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Using predictive machine learning models for drug response
simulation by calibrating patient-specific pathway signatures
Sepehr Golriz Khatami 1,2✉, Sarah Mubeen 1,2,3, Vinay Srinivas Bharadhwaj 1,2, Alpha Tom Kodamullil1,
Martin Hofmann-Apitius 1,2 and Daniel Domingo-Fernández 1,3,4✉

The utility of pathway signatures lies in their capability to determine whether a specific pathway or biological process is
dysregulated in a given patient. These signatures have been widely used in machine learning (ML) methods for a variety of
applications including precision medicine, drug repurposing, and drug discovery. In this work, we leverage highly predictive ML
models for drug response simulation in individual patients by calibrating the pathway activity scores of disease samples. Using
these ML models and an intuitive scoring algorithm to modify the signatures of patients, we evaluate whether a given sample that
was formerly classified as diseased, could be predicted as normal following drug treatment simulation. We then use this technique
as a proxy for the identification of potential drug candidates. Furthermore, we demonstrate the ability of our methodology to
successfully identify approved and clinically investigated drugs for four different cancers, outperforming six comparable state-of-
the-art methods. We also show how this approach can deconvolute a drugs’ mechanism of action and propose combination
therapies. Taken together, our methodology could be promising to support clinical decision-making in personalized medicine by
simulating a drugs’ effect on a given patient.
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INTRODUCTION
Applying machine learning (ML) methods to biomedical data has
enormous potential for the development of personalized thera-
pies,1 drug repurposing,2 and drug discovery.3 The data exploited
by these methods can comprise multiple modalities including
imaging data,4 chemical structure information,5 and natural
language data.6 However, the widespread availability of transcrip-
tomics data (e.g., RNA-Sequencing (RNA-Seq), microarrays, etc.)
along with its capacity to provide a comprehensive overview of
biological systems have made this particular modality a popular
choice for various computational methods. Although this modality
can reveal both molecular signatures as well as phenotypic
changes that occur in altered states, pathway analyses are often
performed to map measured transcripts to the pathway level due
to high dimensionality and correlations present in transcriptomics
datasets.7,8 This transformation facilitates the training of ML/AI
models by reducing dimensional complexity whilst enhancing
interpretive power.9 However, such a transformation implicates
the use of prior pathway knowledge10 from databases such as
KEGG11 and Reactome.12,13

The transformation of data from the transcriptomics to the
pathway level can be used to generate pathway features (i.e., sets
of genes involved in a given pathway that are coordinately up or
down-regulated), the latter of which have broad applications in
drug discovery and drug response prediction.14 For instance,15–17

exploited the concept of anti-similarity between drugs and
disease-specific pathway signatures to identify therapeutic candi-
date drugs that can potentially revert disease pathophysiology.
Furthermore,18 shows how pathway signatures derived from cell
lines using kernelized Bayesian matrix factorization can be used
for drug response prediction.

Alternatively, other methods can generate individualized
pathway features from a population of patients or cell lines.19

These features, or pathway activity scores, can subsequently be
used for several downstream ML applications including classifica-
tion tasks and survival prediction.8,20 In addition,21 showed how
ML models can be used to predict drug response using pathway
activity scores derived from cell lines. Furthermore, another
example from22 demonstrated how modeling individualized
pathway activity scores from Fanconi anemia patients can reveal
potential targets for therapeutic interventions. Finally, similar
approaches have been used to prioritize drug treatments in the
cancer context.23,24

While these methods have shown how pathway signatures can
be used for drug discovery and drug response prediction, existing
methods thus far fail to account for two important factors. First, as
the response triggered by a drug in a given patient may differ if
administered in another, these methods should account for
patient heterogeneity which is crucial in designing individualized
therapies. Second, specific indications may be improved or
corrected by a drug combination approach or through the
administration of multi-target drugs.
In this work, we present an intuitive methodology that exploits

the predictive power of ML models to simulate drug response by
calibrating pathway signatures of patients. We first trained an ML
model (i.e., elastic net penalized logistic regression model) to
discriminate between disease samples and controls based on
sample-specific pathway activity scores. Next, we simulate drug
responses in patients using a scoring algorithm that modifies a
patient’s pathway signatures using existing knowledge on drug-
target interactions. We hypothesize that promising drug candi-
dates for a given condition would modify pathway activity scores
of patients in such a way that they closely resemble scores of
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controls. Thus, using the previously trained ML model, we then
evaluate whether patients with modified pathway scores are now
classified as normal as a proxy for promising drug candidates. We
demonstrate the scalability and generalizability of our methodol-
ogy by simulating over one thousand drugs from two indepen-
dent drug-target datasets on four cancer indications. Furthermore,
we show how our methodology is able to recover a large
proportion of clinically investigated drugs on these four indica-
tions, outperforming six comparable state-of-the-art methods.
Finally, we show how the most relevant pathways identified by
our methodology can be used to better understand the biology
pertaining to a given condition.

RESULTS
We present a workflow designed to approximate a drug’s effect
on a patient by intentional modifications to patient-specific
features, specifically, pathway activity scores, by employing highly
predictive ML models trained to differentiate between normal and
disease samples (Fig. 1). In the first subsection, we validate our
approach by (i) evaluating its capability in retrieving FDA-
approved drugs and those in clinical trials for multiple cancer
datasets and, (ii) comparing the results yielded by our approach
against several equivalent methods. Then, in the following two
subsections, we investigate the drug candidates prioritized by our
approach and the specific pathways targeted by these prioritized
drugs, respectively. Finally, we show the utility of our approach in
predicting the effects of a combination of drugs for applications in

combination therapy and for the identification of potential
adverse events associated with drug combinations.

Validation of the methodology and comparison against
equivalent approaches
In this subsection, we investigate the drug candidates prioritized
by our methodology in four different cancers and evaluate the
ability of our approach to identify approved and clinically
investigated drugs (i.e., true positives). Table 1 shows that only a
minority of the drugs present in both drug-target datasets were
prioritized by our methodology given that a stringent threshold
was employed which required that prioritized drugs change the
predictions of at least 80% of the patients (see “Materials and
Methods” and Supplementary Figs. 7, and 8 for details on the
selection of this threshold). Overall, our methodology is able to
recover a large proportion of true positives (ranging from 13% to
32%) in all four cancers as well as in both drug-target datasets
(Table 1). This wide range may be attributable to a disproportion
in the number of true positives that exist for each of the cancer
datasets (e.g., BRCA has more than twice as many FDA-approved
drugs and drugs in clinical trials than LIHC) as well as to the size of
the drug-target datasets (i.e., DrugBank contains twice as many
drugs as DrugCentral).
As a comparison, the methodology proposed by25 reported

lower proportions of true positives than our approach for the
BRCA and PRAD datasets with 21.42% and 15.94%, respectively
(Supplementary Table 1). Furthermore, four additional methods
present that were benchmarked by25 yielded even lower results

Fig. 1 Conceptual overview of the drug simulation workflow and case scenario on multiple datasets. (a) Pathway activity scores are used
to train a highly predictive ML model that differentiates between normal and disease samples, labeled green and red on the heatmap,
respectively. (b) Next, pathway scores of disease samples are modified by using drug-target information and applying a scoring algorithm that
simulates the effect of a given drug at the pathway-level. Using the modified pathway scores of disease samples, the trained ML classifier is
then used to evaluate whether these modified disease samples that were previously classified as “diseased” could now be classified as
“normal”. (c) Finally, we use the proportion of disease samples now classified as normal (i.e., % responders) as a proxy to identify candidate
drugs and propose combination therapies. (d) To demonstrate the methodology in a case scenario, we first performed ssGSEA using pathways
from KEGG and the BRCA, LIHC, PRAD, and KIRC TCGA datasets to acquire sample-wise pathway activity scores. (e) Next, we obtained known
drug-target interactions from DrugBank and DrugCentral and drug-disease pairs (i.e., FDA-approved drugs and drugs under clinical trials for a
given condition) from Clinicaltrials.gov and FDA-approved drugs, of which, the latter two were used as a ground-truth list of true positives
(TP). (f) To simulate drug treatments of patients from the aforementioned TCGA datasets using their pathway activity scores (i.e., Fig. 1d), we
applied the methodology described in Fig. 1a–c to acquire a ranking of drugs based on the proportion of disease samples that were treated.
Finally, we identified the proportion of drugs ranked by our methodology that were true positives for the four TCGA datasets and compared
this proportion to random chance.
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on the same two cancer datasets (Supplementary Tables 2–8).
Similarly,26 also reported a lower proportion of true positives than
our approach for the BRCA and PRAD datasets with 0.8% and
0.4%, respectively (Supplementary Table 9). Overall, the perfor-
mance across all six methods varied from 0% to 11.53% for BRCA,
and from 0.50% to 22.22% for PRAD and is summarized in
Supplementary Table 10.
In addition, the proportion of true positives yielded by our

methodology is significantly higher than what one would expect
by chance (see “Materials and Methods”). Furthermore, we
compared the number of prioritized drugs found in the original
DrugBank and DrugCentral datasets to the number of prioritized
drugs obtained in the robustness experiments in which we
applied our methodology to drugs with randomly generated
targets and target interactions (Supplementary Fig. 1). We found
that all permutation experiments yielded a significantly lower
number of prioritized drugs. Because our methodology can
capture a much greater number of prioritized drugs on a real
dataset, this validation highlights the capability of our approach to
prioritize drugs with targets in relevant pathways that are key to
change the predictions of patients.
As a final remark, we explored the performance of our

methodology when varying one of the weights while keeping
the other two constant to better understand how sensitive the
results are to the selected weights (Supplementary Tables 11, 12).
We have observed that the proportions of true positives recovered
mainly vary between 15% and 35% in the three test disease
datasets for both drug-target datasets when W1 (i.e., the weight
assigned to the quartile that contains the most dysregulated
pathways) is in the range of 10–20. There are multiple cases where
we found sets of weights yielding better results than the ones
presented in Table 1 if exclusively looking at a single or two
specific disease datasets (Supplementary Table 13). In contrast, we
observed that when weights are low (e.g., W1= 1), our approach
often does not yield any prioritized drugs (Supplementary Table
14), as in these cases, the modified pathway activity scores are not
sufficient enough to change the predictions of the ML model.

In-depth investigation of the prioritized candidate drugs
Apart from the previous quantitative evaluation of our methodology,
we conducted an in-depth analysis of the prioritized drugs to better
understand the predictions made by our approach. Below, we focus
on drugs prioritized using the DrugCentral dataset as this dataset
contains a fewer number of prioritized drugs than DrugBank.
In the breast cancer dataset (BRCA), we identified a major class of

drugs based on their mechanisms of action (Fig. 2a). This class
targeted DNA and RNA metabolism and included commonly used
anti-tumor drugs. One example of this group of drugs is fluorouracil,

which targets thymidylate synthase, thereby inhibiting the forma-
tion of thymidylate from uracil.27 This drug is a chemotherapy
medication commonly used to treat several cancers.
In the prostate cancer dataset (PRAD), we found that the

majority of drugs were related to hormone metabolism and
regulation (Fig. 2c). Due to the key role of sex steroid hormones in
its initiation and progression,26 this cancer is classified as
hormone-dependent. Thus, current treatments are often directly
targeted towards these hormones, such as androgen deprivation
therapy, which represents the major therapeutic option for
treatment of advanced stages of this cancer.28–30

The third dataset, LIHC, corresponds to hepatocarcinoma.
Interestingly, the vast majority of the candidate drugs in this
dataset (14/19) are tyrosine kinase inhibitors (TKI) corresponding
to anti-tumor drugs already FDA-approved for other cancers31

(Fig. 2b). Since these kinases act as regulatory players in several
cancer signaling pathways that can be hyperactivated, TKIs are
used to “switch-off” these pathways, indirectly inhibiting cell
growth.32 One of the predicted drugs is sorafenib, which was the
first TKI to be approved for the treatment of liver carcinoma and
still remains as a first-line therapy. Similarly, another predicted
drug, trametinib, is a dual-kinase inhibitor that is used in the
treatment of advanced liver cancer. Finally, two of the remaining
non-TKIs are also employed as chemotherapy drugs as they inhibit
the synthesis of nucleotides.

Investigation of pathways targeted by the prioritized drugs
Here, we interpret and analyze the results yielded by our
methodology for multiple datasets by investigating the pathways
targeted by the drugs prioritized through our approach. We
identified clusters of pathways belonging to several distinct
classes (Fig. 2). Not surprisingly, we found that various metabolic
pathways appeared in all three test datasets as the regulation of
metabolism plays an important role in numerous cancers. Given
that each of the three test datasets were cancer subtypes,
intuitively, we also observed several disease-relevant pathways
targeted by the prioritized drugs, among which were ~30 cancer-
related pathways from KEGG (e.g., prostate cancer, pancreatic
cancer, bladder cancer, and breast cancer).
Drugs that were prioritized by our approach (Fig. 2) were

likewise clustered based on the pathways they targeted to assess
whether drugs that targeted the same pathway fell within the
same class of drugs. Prioritized drugs for liver cancer could be
clustered into four different classes of tyrosine kinase inhibitors: (i)
JAK inhibitors (i.e., sorafenib, vandetanib, erlotinib, and lapatinib),
(ii) ALK inhibitors (i.e., lorlatinib), (iii) BCR–Abl (i.e., nilotinib,
dasatinib, and imatinib), and (iv) and EGFR inhibitors (i.e.,
afatinib).33 In addition, we found MEK kinase inhibitors, specifically

Table 1. Number of FDA-approved and clinically tested drugs recovered for both drug-target datasets (i.e., DrugBank (DB) and DrugCentral (DC))
across the four investigated cancers.

Dataset DB Prioritized DB Approved
(total)

DB Clinical
trials (total)

DB Proportion of true
positives (%)

DC Prioritized DC Approved
(total)

DC Clinical
trials (total)

DC Proportion of
true positives (%)

BRCA 129 8 (26) 23 (182) 31/129 (24.03%) 19 2 (14) 4 (115) 6/19 (31.57%)

LIHC 74 2 (5) 11 (50) 13/74 (17.56%) 19 1 (1) 2 (35) 3/19 (15.78%)

PRAD 68 2 (13) 18 (134) 20/68 (29.41%) 19 1 (7) 3 (84) 4/19 (21.05%)

KIRC 88 2 (8) 10 (44) 12/88 (13.63%) 26 3 (3) 2 (25) 5/26 (19.2%)

In the first column for each drug-target dataset (“Prioritized”), we report the number of drugs that changed the predictions for at least 80% of the patients for
each cancer type. The second column (“Approved”) reports the number of FDA-approved drugs among these prioritized drugs as well as the total number of
FDA-approved/clinically tested drugs present in each dataset between parentheses. Similarly, the third column (“Clinical trials”) reports the number of drugs
tested in clinical trials among the prioritized drugs and the total number of FDA-approved/clinically tested drugs between parentheses. Finally, the last column
(“Proportion of true positives”) reports the proportion of true positives (both FDA-approved and clinically tested drugs) among the prioritized drugs.
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Fig. 2 Pathways targeted by prioritized drugs in DrugCentral for each of the three cancer test datasets. The X axis corresponds to
pathways targeted by any of the prioritized drugs (i.e., pathways not targeted by any prioritized drug are omitted for better visualization).
Prioritized drugs for each cancer dataset have been clustered based on the pathways they target and are reported on the Y axis. Of the
prioritized drugs, those that correspond to true positives are highlighted in bold. If a set of three or more similar pathways was clustered
together, we manually assigned these pathways into distinct classes (Y axis) Pathway names and cluster information are available as a
Supplementary File and the equivalent figures for DrugBank are available as Supplementary Figs. 2–4.

S. Golriz Khatami et al.

4

npj Systems Biology and Applications (2021)    40 Published in partnership with the Systems Biology Institute



trametinib and cobimetinib. Finally, we found that while some
drugs were able to change the predictions by targeting only a
limited number of pathways (e.g., fludarabine in breast cancer and
liver cancer), other drugs could change predictions by targeting
several pathways (e.g., tretinoin in prostate cancer and trametinib
in liver cancer).
Among the most commonly targeted pathways by the

prioritized drugs in liver carcinoma, we found Ras/Raf/MAPK and
PI3K/AKT/mTOR signaling, both of which have been reported to
play important roles in the development of this type of cancer.34

One of the prioritized drugs, sorafenib, is a multi-kinase inhibitor
that targets several kinases including RFA1, PDGFR, and FLT3,
which are involved in both tumor proliferation and angiogen-
esis.35,36 Sorafenib has been shown to inhibit tumor cell
proliferation by blocking the Ras/Raf/MAPK pathway and to
inhibit angiogenesis by blocking PDGFR signaling37 (Supplemen-
tary Table 15).

Prioritizing combination therapies
Combination therapies are widely used for treating indications
like cancer as they can often lead to the inhibition of the
compensatory signaling pathways that maintain the growth and
survival of tumor cells. Here, we demonstrate how our
methodology can be extended to predict the effects of a
combination of drugs. To reduce the computational complexity
associated with running our methodology on all possible
combinations of drug pairs from both drug-target datasets (i.e.,
DrugBank and DrugCentral), we exclusively applied our method
on all possible pairs from the set of prioritized drugs. Table 2 lists
a subset of combinations of prioritized drugs, alongside the
proportion of patients that they reclassify as normal (i.e.,
proportion of treated patients).
For two of the three test datasets (i.e, LIHC and PRAD), nearly all

drug pairs yielded better results (i.e., larger proportion of disease
samples predicted as normal) than the use of a single drug alone.
In the BRCA dataset, however, multiple combinations yielded
worse results than those observed with single drug therapy. For
example, the combination of bromocriptine with valproic acid
decreased the proportion of treated patients from 80% to <10%.
Specifically, bromocriptine is an adrenergic receptor agonist that
stimulates the beta-adrenergic signaling pathway, which in turn
prompts tumor angiogenesis and cancer development.38 Similarly,
valproic acid is a histone deacetylase which also induces beta-
adrenergic signaling, thus promoting cancer progression.39 There-
fore, the combination of these two drugs not only fails to treat the
cancer, but may in fact lead to the worsening of the condition.

DISCUSSION
Here, we have presented a powerful machine learning framework
to simulate drug responses for applications in drug discovery and
precision medicine. We demonstrate our methodology on four
different cancer datasets and two independent drug-target
datasets by using patient-specific pathway signatures to train
highly predictive models which we use as a proxy for drug
candidate identification. Across all datasets, our results yielded a
larger proportion of FDA-approved drugs as well as drugs

investigated in clinical trials than six comparable approaches for
the indications we studied, suggesting that other drugs prioritized
by our methodology may also represent promising candidates for
repurposing. In addition, in contrast to the other methodologies,
our approach is able to prioritize drugs for individual patients,
making it suitable for precision medicine applications. Finally, we
also show how our methodology can be applied to propose drug
combinations as well as to reveal sets of dysregulated pathways
that could be used as possible targets.
Currently, there exist several limitations to this study; first,

although our scoring algorithm used to simulate drug response
has been shown to yield promising results in the four datasets
analyzed, other scoring algorithms may be better suited for
different datasets and/or applications. For instance, we could tailor
the current scoring algorithm for drug discovery to learn pathway
signatures from approved drugs and use these drugs to prioritize
candidates that exhibit similar patterns of activity. Second,
although we recommend the selection of weights following a
similar logic to the one we have presented here (i.e., assigning
larger weights to the quartile containing the most dysregulated
pathways and lower weights for others), it may be the case that
weights must be tuned for other datasets to yield promising
candidates. Third, since our methodology relies on pathway
signatures derived from transcriptomics data, it is inherently
limited to indications where this modality is highly predictive. In
other words, pathway activity scores must be readily separable
between disease and normal samples in the disease we
investigate as we require highly predictive models that can
guarantee the change in the predicted class label is exclusively
caused by the drug simulation step and not by the lack of
accuracy of the model. Thus, it would be less effective in
indications where transcriptomics have limited prediction power
to discriminate between normal and disease samples, such as
Parkinson’s disease.40 Finally, while we have demonstrated our
approach with a commonly used sample-wise enrichment
method, ssGSEA does not take network topology into considera-
tion. Thus, in the future, other enrichment methods that leverage
the topological information of pathways can be used to generate
the pathway activity scores used by our algorithm.
Beyond this proof-of-concept, our methodology can be

extended to include several additional functionalities. For instance,
drug administration could be simulated in an ML model that takes
into consideration temporal dimensions (e.g., event-based mod-
els,41 survival analysis42). Furthermore, in this paper we trained a
simple ML model, nonetheless, the same strategy could be applied
to more complex ML or AI models. Since the elastic net penalty
encourages sparsity, one may also use the coefficients of an ML
model as a preliminary method of filtering for significant features.
To save time, the total set of drug candidates can be subset to only
those which directly affect the features that significantly affect the
prediction capabilities of the model. In addition, we restricted our
analysis to a single pathway database as it was sufficient to deploy
a predictive ML model for the specific classification task we
presented. However, by incorporating pathway information from
other databases into the ML model, we can increase the total
number and coverage of pathways to potentially reveal additional
pathway targets. Similarly, the use of different drug-target
databases such as ExCAPE-DB43 could broaden the chemical space
and lead to the identification of new candidates. By combining
brute-force and reverse engineering approaches, one can also
identify the most effective pathway scores a drug should target for
any given indication; thus, tailoring the presented methodology
towards drug discovery. Finally, due to limited data for all possible
responses a given patient could have to a particular drug in large
cohorts, we relied upon classic drug repurposing validation
strategies to demonstrate the efficacy of our approach. However,
with enough training data, our methodology could be deployed to

Table 2. Examples of predicted combination therapies.

Cancer type Drug 1 Drug 2 Proportion of
responders (%)

Reference

Liver cancer Sorafenib Trametinib 87% 53

Liver cancer Erlotinib Sorafenib 87% 54

Breast cancer Vorinostat Capecitabine 88% 55
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support clinical decision-making in personalized medicine by
simulating the effect of drugs on individual patients.

MATERIALS AND METHODS
The initial step of our methodology consists of generating patient-specific
features that can be used for model training. Although in this work, we
employed pathway activity scores (see subsection “Calculating individua-
lized pathway activity scores”), other features could also be used for the
same purpose. Using these scores, we trained an ML model (subsection
“Building a predictive classifier”) that can accurately discriminate between
sample classes (e.g., disease vs normal). Next, we developed a scoring
algorithm aimed to simulate the effect of a drug intervention at the
pathway-level by modifying the pathway activity scores of disease samples
(subsection “Scoring algorithm”). Then, the method uses the modified
pathway activity scores as an input in the trained model to assess whether
samples that were previously classified as “diseased” could now be
classified as “normal” as a proxy for drug candidates (Subsection “Drug
response prediction and prioritization”). Then we validate and evaluate our
approach by presenting the datasets used for our case scenario and
comparing our methodology against six equivalent approaches. Finally, we
provide details on the implementation.

Datasets
Datasets from The Cancer Genome Atlas (TCGA)44 were retrieved from the
Genomic Data Commons (GDC; https://gdc.cancer.gov) portal through the
R/Bioconductor package, TCGAbiolinks (version 2.16.3;45) on 04-08-2020
(Fig. 1d). Gene expression data from RNA-Seq was quantified using the
HTSeq and raw read counts were normalized using Fragments Per Kilobase
of transcript per Million mapped reads upper quartile (FPKM-UQ). Gene
identifiers were mapped to HUGO Gene Nomenclature Committee (HGNC)
symbols where possible. The datasets downloaded include The Cancer
Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA), The Cancer
Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD), The Cancer
Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC), and The
Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC)
(Supplementary Table 16). We would like to note that due to the design of
our methodology, we required the datasets to have a large sample size to
conduct the hyperparameter optimization of the ML model and the cross
validation strategy described below.

Calculating individualized pathway activity scores
We used single-sample GSEA (ssGSEA),46 a commonly used tool to
generate patient-specific pathway activity scores. Normalized gene
expression (FPKM-UQ) and pathway definitions (i.e., gene sets) were
provided as input and were converted to scores through ssGSEA
(Supplementary Table 17; Supplementary Fig. 5). As a reference database,
we used 337 pathways from KEGG (downloaded on 01-04-2020) as it is the
most widely used pathway database and a standard for the most
commonly used pathway activity scoring methods18 (Fig. 1d).

Building a predictive classifier
Patient-specific pathway activity scores generated by ssGSEA were used to
generate a ML classifier to distinguish between normal and tumor sample
labels for each of the four datasets. The classification was conducted using
an elastic net penalized logistic regression model47 as regularized models
have been shown to be generally well suited for -omics data which
typically contains a disproportionate number of features to samples, and
specifically well suited for these datasets.21 Furthermore, we previously
used this ML model on the same TCGA datasets,19 yielding AUC-ROC and
AUC-PR values close to 1 (Supplementary Fig. 6), in line with Mubeen et al.
(2019). Prediction performance was evaluated via 10 times repeated 10-
fold stratified cross-validation and tuning of elastic net hyper-parameters
(i.e., l1, l2 regularization parameters) via grid search was performed within
the cross-validation loop to avoid over-optimism.48

Scoring algorithm
To modify the pathway activity scores for disease samples, we developed
a scoring algorithm to replicate the effect of a drug at the pathway-level.
The scoring algorithm exploits interactions from drug-target datasets to
modify the activity scores of pathways containing the target(s) of a drug

(see example in Supplementary Fig. 10). We describe the scoring
algorithm in Box 1.
For each drug-pathway association, the pathway is assigned an effect

score ES which is equivalent to a drug’s effect on a protein target coming
from drug-target datasets (i.e., activation and inhibition relationships given
+1 and −1 labels, respectively). For pathways that contain multiple protein
targets, the ES is equivalent to the mean of these effects (e.g., if a drug
activates a protein in a pathway but also inhibits a second protein in the
same pathway, the overall effect of the drug on the pathway (ES) would be
0). The absolute values of the mean differences between healthy and
disease groups are calculated for each pathway μH-D(p) while their quartiles
are then computed on line 2. Then, from lines 3–12, for each disease sample,
if the ES of a pathway p is less than or greater than 0, the scoring algorithm
calculates a calibration score CS as the product of the absolute value of the
original pathway activity score PAS, the weight w, and the effect of the drug
on the pathway sgn(p) (i.e., −1, 0 or 1). We assign w based on the quartile
μH-D(p) pathway p falls into. For pathways with larger mean differences
between groups, weights are assigned greater values, while pathways with
smaller differences are weighted less (see example in Supplementary Text 1).
On lines 13–14, if the ES of a pathway p is 0, the CS is assigned the value of
the original PAS. Finally, on line 15, the CS is returned as a score that
simulates the effect of a drug on a pathway for a disease sample.

Drug response prediction and prioritization
The methodology then aims at identifying drug candidates based on the
predicted response of a patient to the simulated drug treatment. To do so,
we input the modified features generated by the scoring algorithm
in the trained ML model and re-evaluate the new class assignment
of the patient.
Since the ML model has learnt to accurately differentiate between

normal and disease samples, we expect that if a drug fails to affect a set of
relevant pathways, the labels of the disease samples would remain
unchanged. However, if the drug were to target a set of pathways
dysregulated in a disease, we expect that the scoring algorithm could
modify the scores so that they resemble those observed in control

Box 1 Scoring algorithm pseudocode. The pseudocode
outlines the scoring algorithm used to modify the pathway
activity scores of a given patient

Scoring Algorithm
Require:

Set of pathways containing the protein target(s) of the drug, Pjp 2 Pf g
Set of samples, Sjs 2 Sf g
Set of healthy and disease samples, H;DjH;D 2 Sj8h 2 H; d 2 Df g
Set of target labels, T jt 2 Tf g
Array consisting of effect scores for all pathways,

fESjES pð Þ 2 ES; ES pð Þ ¼ 1
N

XN

j¼0

tj pð Þg

Where, N is the number of targets that are affected by a drug in pathway p
Matrix consisting of original pathway activity scores for disease samples, PAS
Array consisting of the absolute values of mean differences between
sample groups for each p, μH�D ¼ μH � μDj j

1: function SCORING_FUNCTION D; P; ES; PAS; μH�Dð Þ
2: Compute quartiles, Q1;Q2;Q3, for all values of μH�D
3: for all d 2 D do
4: for all p 2 P do

5: sgn pð Þ :¼
�1 if ES pð Þ< 0;
0 if ES pð Þ ¼ 0;
1 if ES pð Þ> 0:

8
<

:

6: if ES≠ 0 then
7: if μH�D pð Þ 2 Q3;þ1ð Þ then
8: CS p; dð Þ ¼ PAS p; dð Þj j � w1 � sgn pð Þð Þ
9: else if μH�D pð Þ 2 jQ2;Q3j then
10: CS p; dð Þ ¼ jPAS p; dð Þj � w2 � sgn pð Þð Þ
11: else
12: CS p; dð Þ ¼ jPAS p; dð Þj � w3 � sgn pð Þð Þ
13: else
14: CS p; dð Þ ¼ PAS p; dð Þ

) CS, Matrix consisting of calibrated pathway scores after drug treatment
15: return CS
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samples. Thus, by inputting these modified scores into the trained ML
model, we can assess whether disease samples can now be classified as
normal. Finally, after re-evaluating the predictions made by the ML model,
we can rank promising drugs by the proportion of disease samples that are
classified as normal as a proxy of the effectiveness of the drug.

Validation and robustness analysis
Here, we outline the robustness experiments conducted to assess the
ability of our methodology to identify drugs which are already FDA-
approved or have been tested in clinical trials for each of the four cancer
types (i.e., TCGA datasets).
First, to simulate drug treatment using the scoring algorithm described

in Box 1, we used two different drug-target datasets: DrugBank (version
5.1.6)49 and DrugCentral (version 9.18.2020).50 For each of the datasets, we
mapped drugs to DrugBank identifiers and protein targets to HGNC
symbols. In total, we retrieved 1346 unique drugs and 4673 drug-target
interactions from DrugBank and 638 unique drugs and 1481 drug-target
interactions from DrugCentral. Here, we would like to note that both
datasets are largely overlapping (Supplementary Fig. 11). We then used
these drug-target interactions as the input to our methodology to simulate
patient treatments (Fig. 1e).
For validation purposes, we used two ground-truth lists containing drug-

disease pairs as true positives to verify the predictions made by our
methodology (Fig. 1f). The first ground-truth list contained FDA-approved
drugs for the four cancer types manually retrieved from the National
Cancer Institute (https://www.cancer.gov/about-cancer/treatment/drugs/
cancer-type) which we mapped to the two drug-target datasets previously
described. The second ground-truth list contained drugs investigated in
clinical trials for the four cancer datasets retrieved from the ClinicalTrials.
gov website (downloaded on 16.04.2020). Table 3 lists the number of
approved and clinically tested drugs present in both drug-target datasets
across the four investigated cancers.
As validation, both ground-truth lists were compared against the list

of prioritized drugs that, according to our methodology, changed the
predictions of 80% of the patients and subsequently classified them as
normal. This threshold was selected as there were no drugs that
changed the prediction for 90% or more of the patients with the
parameters used by our scoring algorithm (Supplementary Figs. 7, 8). In
addition, we would like to note that the vast majority of the drugs do
not change the predictions for most patients. Thus, we were exclusively
interested in assessing the ability of our approach to recover true
positives (i.e., positive predictive value) from the list of prioritized drugs.
However, since our methodology aims to prioritize drug candidates, it
suffers from an early retrieval problem.51 Furthermore, only a small
minority of drugs from the drug-target datasets can be used as positive
labels for each of the indications, while the majority of drugs are not
known to have therapeutic benefits for them, thus, creating a large
imbalance between positive and negative labels. Due to these
reasons, we maintain that the evaluation strategy we present is
more suitable than other conventional metrics such as the receiver
operating characteristic (ROC) curves.
To identify a set of weights for the three quartiles (i.e., Q1, Q2 and Q3 (see

Box 1)) that perform well in three cancer test datasets, we followed a
similar strategy to26 where we tested different weight combinations with
the intention of assigning larger weights to pathways with significantly
higher dysregulations between disease and normal samples. We would like
to note that the purpose of using weights in the algorithm was to modify
the pathway activity scores of the few but relevant pathways targeted by
the drug while maintaining the underlying distribution of pathway scores

(Supplementary Fig. 9). We performed the drug simulation and conducted
this parameter optimization independently on the three cancer test
datasets on DrugBank, the first of two drug-target datasets. Consequently,
we found a set of weights (i.e., W1= 20, W2= 5, and W3= 10 for Q3 (the
upper quartile representing the most dysregulated pathways), Q2 (middle
quartile), and Q1 (lower quartile), respectively), that yielded both a large
proportion of true positives among the prioritized drugs and also
performed better than any of the six methods we compared our
methodology against, as described below. Finally, we validated whether
this same set of weights could also yield a large proportion of true
positives on the second drug-target dataset (i.e., DrugCentral) as well as
the fourth cancer dataset (i.e, KIRC).
To test the robustness of our methodology, we replicated our

experiments by generating one hundred sets of 1346 drugs (the size of
the DrugBank dataset) where each drug was assigned to a randomly
selected protein target (from the set of all HGNC symbols) with a random
causal effect following the same distribution as the original dataset (i.e.,
activation or inhibition). Next, we compared the number of drugs prioritized
by these permutation experiments against the number of drugs prioritized
by our methodology for the DrugBank dataset in the three cancer test
datasets. Since we use a method to generate pathway activity scores that
ignores network topology (i.e., ssGSEA), we did not conduct a robustness
analysis that focused on perturbing pathway networks.

Performance comparison against equivalent drug-
repurposing approaches
To evaluate our methodology, we compared it to six similar approaches
that also employ transcriptomics data and pathway information to
repurpose drugs on the BRCA and PRAD datasets25,26 (note that the LIHC
dataset is not included in their analyses). In the first of the two studies,25

evaluated the ability of their methodology and four additional approaches
to predict known drugs (i.e., FDA-approved or in advanced clinical trials)
for breast and prostate cancer. Similarly,26 reported the ability of their
approach to identify FDA-approved drugs on the same datasets. We were
thus able to directly compare the proportion of true positives that were
recovered by other approaches as reported in the aforementioned studies
against the proportion recovered by our approach.

Implementation
We performed ssGSEA with the Python package, GSEApy (version 0.9.12;
https://github.com/zqfang/gseapy) and generated the ML models using
scikit-learn.52 We would like to note that ssGSEA does not take the
topology of the pathways into account.

DATA AVAILABILITY
Data used in this manuscript are available at https://github.com/sepehrgolriz/
simdrugs under the Apache 2.0 License.

CODE AVAILABILITY
Source code used in this manuscript is available at https://github.com/sepehrgolriz/
simdrugs under the Apache 2.0 License.

Received: 2 April 2021; Accepted: 21 September 2021;

Table 3. Number of FDA-approved and clinically tested drugs present in both drug-target datasets across the four investigated cancers.

Dataset DrugBank Approved DrugBank Clinical trials DrugCentral Approved DrugCentral Clinical trials

BRCA 26/1346 (1.93%) 182/1346 (13.52%) 14/638 (2.19%) 115/638 (18.02%)

LIHC 5/1346 (0.37%) 50/1346 (3.71%) 1/638 (0.16%) 35/638 (5.49%)

PRAD 13/1346 (0.97%) 134/1346 (9.96%) 7/638 (1.10%) 84/638 (13.17%)

KIRC 8/1346 (0.60%) 44/1346 (3.26%) 3/638 (0.47%) 25/638 (3.91%)

The percentage for the number of FDA-approved/clinically investigated drugs for each cancer type over the total number of drugs present in the drug-target
dataset is reported between parentheses.
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