estimate of the mRNA level of each gene.
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