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The FLAME-accelerated signalling tool (FaST) for facile
parallelisation of flexible agent-based models of cell signalling
Gavin Fullstone1,2✉, Cristiano Guttà1, Amatus Beyer1 and Markus Rehm 1,2✉

Agent-based modelling is particularly adept at modelling complex features of cell signalling pathways, where heterogeneity,
stochastic and spatial effects are important, thus increasing our understanding of decision processes in biology in such scenarios.
However, agent-based modelling often is computationally prohibitive to implement. Parallel computing, either on central
processing units (CPUs) or graphical processing units (GPUs), can provide a means to improve computational feasibility of agent-
based applications but generally requires specialist coding knowledge and extensive optimisation. In this paper, we address these
challenges through the development and implementation of the FLAME-accelerated signalling tool (FaST), a software that permits
easy creation and parallelisation of agent-based models of cell signalling, on CPUs or GPUs. FaST incorporates validated new agent-
based methods, for accurate modelling of reaction kinetics and, as proof of concept, successfully converted an ordinary differential
equation (ODE) model of apoptosis execution into an agent-based model. We finally parallelised this model through FaST on CPUs
and GPUs resulting in an increase in performance of 5.8× (16 CPUs) and 53.9×, respectively. The FaST takes advantage of the
communicating X-machine approach used by FLAME and FLAME GPU to allow easy alteration or addition of functionality to parallel
applications, but still includes inherent parallelisation optimisation. The FaST, therefore, represents a new and innovative tool to
easily create and parallelise bespoke, robust, agent-based models of cell signalling.
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INTRODUCTION
Cellular signalling is essential in translating extrinsic and/or
intrinsic chemical and physical stimuli into diverse cell responses
such as proliferation, cell migration or cell death. The duration of
stimuli, concentration of stimuli, concentration of signalling
components, the reaction kinetics in signalling pathways and
subcellular localisation of components can drastically affect
downstream outcomes of cell signalling pathways. Moreover,
cell-signalling pathways, typically, are highly complex with
redundancy, cross-talk between different signals and numerous
levels of regulation complicating our understanding of how
cellular decisions are made. Systems biology approaches have
increasingly been used to better understand and predict out-
comes from cell signalling processes1,2. The most commonly used
approach is ordinary differential equation (ODE) modelling that
uses a series of differential equations to define how the
concentrations of reactants change over time. This has been used
effectively to describe a number of cell signalling pathways,
including the NFκB pathway3,4, the intrinsic apoptosis pathway5–7

and the cell cycle8. However, biological systems are characterised
by, complex structural organisation, a great level of heterogeneity
and physical phenomena, such as molecular crowding, that are
not adequately included in ODE models. Furthermore, stochastic
effects in biological settings can have profound knock-on effects
on cell signalling outcomes9,10. A variety of methods have been
developed to better implement stochastic and spatial information
in computational models with many methods being implemen-
table by rule-based modelling platforms such as BioNetGen11,
Kappa12 and PySB13 for standardised, user-friendly deployment
(summarised in Table 1). However, improved methods are
required for deeper understanding of how complex events at

the individual molecule scale underlie system level effects in cell
signalling.
Agent-based modelling (ABM) is a type of bottom up systems

modelling that has recently gained popularity in the study of cell
signalling pathways and other biological processes14. ABM of cell
signalling models behaviour of individual particles and their
interactions. ABM is a powerful tool for modelling cell signalling as
complex geometry is easily included and behaviour is naturally
stochastic. However, ABM is computationally prohibitive, as the
actions and interactions of potentially millions of individual
signalling molecules over considerable periods of times must be
considered. Furthermore, for ABM to be truly reflective of the
modelled system it should be able to robustly model reaction
kinetics. A number of ABM methods have been applied to cellular
signalling previously, also giving rise to formal simulators such as
Smoldyn, eGFRD, ChemCell and MCell12,15–20. These simulators
offer highly robust and user-intuitive ABM of cell signalling
pathways but still contain limits in scale-up of simulations, as well
as, flexibility in their manipulation beyond the inbuilt functionality.
Parallel computing, the distribution of computational work

across multiple central processor units (CPUs) or on graphical
processing units (GPUs), offers the possibility to improve scale up
of ABM simulations. FLAME (Flexible Large-scale Agent-based
Modelling Environment) and FLAME GPU are generalised ABM
platforms that are used to create ABM applications that can be
easily parallelised on CPUs and GPUs, respectively. FLAME and
FLAME GPU use a communicating X-machine approach to
parallelisation, where the user declares discrete functions with
input and output communication messages in an X-machine
Markup Language (XMML) file and then the functions are declared
in C. This allows FLAME and FLAME GPU to build the discrete
functions into a parallel model therefore removing the necessity
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of user knowledge of message passing interface (MPI) or CUDA
coding, respectively21,22. Furthermore, they contain intrinsic
parallelisation optimisation, even when including new function-
ality (for a short summary of FLAME’s approach to parallelisation,
see Supplementary Note 1, for a full technical report of FLAME’s
and FLAME GPU’s approaches to parallelisation, see the reports
in21,22).
In this paper we establish and validate new methods for

accurate ABM of cell signalling. We implement these methods into
the FaST (FLAME-accelerated Signalling Tool), which creates ABM
models from reaction networks that can be easily customised and
parallelised on CPUs or GPUs using FLAME and FLAME GPU. We
then demonstrate that this tool can convert a previously
established ODE model of apoptosis execution into an ABM
simulation that reliably reproduces the kinetics of the original ODE
model. Moreover, the performance of this simulation could be
vastly improved by CPU parallelisation and GPU-acceleration.

RESULTS
Simulation of the random walk
In order to establish methods for ABM of cell signalling, we started
by focusing on the movement of individual molecules within
suspension. Particles in suspension undergo Brownian motion, a
random walk caused by collisions with molecules of the solvent23.
This can be simulated by implementing the polar form of the Box-
Muller transformation of uniformly distributed random numbers
into normally distributed random numbers24,25. These are then
scaled to fit the Gaussian distribution for the change in x, y or z
(Δx, Δy, Δz):

f ðΔxÞ � 1

σ
ffiffiffiffiffiffi
2π

p e�
Δx2

2σ2 (1)

where σ is calculated from the translational diffusion coefficient DT

in m2·s−1 and the time step Δt in s:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DTΔt

p
(2)

as demonstrated previously15,26. Three particles, with diffusion
coefficients of 1 μm2·s−1, 5 μm2·s−1, and 10 μm2·s−1, reflective of
diffusion coefficients of proteins in biological membranes and
under molecular crowding27–29, were simulated for 5 min and the
3D traces are shown in Fig. 1a. The implementation of Brownian
motion was assessed using the mean squared displacement

(MSD):

MSD ¼
XΔx2 þ Δy2 þ Δz2

t
(3)

which is related to the diffusion coefficient, such that:

MSD ¼ λDT (4)

where λ is a constant of dimensionality equal to 2, 4 or 6 for 1D, 2D
and 3D, respectively. The observed MSD was compared to the
expected MSD calculated with Eq. 4 in Fig. 1b. The observed MSD
shows excellent agreement with the expected MSD over the
5minute simulation with observed diffusion coefficients calcu-
lated from Eq. 4 of 1.00 μm2·s−1, 4.99 μm2·s−1 and 9.99 μm2·s−1.

Simulation of first order reactions
First order reactions, such as degradation, dissociation and
catalysis, form integral parts of cell signalling pathways. Therefore,
we next set out to establish and validate methods to simulate first
order reactions by ABM. First order reactions of the forms:

A !kdeg Degraded
AB!kr Aþ B

ES!kcat ES0
can be simulated by calculating a probability P that a single
molecule will react within a single discrete time step of time Δt,
equal to:

P ¼ 1� e�kΔt (5)

A simulated molecule will react if a randomly generated
number is less than the probability calculated by Eq. 5 from its
own k value, given in s−1. The degradation of 100 nM of molecule
A, with kr values of 10−1 s−1, 10−2 s−1, 10−3 s−1, 10−4 s−1 and
10−5 s−1, was simulated by this method and compared to the
expected kinetics from the ODE rate equation:

d½A�
dt

¼ �k½A� (6)

in Fig. 1c. Figure 1c shows excellent agreement with the expected
kinetics generated from the ODE reaction with an almost exact
overlay, thus demonstrating that ABM can effectively model first
order reactions.

Table 1. Simulation methods for stochastic and spatial modelling of signalling networks.

Simulation method Software Spatial handling Temporal handling Level

Gillespie StochKit254 Well mixed Event-based Population

Reaction-diffusion URDME55 Lattice-based Discrete or event-based Population

SIMMUNE56

Spatiocyte57

Network free NFsim58 Individual molecules Event-based Individual molecule

Particle simulations Smoldyn15,16 Continuous Discrete Individual molecule

MCell21

ChemCell17

Event-based particle simulations eGFRD12 Continuous Event-based Individual molecule

Interacting particle simulator ReaDDY43 Continuous Discrete Individual molecule

LAMMPS44

ESPResSo12

G. Fullstone et al.

2

npj Systems Biology and Applications (2020)    10 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



Simulation of second order reactions
Many important biological reactions can be described by second
order reaction kinetics where two molecules react together.
Therefore, we next looked to establish and validate ABM
methodology describing second order reactions of the form:

Aþ B!kf AB:

Simulation of second order reactions of two soluble reactants
Pogson and colleagues previously described a method for ABM of
second order reactions that is valid when both reactants are freely
soluble19. A molecule of A reacts with a molecule of B if the
molecule of B ends the iteration within an interaction volume Vi
around A, calculated from the kf in M−1·s−1 and the time step Δt.
Assuming Vi is distributed as a sphere around the centre of mass
of A then the two molecules react if they end an iteration

separated by less than an interaction distance di:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kfΔt

4π103NA

3

s
(7)

where NA is Avogadro’s constant (Fig. 1d.i). Full derivation of the Vi
and di is well described and illustrated in the publication of
Pogson and co-workers.

Simulation of second order reactions of a membrane-bound
reactant and a soluble reactant
Whilst Pogson and colleagues consider reactions involving two
soluble reactants, they do not explicitly address the interaction of
a soluble reactant with a membrane-bound reactant. However,
these types of reactions are often an integral part of many cell-
signalling pathways, for example, in receptor-ligand binding.
Therefore, we next set out to extend these methods to include this

Fig. 1 Agent-based models are able to reproduce mass action kinetics. Particles with diffusion coefficients of 1 μm2·s−1 (blue), 5 μm2·s−1

(green) and 10 μm2·s−1 (red) were simulated (a) and the observed MSD was compared to the expected MSD (thick grey lines) (b). First order
reactions with k values of 10−1 s−1, 10−2 s−1, 10−3 s−1, 10−4 s−1 and 10−5 s−1 were simulated for 5min with a time step of 0.05 s by ABM (thin
lines) and compared to equivalent ODE models (thick grey lines) (c). The second order reactions of two soluble molecules (d), a soluble
molecule with a membrane-bound molecule (e) and two membrane-bound molecules (f) were simulated with ABM and the ABM:ODE Score
between the ABM simulations and equivalent ODE models were plotted for kf values of 10

4 M−1·s−1, 105 M−1·s−1, 106 M−1·s−1 and 107 M−1·s−1

and different indicated concentration ratios of A to B ([A]:[B]). Dashed lines indicate the perfect agreement between ABM and ODE of 1. All
simulations were for 5 min, the time step Δt for particle diffusion in all simulations was 0.0001 s and for reactions was 0.05 s. The diffusion
coefficients used in d–f were 30 μm2·s−1 for soluble molecules and 0.3 μm2·s−1 for membrane-bound molecules.
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type of second order reaction. In reactions involving a membrane-
bound and a soluble reactant, in most cases, the soluble reactant
is unable to freely cross the membrane. Consequently, by
assuming a sufficiently small Vi limits the impact of membrane
curvature, it can be assumed that Vi is distributed as a hemisphere
around the receptor (Fig. 1e.i). The interaction distance di for R to
react with S is therefore equal to:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kfΔt

2π103NA

3

s
(8)

Simulation of second order reactions of two membrane-bound
reactants
Membrane-bound molecules also can participate in second order
reactions, for example, in receptor clustering and dimerisation.
Therefore, we next established ABM methodology for the second
order reaction of two membrane-bound reactants. When con-
sidering the reaction of two membrane-bound molecules the
general principles are the same as for soluble interactions except
that as reactions take place on a planar membrane, molecules
have an interaction area Ai rather than an interaction volume (Fig.
1f.i). In order to hold true for receptor-receptor interactions,
receptor levels should be measured in density with units m−2 and
kf in m2·s−1 giving an interaction distance di of:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kfΔt

π103NA

s
(9)

However, in many cases concentration is still measured in M
and the kf determined using soluble forms of the membrane
protein in the units of M−1·s−1. In these situations, a modified
value kf, called kf’, can be calculated that is scaled to the surface
area to volume ratio. In internal cellular reactions this is the cell
membrane surface area Ac and the cell cytosolic volume Vc so that:

kf0 ¼ kf
AC

VC
(10)

The substitution of Eq. 10 into Eq. 9 gives the interaction
distance when kf is in the units of M−1·s−1 as:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kfACΔt

π103VCNA

s
(11)

Agent-based modelling can reproduce mass action kinetics for
second order reactions
In order to validate that these methods for ABM of second-order
reactions are capable of reproducing mass action kinetics, we
conducted a series of simulations by ABM for all three methods
and compared these to equivalent ODE models. The rate
equations used were:

d½A�
dt

¼ �kf ½A�½B� (12)

d½B�
dt

¼ �kf ½A�½B� (13)

d½AB�
dt

¼ kf ½A�½B� (14)

with different kf values (104 M−1·s−1, 105 M−1·s−1, 106 M−1·s−1,
107 M−1·s−1) and different ratios of reactants. The progress of each
reaction was plotted against time for soluble-soluble (Supplemen-
tary Fig. 1), membrane-soluble (Supplementary Fig. 2) and
membrane-membrane reactions (Supplementary Fig. 3). These
figures show a good overlay of the ABM over the ODE curves for
each of the second order reaction methods described across a range

of different conditions. We then went further in numerically
assessing the accuracy of each individual ABM simulation by taking
the ratio of the concentration of the product, AB, in ABM simulations
([AB(t)]ABM) against the concentration in ODE simulations ([AB(t)]ODE)
at individual time points ([AB(t)]ABM:[AB(t)]ODE). We did this every
0.05 s for 5min, or until reaction completion, and then calculated
the average ratio (ABM:ODE Score) as a score with an idealised value
of 1 representing perfect agreement. Each reaction was repeated
in three independent ABM simulations and the calculated ABM:ODE
Scores were plotted in Fig. 1d.ii, 1e.ii, and 1f.ii for two soluble
reactants, a membrane-bound to a soluble reactant and two
membrane-bound reactants reactions, respectively.
The data in Fig. 1d–f show good agreement between the ABM

and ODE with all mean values centred on, or proximal, to the
perfect agreement ratio of 1. When the reaction is slower, due to
the low kf value and low levels of reactants, the amount of noise
increases due to natural stochastic effects having greater weight
relative to the mean. However, the mean values still demonstrate
excellent agreement with the ODE even under these conditions. It
may be expected that when the binding interaction distance and
concentration of reactants is high that these methods will
undervalue the reaction kinetics because of the increasing
probability of multiple substrates falling within the interaction
distance in a single iteration. In these cases, a decision is made on
which substrate to bind based on proximity. The risk of this can be
minimised by reducing the time step accounting for the kf and
concentration of reactants. In this section we have shown new
ABM methods and demonstrated that they are able to reproduce
second-order reaction kinetics successfully across a wide range of
scenarios.

Simulation of reversible reactions
Reversible reactions form an integral part of many cell-signalling
pathways, with dynamic forward and reverse reactions occurring
simultaneously even in steady-state conditions. The combination
of the methods described above for the different forward and
reverse reactions can be combined together to give reversible
reactions. However, when using a second order forward reaction,
as reactions occur according to proximity, this can lead to a
problem where two molecules are highly to react immediately
after their dissociation, a phenomenon termed as germinate
recombination in the work of Andrews and Bray15. We limit this
effect by the introduction of an unbinding distance du equal to:

du ¼ 4di (15)

The unbinding distance is an arbitrary distance used to separate
two reactive molecules after dissociation, thus preventing their
immediate reassociation. Therefore, by combining this with the
second order reaction and first order reaction methodology
presented previously, we can model reversible reactions by ABM.

Integration into the FLAME-accelerated signalling tool
Cell signalling networks involve complex networks of many
reactants and reactions occurring simultaneously. Therefore, once
we established and validated the methods described in the
previous section we set out to create a tool for the facile writing of
complex cell signalling networks as ABM simulations compatible
with FLAME and FLAME GPU. The FaST is a Matlab-encoded tool
fronted with a graphical user interface. It requires two text input
files, one containing agent properties and the other containing
reaction properties. The agent input file lists the agent name, its
cellular localisation, diffusion coefficient and concentration. The
reaction input file lists the reactants and products involved in each
reaction, the type of reaction and the reaction constants. The
FLAME-accelerated Signalling Tool produces FLAME and FLAME
GPU simulation code from these input files along with associated
tools for data retrieval and initial state generation. Furthermore,
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the FaST has the option to produce an equivalent ODE model for
direct comparison between ABM and ODE simulations. The codes
can be compiled as they are for CPUs or GPUs. However, they can
also be easily modified to create new bespoke ABM codes for
parallelisation on CPUs or GPUs, taking advantage of the inherent
parallelisation optimisation in FLAME and FLAME GPU (Fig. 2).
Example input files and the tool itself is provided in source and
cost-free binary format (for windows, mac and linux) through the
Zenodo platform30.

The FLAME-accelerated signalling tool is able to convert ODE
models into agent-based models
In order to test the applicability of the FaST to modelling cell-
signalling processes, we used it to convert a modified form of a
previously well-characterised ODE model of apoptosis execution
signalling into an ABM model7. In apoptosis execution signalling,
upstream death signals lead to mitochondrial outer membrane
permeabilisation (MOMP). This permeabilisation allows the release
of the mitochondrial located proteins cytochrome c and Second
Mitochondria-derived Activator of Caspases (SMAC). These two
proteins activate a signalling cascade that results in apoptosis. This
signalling requires the formation of a protein complex called the
apoptosome31,32. This complex is used as a platform for the
activation of the inactive precursor of the initiator caspase, pro-
caspase 9 (PC9), into caspase 9 (C9), which in turn activates the
inactive precursor of the executioner caspase, pro-caspase 3 (PC3),
into the active caspase 3 (C3). C3 then cleaves numerous
downstream substrates that invoke apoptosis, but can also cleave
C931–34. This process is inhibited by the actions of X-linked
Inhibitor of Apoptosis Protein (XIAP), which binds, inhibits and
promotes ubiquitin-mediated degradation of the active form of C3
and C935–38. However, XIAP is unable to bind and inhibit C3-
cleaved C9 (C9P) creating a positive-feed back loop. The actions of
XIAP are countered by SMAC, which, after its release from the
mitochondria, binds XIAP and actively breaks up caspase-XIAP
complexes39–42. The reaction network consists of 14 protein/
protein complexes and 23 individual reactions (Fig. 3a). Full details
of the model, including starting concentrations, reactions, reaction
kinetics and diffusion coefficients are summarised in the
Supplementary Note 2 and Supplementary Tables 1 and 2. The
model was placed into the setup text files required by the FaST,
which are also included with FaST. The FaST was then used to
make the ABM simulations for both FLAME and FLAME GPU.
The ABM simulations were run with >20,000 agents and the

progression of the reactions were compared, over 30 min, against

the ODE model. The apoptosis execution model culminates with
the cleavage of a substrate of C3, to reflect the C3-mediated
cleavage of an experimental Förster Resonance Energy Transfer
(FRET) probe. The cleavage of this substrate showed excellent
agreement between the ODE and ABM simulations with an R2 >
0.999 (Fig. 3b). We further investigated the dynamics of the
apoptosis execution pathway by comparing time-course concen-
tration changes of intermediates and visualisation of individual
molecules over time (Fig. 4). The activity of C9, C3 and the XIAP-
SMAC regulatory axis in the ODE and ABM simulations is
compared in Fig. 4a, b, c, respectively. All complexes within the
ABM simulation show excellent agreement with the ODE
simulation, demonstrating that the ABM methods used in the
FaST can indeed reproduce mass action kinetics of ODE
simulations whilst including complex spatial information. Impor-
tantly, whilst the ABM simulations recreated mass action kinetics,
they also included stochasticity, as evidenced by the observable
variation in Fig. 4a, b, c. Taken together, this demonstrates scope
for wider application of FaST where stochasticity and spatial
information play a fundamental role in cellular signalling dynamics
such as in cases of low reactant concentrations, compartmenta-
lisation and subcellular localisation.

The FLAME-accelerated signalling tool can improve ABM
performance by parallelisation
As the relatively poor performance of ABM simulations is the
major drawback of ABM compared to other methods such as ODE,
SDE or PDE models, we next looked at whether the use of GPU
and CPU parallelisation could improve the speed of ABM
simulations. We took the GPU and CPU versions of the apoptosis
execution model and ran the simulation under the same
conditions but on a GPU or on 1, 4, 6, 8, 12 or 16 CPUs in parallel,
connected by 4× FDR InfiniBand interconnect. To benchmark the
relative performance of FaST against other ABM software, we
simulated the same apoptosis execution pathway using the
established ABM-simulator MCell. The total run time, in hours, for
each simulation is displayed in Fig. 5. The parallelisation of the
ABM simulation on both GPUs and CPUs improved the runtime of
the simulations compared to running on a CPU in serial with a
speed up of 53.8× for GPU-acceleration and 5.8× for parallelisation
across 16-CPUs. Whilst the simulator MCell had improved serial
performance compared to FaST, it performed orders of magnitude
slower than CPU-parallelised or GPU-parallelised FaST simulations.
The speed up efficiency of CPU parallelisation can be calculated
from the observed and theoretical speed up, for our ABM
simulation this ranged from 37% (16-cores) to 90% (6-cores).
Parallelisation efficiency decreased as more CPUs were added but
this change was gradual suggesting that the addition of further
CPUs would further increase speed up. Most notably, however, the
GPU-accelerated version reduced the run time to under 3 h.

DISCUSSION
ABM is a powerful method for modelling cellular signalling as it
can include stochastic effects, heterogeneity and spatiotemporal
organisation. The major challenges in ABM of cellular signalling is
in increasing the scale of simulations, decreasing the time taken
for simulation and producing robust accurate modelling of
biological systems. The FaST, described and tested in this paper,
is software that is able to produce ABM codes that robustly model
biological systems and are parallelisable on GPUs or CPUs, thus
addressing these limitations in ABM.
We extended previously established methods for ABM of cell

signalling and validated their potential to reproduce mass action
kinetics under a wide range of conditions19. Importantly, we
validated these methods based on conditions where reactants
were evenly distributed, a key assumption of mass action kinetics

Fig. 2 Schematic of the FLAME-accelerated signalling tool. The
Agents Input File includes information on the localisation, concentra-
tion and diffusion coefficient of the agents in the system. The
Reactions Input File includes the reaction, reaction type and reaction
kinetic data. The FaST then generates ABM files compatible with
FLAME and FLAME GPU, as well as an ODE model. FLAME and
FLAME GPU then convert these into ABM executable models using
the appropriate compilation tools. Furthermore, the user can also
modify the core ABM code and add new functions, but still easily
parallelise their bespoke ABM simulation code using FLAME or
FLAME GPU.
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used in ODE models. However, the added spatial component in
ABM, evident in Fig. 4, provides greater scope to extend the
application of FaST to more complex geometries and include
uneven distribution of reactants, potentially giving rise to
emergent behaviour not available through ODE-based simulation.
These methods, based on the previous work of Pogson and
colleagues, are similar in concept to those used in formal agent-
based modelling software, such as Smoldyn, Chemcell and MCell,
but operate at considerably longer time steps, therefore decreas-
ing the amount of overall computation. Previously, it has been
reported that the methods of Pogson and colleagues may not be
able to reproduce kinetics observed under diffusion-limited,
crowded or compartmentalised microenvironments19,20. We did
not observe this effect in this paper (Figs. 1, 3 and 4) or in further
testing, this is possibly due to the diffusion coefficients used in this
paper and/or the simple geometry of the testing environment. In
cases of crowded and compartmentalised environments, the
accuracy of simulations can be increased by reducing the time
step according to the expected concentration of reactants, kinetic
rates, diffusion rates and geometry (a more detailed discussion
about choosing a time step for FaST is provided in the
Supplementary Note 3). In circumstances where diffusion-limited
behaviour becomes problematic, alternative particle-based solvers
such as the enhanced Green’s Function Reaction Dynamics
(eGFRD) may be more accurate but are computationally more
prohibitive12. Alternatively, the correction suggested in the work
of Klann and colleagues using collision rates is easily implemen-
table in the framework we have presented20. In our ABM method,
the reaction is driven entirely by proximity, rather than by
collisions and activation energy that occur at the individual
particle level. Several papers have suggested adapting the
methodology to more accurately reflect these events using an
increased binding radius, calculated from the collision rate, and a
probability of reaction19,20. The probability of reaction can be
related to the activation energy, calculable from the rate constant
through the Arrhenius equation. This is easily included within the
methods presented here. However, such an inclusion would
increase the amount of computation due to the increased binding
radius and in most circumstances, this is unlikely to significantly
change outcomes in the simulation. In very crowded environ-
ments, alternative simulators such as LAMMPS or ReaDDY may be
more appropriate as they include more detailed particle-particle
interactions that become prominent under these circum-
stances43,44. However, with all simulations, inclusion of increased
detail leads to a greater computational burden that restricts their
usage to the sort of time scales (seconds/minutes) that are less
relevant in biology. We believe that FaST demonstrates sufficient
robustness for use in most signalling pathways whilst offering

favourable computational performance to reach the longer time
scales relevant for most biological processes.
We integrated the validated ABM methodology into the FaST,

software that can take standard input files and generate ABM
simulations compatible with FLAME and FLAME GPU. FLAME and
FLAME GPU offer alternative approaches to parallelisation, increas-
ing the feasibility of large-scale ABM simulations of cell signalling,
as demonstrated in Fig. 5. Importantly, FaST makes ABM more
computationally competitive compared to other approaches,
including stochastic simulations and reaction-diffusion simulations,
which have improved computational performance but lower spatial
resolution and reduced ability to uncover emergent behaviour
compared to agent-based modelling45–47. The CPU parallelised
version of the apoptosis model increased speed up of simulation by
5.8-fold when we used 16 CPUs. The speed up by CPU parallelisation
is highly dependent on the amount of inter-agent communications,
as it requires messaging through the message-passing interface.
Agent-based modelling of cell signalling is communication heavy, as
each individual protein (potentially millions in a single cell) has to
communicate its own location, traditionally making it poorly suited
for CPU parallelisation. Here we reported a speed-up efficiency for
parallelisation of >90% up until 6 cores, with efficiency dropping off
with increased numbers of cores (37% for 16 cores), compared to
optimal speed up. The lag, caused from invoking the message
passing interface, is dependent on the interconnect between
individual CPU units. In this paper, we used a high-performance
system using a 4× Fourteen Data Rate (FDR) InfiniBand interconnect.
However, recent developments of Enhanced Data Rate (EDR) and
High Data Rate (HDR) systems offer improved performance in
interconnect, potentially reducing overheads associated with CPU
parallelisation of agent-based applications.
Message heavy applications are generally more suited to GPUs,

architecture specifically designed for massively parallel processing.
We reported here that our GPU-accelerated ABM simulation of
apoptosis increased the speed up of simulations by 53.9-fold,
compared to the serial CPU version. This presents a major
improvement in feasibility of undertaking ABM simulations of cell
signalling pathways. Furthermore, we envisage that our FaST GPU-
accelerated ABM simulations make the application of systems
theoretical approaches, including parameter estimation, sensitivity
analysis and uncertainty analysis, more feasible in ABM. These
techniques, frequently used in other modelling approaches, can
massively improve our understanding of signalling networks but
often require highly iterative running of simulations, traditionally
making them ill-suited for the high computational burden of
ABM48,49. Previously, GPU-implementations of the formal-simulator
Smoldyn were shown to speed up simulations by up to
130-fold, although the GPU-implementation has reduced

Fig. 3 Agent-based models can be used to model complex signalling networks. The network of reactions in the model of apoptosis
execution is shown a. ABM simulations (thin solid lines) of apoptosis execution were compared to equivalent ODE simulations (thick grey
lines) for final substrate cleavage (b). All simulations were for 30 min, the time step Δt for particle diffusion was 0.0001 s and for reactions was
0.05 s in all simulations. Data in b represents mean+/− range (thin grey lines) from three independent simulations.
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functionality compared to Smoldyn itself50. Importantly, our
simulations were performed on a GPU with 96 cores, whereas
current state-of-the-art units may have upwards of 4000 cores,
offering a huge potential improvement in runtimes beyond those
demonstrated in this paper. In most circumstances, GPU architecture
likely represents the optimal platform for ABM simulations of cell
signalling. However, GPUs are limited by their fixed amount of
memory, which under certain circumstances may limit the scale of
simulation compared to CPU versions of FLAME, where memory is
less prohibitive21. One such scenario would be ABM-ODE hybrid
simulations, for example, in a simulation where multiple cells
undergo their own individual ODE for intracellular signalling, but
simultaneously undertake intercellular signalling through ABM
methods. Here, the memory required to store reactant concentra-
tions for each individual cell may become impractical for GPUs but is
well suited for CPU parallelisation.
The FaST is not designed to compete directly with formal

simulators. MCell, Smoldyn and other formal agent-based model-
ling software packages offer optimised, accurate, user-friendly
agent-based modelling with a wide-range of options in terms of
geometric conditions16–18. Indeed, under serial conditions, MCell
outperformed FaST (Fig. 5). This was expected as the commu-
nicating X-machine approach used by FLAME and FLAME GPU is
optimised for deployment in parallel, but probably does not
represent the most efficient method for ABM simulations run in

serial21,22. The FaST, instead, is aimed to produce agent-based
modelling code for simulating cell signalling, where greater
personalisation and flexibility in functionality is required. The
advantage of using FLAME and FLAME GPU is the ease-of-access
to parallelisation without the requirement for detailed knowledge
in MPI or CUDA coding, respectively. Moreover, both software
packages offer a plug-and-play approach to agent-based model-
ling, where additional functionality can be added or removed
through the use of self-contained functions, but with the inherent
parallelisation optimisation used within FLAME. Therefore, code
produced by the FLAME-accelerated Signalling Tool can be easily
altered whilst retaining the ability to be easily parallelised (a
tutorial of how to modify FaST-built simulations is available with
the release of FaST on Zenodo30). Previously, FLAME and FLAME
GPU have been used to model signalling processes including the
NFκB pathway, Escherichia coli oxygen sensing and the mitogen-
activated protein kinase pathway51–53. However, these models
have always been based on relatively simple reaction networks as
implementation requires extensive coding. The FaST offers easy
creation of bespoke ABM simulations, of more extensive reaction
networks, for FLAME and/or FLAME GPU.
In conclusion, we have presented methodology and a new

software tool, the FLAME-accelerated signalling tool, for the
building of agent-based models of cellular signalling that are

Fig. 4 Agent-based models reproduce complex pathway dynamics whilst incorporating spatial information. ABM simulations (solid lines)
of apoptosis execution were compared to equivalent ODE simulations (dashed lines) for pro, activated or complex forms of caspase 9 (a); pro,
activated or complex forms of caspase 3 (b); and XIAP or SMAC complexes (c). Visualisations of a single simulation were captured at 0, 7.5, 15
and 30mins. All simulations were for 30min, the time step Δt for particle diffusion was 0.0001 s and for reactions was 0.05 s in all simulations.
Data in a–c represent results from a single simulation. Data in b represents mean+/− range (thin grey lines) from three independent
simulations.
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flexible and malleable but still can be easily parallelised on CPUs
or GPUs using FLAME and FLAME GPU, respectively.

METHODS
Software
The FLAME-accelerated signalling tool was constructed using the Graphic
User Interface tools in MATLAB 2016b, license number 886886. FLAME
xparser, message libraries (libmboard) and visualiser were obtained from
github (https://github.com/FLAME-HPC/) with further documentation
provided at www.flame.ac.uk. The FLAME GPU Software Development Kit
(SDK) was downloaded from github (https://github.com/FLAMEGPU/) with
further documentation provided at www.flamegpu.com. FLAME models
and analysis scripts were built and tested using GCC 4.2.1 packaged
through Xcode 8.3.3 developer tools, in conjunction with OpenMPI 2.0.2
MPI libraries for parallel compilation. FLAME GPU applications were
produced using the FLAME GPU SDK using NVIDIA CUDA 9. The ODE
models produced by the FaST were run on MATLAB 2016b. Blender,
CellBlender and MCell were downloaded from MCell’s website (https://
mcell.org).

Test models
The test models in Figs. 1 and S2–4 were produced in FLAME and ran in
serial on a 4 GHz iMac Intel Core i7. All testing in Figs. 1, 3–5
Supplementary Figs. 2–4 and 6 were performed in a 3 μm× 3 μm× 3 μm
square test environment, with the bottom edge treated as a planar
membrane. Concentrations of all reactants, including membrane-bound
molecules, were calculated relative to the fixed volume. All boundaries
within the testing environment are treated as reflective boundaries. All
simulations presented in this paper used a time step for particle diffusion
of 0.0001 s and 0.05 s for reactions. MCell simulations were performed
using a time step of 0.001 s, longer time steps in line with those used by
FaST (0.05 s) introduced unacceptable error rates.

Speed testing
The simulations in Figs. 3b and 4 and speed testing in Fig. 5 were
performed either on the Baden-Württemberg Tier 3 High Performance

Computing Uni Cluster (bwUniCluster) for CPU simulations with FLAME
and MCell or on an NVIDIA GeForce 630 (96-cores), 2 GB graphics card for
GPU simulations. Simulation code was compiled using standard GNU
compilers with the parallel FLAME message board libraries (libmboard) and
message passing interface libraries (OpenMPI). Parallel CPU simulations
were run on Intel Zeon E5-2670 processors with a 4× FDR InfiniBand
interconnect. Partitioning was performed using a round robin approach
offered by the FLAME software. Alternatively, FLAME is able to undergo
geometric partitioning, where partitioning agents on separate CPUs is
performed according to position. The theoretical run time for a given
number (N) of CPUs (CPUN) was calculated relative to the run time when
the number of CPUs is equal to 1 (N= 1):

Run time CPUNð Þ ¼ Run timeðCPUN¼1Þ
N

(16)

The speed up of parallelised simulations was calculated relative to the CPU
serial model (CPUN= 1) by the relation:

Speed up ¼ Run timeðCPUN¼1Þ
Run time

(17)

The efficiency of parallelisation on CPUs was calculated from the observed
speed up and the theoretical speed up of N:

Parallelisation efficiency ¼ SpeedupðCPUNÞ
N

´ 100% (18)

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The FaST tool and all the models used in this study are available in the Zenodo
repository30. All datasets generated in this study can be reproduced using the setup
files and FaST provided through Zenodo. The specific datasets generated and/or
analysed during the current study are available from the corresponding author on
reasonable request.

CODE AVAILABILITY
The FaST tool code is hosted as Matlab source code and compiled binaries through
Zenodo30 under a Creative Commons Attribution 4.0 International license. All codes
used in this manuscript are generatable through FaST. Setup files, instructions and
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