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Identification of an early cell fate regulator by detecting
dynamics in transcriptional heterogeneity and co-regulation
during astrocyte differentiation
Tatsuya Ando1, Ryuji Kato2,3 and Hiroyuki Honda1

There are an increasing number of reports that characterize the temporal behavior of gene expression at the single-cell level during
cell differentiation. Despite accumulation of data describing the heterogeneity of biological responses, the dynamics of gene
expression heterogeneity and its regulation during the differentiation process have not been studied systematically. To understand
transcriptional heterogeneity during astrocyte differentiation, we analyzed single-cell transcriptional data from cells representing
the different stages of astrocyte differentiation. When we compared the transcriptional variability of co-expressed genes between
the undifferentiated and differentiated states, we found that there was significant increase in transcriptional variability in the
undifferentiated state. The genes showing large changes in both “variability” and “correlation” between neural stem cells (NSCs)
and astrocytes were found to be functionally involved in astrocyte differentiation. We determined that these genes are potentially
regulated by Ascl1, a previously known oscillatory gene in NSCs. Pharmacological blockade of Ntsr2, which is transcriptionally co-
regulated with Ascl1, showed that Ntsr2 may play an important role in the differentiation from NSCs to astrocytes. This study shows
the importance of characterizing transcriptional heterogeneity and rearrangement of the co-regulation network between different
cell states. It also highlights the potential for identifying novel regulators of cell differentiation that will further increase our
understanding of the molecular mechanisms underlying the differentiation process.
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INTRODUCTION
The variability in gene expression among individual cells is known
to increase the complexity of cellular phenotypes due to the
population effect.1–6 Such an effect of cellular heterogeneity has
been observed in various complex biological processes including
disease progression, drug responses, and cell differentiation. To
understand the complexity of biological processes, it is important
to investigate the mechanism of variability in gene expression and
the co-expression relationships.
Transcriptional variability is caused by factors that were greatly

affected by the complexity of the cell population, such as
individual differences in the cell state, the cell cycle, and in their
biological profiles. One of the features which best describes such
heterogenic states in a cell population is the mis-synchronization
of oscillations in gene expression.7 During neuronal and glial
differentiation, genes in the notch-signaling cascade have been
reported to oscillate, however, there is both spatio- and temporal
heterogeneity between cells.8 In neuronal stem cells (NSCs),
oscillations in gene expression are also less synchronized, there-
fore gene expression levels among individual cells show a large
degree of diversity, resulting in a high degree of variability in gene
expression in the cell population.
With such oscillation in gene expression, synchronization

among different genes, even within a single cell, is another
important feature that must be considered. During neuronal

differentiation, for example, it is known that there are pairs of
genes (e.g., Dll1 and Ngn2) that are co-expressed in order to
synchronize their gene expression oscillations in a single cell.8,9

Such transcriptional co-regulation changes as the cell progresses
from the progenitor cellular state toward the differentiation state
is known to play an important role in the decision of cell fate.9

From the standpoint of dynamical system theory, an increase in
both variability and a correlation of system components, such as
gene expression, is a sign of an upcoming transition of the cellular
state.10–12 The dynamic change in the cellular differentiation
process in response to external stimulation is thought to be
determined by some critical cell state transitions, which rapidly
shifts the cellular state from one state to another. We
hypothesized that both high variability in gene expression and a
high correlation of expression between genes are commonly
observed in such a transition state during the differentiation
process. By analyzing genome-wide transcriptional data from the
differentiation process in embryonic stem cells and induced
pluripotent stem cells, we previously reported that gene sets co-
expressed in the undifferentiated state showed a large difference
of variability in expression levels during the transition from the
undifferentiated state to the differentiated state. Detecting these
dynamic changes in the variability of gene expressions was
therefore proposed be an early signal capable of predicting the
cellular transition in neural differentiation.13
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In order to evaluate the controlled heterogeneity in gene
expression, we previously proposed the analytical concept of
evaluating “differential variability and correlation (DVC)”.13 This
analysis focuses on the differential transition of two index
between the undifferentiated state and the differentiated state:
(1) the variability of gene expression within the same state, which
reflects the potential variation in the expression of a particular
gene measured for a number of times using a single cell or bulk of
cells, and (2) the correlation, which reflects a similar pattern of
expression for multiple genes (co-expression) in the same state.
The concept of DVC analysis is illustrated in Fig. 1. Briefly, each
gene expression is evaluated by two indexes (“change of
expression variability” and “change of co-expression pattern”)
calculated from cells which change from one state to another (in
our case undifferentiated state to differentiated state). This DVC
analysis was designed to identify specific biological responses in a
group of cells according to the hypothesis that the responses of a
group of cells are not homogeneous at the start of event but can

harmonize as the stages of the event change.14 Changes in
biological responses are typically expressed as the average of
gene expression rates for specific genes. In these analyses, bulk
group of cells are lysed and measured to obtain their average
gene expression, and such expression data has been known to
reflect their biological status. However, it is difficult to use this
concept to explore genes expressed at low average levels but
greatly impact the biological event as such as a trigger. When
gene expression rates are averaged within a group of cells, minor
genes expressed only in few sub-populations of cells or over short
time in individual cells, such gene effect detection is difficult.
Considering that such genes have either large variance among
groups of cells or exhibit the sudden appearance/disappearance
among time series, our DVC analysis is designed to provide new
aspects for analyzing transcriptomic data. Our previous work
indicated that even using the average expression data from bulk
cells, the gene sets identified by DVC analysis (DVC genes) were
found to play important roles in neuronal differentiation13
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Fig. 1 Conceptual illustration of the DVC analysis based on gene expression variability and correlation. Calculation concept of DVC analysis.
a First step of calculating two indexes. In each state of cells, two types of criteria, variability and correlation, is calculated. For index 1
(variability), the standard deviation (SD) of each gene expression between cells (three single cells in this example) are calculated. For index 2
(correlation), the Pearson correlation coefficient of pair of expression patterns from group of cells (three single cells in this example) is
calculated between each pair of genes. By clustering, the correlated genes are grouped as co-expressed modules. b Second step of calculating
state transition score (STS). The change rate between two state of cells is calculated using both indexes to obtain STS. DVC gene is the gene
with high STS. An example image of DVC gene is also illustrated, which shows oscillation-like variability in the early state of cells, although
settle/harmonize after the transition to the next state
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(illustrated in Fig. 1, practical example described in Supplementary
Fig. S1A).
Recently, single-cell transcriptomics has been found to have

sufficient sensitivity to interpret the heterogeneity of gene
expression in cellular differentiation.15–19 However, the impor-
tance of variability in the expression developmental regulator
genes remains unclear. In this study, in order to extend our
previous work on finding key functional genes in the neuronal
differentiation process through a DVC analysis (the difference
illustrated in Supplementary Fig. S1B), we analyzed single-cell RNA
sequencing data obtained from mouse neural stem cells (NSCs),
transit amplifying progenitors (TAPs), and astrocytes20 (Supple-
mentary Fig. S1B). The astrocyte developmental process is still
poorly defined due to a lack of lineage stage specific markers.21

We hypothesized that the controlled heterogeneity of gene
expression profiles can be one of the key events to explain
astrocyte differentiation. DVC genes, potentially including oscilla-
tory genes, can be potential early marker genes for predicting
upcoming astrocyte differentiation. Using our DVC analysis to
compare three different cellular states, we found that the DVC
gene signatures are a potential predictive biomarker to indicate an
upcoming critical cell state transition. A functional analysis of the
DVC gene signature suggested that these genes have an impact
on the astrocyte differentiation process. In addition, from the
study in which we used an antagonist to block Ntsr2, one of our
DVC gene candidates, we found that this gene is involved in
controlling the direction of astrocyte differentiation. We propose a
framework for DVC analysis that can identify regulator genes that
have an impact on upcoming cellular transition events, and have
gained insights into the molecular mechanism underlying
biological state transitions.

RESULTS
Comparison of transcriptional variability and correlation in three
cell states (NSCs, TAPs, and astrocytes)
To understand the differential dynamics of gene expression
variability, we first classified three types of cells as being
representative of three states: NSCs representing the most
undifferentiated state, TAPs representing a potentially intermedi-
ate differentiation state, and astrocytes representing the most
differentiated state. By comparing transcriptional variability and a
correlation of NSCs with two different states (TAPs and astrocytes),
we evaluated alterations in the co-expressed gene sets in NSCs.
First, to obtain the co-expressed genes in the NSC state, which

we defined as the most undifferentiated state, a hierarchical
clustering analysis was performed on their single-cell gene
expression data. Using a correlation coefficient, which describes
the similarity of gene expression profiles in each individual cell,
the co-expressed gene modules in the NSC state were identified.
Within the 12,147 genes, 17 modules of co-expressed genes were
identified (Fig. 2a, Supplementary Table S1).
By comparing TAPs/astrocytes vs. NSCs, we evaluated the

differences in gene expression variability using the single-cell
gene expression data (Fig. 1a). Between the two cell states, TAPs
and NSCs, 3423 genes (28.2%) were found to show differential
variability (Levene test q < 0.001). Between NSCs and astrocytes,
13.5% of all genes also showed differential variability (Levene test
q < 0.001). These data show that 1637 genes changed their
expression profile, either in a harmonized or in a heterogeneous
pattern, as the cell state changed from undifferentiated to
differentiated. By examining the overlap between genes with
differential variability in expression and each co-expressed gene
set, some modules were found to be enriched in genes that
changed their variability as a result of the cell state transition.
When all the modules were examined for the direction of
differential variability (Fig. 2b), it was found that there were only

a few modules that contained genes that increased their
expression variability compared with the NSC state (Fig. 1b, upper
two rows). In contrast, there were several modules that showed a
large member of genes that had a decrease in their expression
variability compared with the NSC state. More than half of the
genes in the black and magenta modules decreased their
expression variability in TAPs (enrichment significance was
p= 4.35e−79) and astrocytes (p= 3.69e−70), respectively. The
red and purple modules showed that >1/3 of the module member
genes decreased their expression variability in both TAPs
(p= 4.79e−39, p= 6.03e−73) and astrocytes (p= 8.24e−45, p=
1.30e−28).
By comparing TAPs/astrocytes vs. NSCs, differential correlations

were also evaluated (Fig. 2a). When we focused on the modules,
which showed decreased expression of variability (black, magenta,
purple, and red module), we found that most of their member
genes also showed a decrease in their correlation. These data
indicate that both the transcriptional variability and the co-
expressed gene relationships in the NSC state decreased as
astrocyte differentiation progressed. With the differential correla-
tion heatmap, the profile of “TAP vs. NSC” and “Astrocyte vs. NSC”
was found to be very similar. Therefore, we checked the difference
among their detailed gene correlation networks (Supplementary
Fig. S2). When detailed correlation networks were confirmed, we
found that most of the correlations between different pairs of
genes were different. Therefore, the similar “change profile”
illustrated by heatmap is just showing the brief total tendency of
numerous correlation scores per each gene, and their individual
correlation networks are more complex.

DVC genes in the cell state transition of astrocyte differentiation
For further analysis of differential gene expression profiles
between cell states, we carried out our DVC analysis to identify
candidate genes that could be predictive of an upcoming drastic
cell state transition. We measured the change in two parameters
with our measure score, the system transition score (STS), which
combines both an evaluation of the differential variability and the
differential correlation of gene expression. We defined genes with
a high STS as “DVC genes,” and selected candidate genes from a
comparison of pairs of transition states, TAPs vs. NSCs, and
astrocytes vs. NSCs. From the comparison of TAPs vs. NSCs, 474
DVC genes were found, and from astrocytes vs. NSCs comparison,
504 DVC genes were found (Supplementary Tables S2, S3). This
result suggests that there are more genes related to the response
to the state transition from the NSC state to the differentiated
astrocyte state.
In the DVC genes, the cell cycle genes, which is important for

early proliferative phase was overrepresented (enrichment
p-value= 1.79e−32). For example, Cdk6, which contributes mainly
in G1 phase and proliferation, was found as the top DVC gene. This
result suggest that the DVC analysis reflects the commonly known
functional genes that is predominant differentiation pathway from
progenitor to committed cell.
To examine whether candidate DVC genes are functionally

involved in astrocyte differentiation, a functional enrichment
analysis was performed. As a result, astrocyte differentiation-
related genes were highly enriched in the DVC genes identified
between the astrocyte vs. NSC states (p= 6.15e−6) compared
with DVC genes identified between the TAP vs. NSC states
(Fig. 3a).
In comparison, using a conventional analysis, which compares

the average (averaged value of single-cell data) expression rates of
genes among different cell states, to identify differentially
expressed genes (DEGs) (definition described in the Methods
section), we rarely found astrocyte differentiation-related genes,
even from both state comparisons (TAPs vs. NSC or astrocyte vs.
NSC). This result suggests that the genes, which play important
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Fig. 2 Identification of co-expression modules in the NSC state with their differential profile. a Clustered modules of co-expressed genes in
NSC cells, and their differential profile compared with two differentiated cell states (TAPs/astrocytes). (Top tree) Hierarchical clustering tree
shows the clustered genes based on co-expression patterns among individual single-cell transcriptomes (92 cells) in the NSC state. (Heatmaps)
Co-expression modules: the divided clusters of co-expressed genes obtained from the above hierarchical clustering are represented by the
colored classifiers. Differential variabilities: the average differential variability in single-cell transcriptomes between two cell states, TAPs vs.
NSCs or astrocytes vs. NSCs. Differential correlations: the average differential correlation of single-cell transcriptomes between two cell states,
TAPs vs. NSCs or astrocytes vs. NSCs. The color chart represents the significance of variability (differential variability chart), and the ratio of
correlation coefficient (differential correlation chart) between cell states. The green color indicates lower values, and the red color indicates
higher values. b Enrichment rate indication of differential variability genes in combination with the color of clustered modules in Fig. 2a. The
clustered modules are aligned from the left to the right in the same order as shown as co-expression modules in Fig. 1a. Upregulated or
downregulated genes are counted separately. The colored matrix reflects the enrichment rate along with statistical significance. The negative
logarithm of the p-values are shown in the matrix
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roles in astrocyte differentiation, vary in expression variability and
correlation and not in average expression level.
To further investigate the robustness of our DVC analysis

applied to cells, which changed their state from stem cells to
astrocytes, we evaluated the second dataset (53 NSCs and 13
astrocytes) obtained from an independent study.22 Our DVC
analysis identified 97 highly ranked DVC genes from the second
dataset (Supplementary Table S4). There were 15 overlapping
genes among the top-ranking DVC genes between the first and
second datasets (enrichment significance: p-value= 3.06e−11).

Cell fate marker genes found as DVC genes
To further understand the function of the DVC genes, we
examined if known biomarkers and regulators involved in neuron
and astrocyte differentiations were also DVC genes.
In this regard, Ascl1, which promotes neuronal fate determina-

tion, was identified as being a DVC gene between the astrocyte vs.
NSC states.23 As previously reported,9 Ascl1 expression oscillates in
NSCs, although it becomes stably suppressed following astrocyte
differentiation. Similar changes in Ascl1 gene expression were
observed in this study. Ascl1 showed a large variability in
expression among individual cells in the NSC state, although this
variability decreased in the TAP state. In the astrocyte state, it was
expressed at a low level (Fig. 3b).

The notch-signaling gene, Dll1 was also found to be a DVC gene
between the astrocyte vs. NSCs states. By plotting its expression
levels, this DVC gene also showed a large variability in expression
in the NSC state cell population, and a low level of expression in
the astrocyte state. Such variability in gene expression is NSC is
consistent with a previous report indicating that Dll1 shows
oscillatory expression in the NSC state.24 When Dll1 was used as a
representative gene, previously reported marker genes were also
identified by searching the co-expression gene module (Fig. 1b).
For example, in the red module, both Dll3 and Sox9 were
identified as co-expression members for Dll1. Dll3 is another
notch-signaling gene, which also shows a large variability in
expression among individual cells in the NSC state, and loses this
variability in expression in the astrocyte state. Such an involve-
ment of notch signaling, is consistent with previous work, which
has reported the oscillation and co-expression of notch-signaling
genes in a single NSC.8 Sox9, which is known to be a glial fate
determination marker, was also found in the red module.25 From
its expression profile, it was also noted that Sox9 showed a large
variability in expression levels in the NSC state, although this
variability was lost in astrocytes.

DVC genes are potentially regulated by Sox9, Ascl1, and Max
We performed an upstream regulator analysis to obtain regulatory
insights into the DVC genes. First, a data-driven interpretation

A

0 1 2 3 4 5
Enrichment significance

−log10(P−value)

DV
C

 g
en

es
S

ta
bl

e 
D

E
G

s

TAP vs. NSC

Astrocyte vs. NSC

TAP vs. NSC

Astrocyte vs. NSC

B

0
1
2
3
4
5
6
7
8
9

10
11

0
1
2
3
4
5
6
7
8
9

10
11

NSC TAP Astrocyte NSC TAP Astrocyte

Cell type

lo
g(

C
P

M
)

Ascl1 Dll1

Dll3 Sox9

Fig. 3 DVC genes between two cell states in astrocyte differentiation. a Bar plot showing the enrichment significance of astrocyte
differentiation-related genes compared between two cell states; TAPs/astrocytes vs. NSCs. DVC genes, and conventional DEGs are compared
with one another. b Gene expression profiles of representative DVC genes identified from the DVC analysis

T. Ando et al.

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2019)    18 



approach was applied based on the broad collection of
transcriptional regulatory relationships from the published litera-
ture using the Ingenuity Pathways Analysis software. From this
analysis, Ascl1, one of the DVC genes, was identified as the most
significant upstream regulator of other DVC genes (Fig. 4a).
Second, a more focused approach was performed to confirm
whether Ascl1 and other transcription factors important for
neuronal and glial differentiation could potentially regulate the
expression of DVC genes. The enrichment analysis of the DVC
genes compared with the target gene candidates of 11
transcription factors (Ascl1, Ctcf, Fox3, Max, Nfi, Olig2, Smac1a,
Sox2, Sox9, Sox21, and Tcf3) by Chromatin immunoprecipitation
sequencing (ChIP-seq) in the NSC state.26 A transcription factor
enrichment analysis then showed that Sox9, Ascl1, and Max could
be candidates that regulate the transcription of other DVC genes.
These consistent data for Ascl1, obtained from two separate and
distinct approaches, indicate that Ascl1 is the most likely regulator
of the DVC genes found in our analysis, and that it is involved in
the cell state transition from NSCs to astrocytes.

Experimental validation of the role of the DVC candidate gene
(Ntsr2) in determining cell fate
To validate the functional importance of our DVC gene candidates,
we searched for DVC genes, which could potentially be involved in
the Ascl1 regulation gene network. From this gene network
analysis, Ntsr2 became a focus because it was one of the DVC
genes that were co-expressed with Ascl1 (Fig. 5a). The co-
regulated relationship in expression between Ntsr2 and Ascl1
become weak in the astrocyte state compared with the NSC state
(Fig. 5a). Ntsr2 also showed a greater degree of variability in single-
cell expression in the NSC state than in the astrocyte state (Fig.
4b). However, the expression level of Ntsr2 was increased in the
astrocyte state compared with that in the NSC state. Therefore, we
assumed that inhibition of Ntsr2 function would have a significant
effect on Ascl1-related signaling in the NSC state, whereas Ntsr2
inhibition in the astrocyte state would have little effect on Ascl1-
related signaling. In the NSC state, the addition of the Ntsr
antagonist JMV449 clearly inhibited expression of the undiffer-
entiation and astrocyte marker Gfap to levels lower than the
control, without any sign of cytotoxicity (Fig. 6a, Supplementary
Fig. S3). This result indicates that the antagonist disrupted the
essential variability in the NSC state for astrocyte differentiation
potential. When the expression level of the early neuronal fate
marker, Sox2, was measured, the effect of the Nstr2 antagonist
was very weak (Fig. 6b). This indicates that the antagonist showed
a greater effect on the Ntsr2 gene network, which suggests that
gene network of DVC genes plays a critical role in the state
maintenance in NSCs for upcoming astrocyte differentiation.

However, when JMV449 were added to the astrocyte differentia-
tion medium, we did not find any significant effect (data not
shown). These data also suggest that a disturbance of DVC genes
is effective when their variability is large and their gene network is
tight.

DISCUSSION
Cell fate decision in the differentiation processes is proposed to be
a system that transits abruptly from one state to another in
response to external stimulation based on dynamic systems
theory. Such cell states transitions are referred to as critical
transitions.10,11 The “fragility” of various biological profiles is a new
concept adopted to help understand complex biological
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phenotypes that are found during such critical transitions. It is
now thought that both “variability” in gene expression levels and
“co-expression” among heterogeneous populations of cells are
empirical indicators, which are involved in any upcoming
biological transition. Based on this theory, our DVC analysis offers
objective measurement criterion, which correlate with the critical
cell state transition. In this study, in order to investigate the use of
our DVC analysis in understanding astrocyte differentiation, we
analyzed single-cell transcriptome data to measure both the
variability and correlation between cell states more accurately
than cell population transcriptional data. Moreover, the robustness
of DVC analysis was further confirmed in the independent second
dataset.
By focusing on the evaluation of STS, a score incorporating both

variability and co-expression, our analysis identified several
candidate DVC genes, as being central regulating genes important
in the transition from the NSC state to the astrocyte state. The
functional enrichment of DVC genes important in astrocyte
differentiation was more significant than that for conventional
DEGs, indicating the importance of evaluating heterogeneity of
gene expression data. Moreover, using a gene network analysis
followed by pharmacological inhibition of a single DVC gene we
demonstrated that the DVC analysis could identify key players in
the transition from the NSC state. Our data also suggest that
signatures that are involved in state transition are not easily
identified using the conventional comparison of “expression
averages.” This study therefore has an impact by improving our
understanding of transcriptional regulation in differentiation
processes.
Through our DVC analysis, the importance of expression

“fragility” was clarified especially in the most undifferentiated
NSC state. When we compared three states, represented by NSCs,
TAPs, and astrocytes, the differences between NSCs and astrocytes
were clear. However, the differences between TAPs and NSCs
provided very few informative genes. Therefore, as proposed by
Molofsky et al.,27 we consider that TAPs do not lie on the direct
line of lineage from NSCs to astrocytes. In such considerations of
lineage type differences, our STS score in DVC analysis, which rank
the genes and identify the high DVC between cellular states, can
be informative.
Ascl1, the central gene identified here from the DVC analysis, is

a well-defined transcription factor. For example, the notch-
signaling genes, Dll1 and Dll3, are known to be targets of Ascl1.28

Notch signaling also upregulates the expression of Sox9, and
induces differentiation into astrocytes.29 Moreover, Sox9 is known
to bind to the genomic regions close to Ascl1, Dll1, and Dll3 from a
Chip-seq study.26 Taken together, these data suggest that Sox9
may be both upstream and downstream of genes involved in
notch signaling suggesting that a transcriptional loop could be

formed. The change in the co-expression network between cell
states might imply that there is a change in the network
regulatory loop during the cell state transition.
Ntsr2 is a G-protein coupled receptor that binds neurotensin,30

and is expressed in NSCs and astrocytes.22 However, its functional
role in the cell state transition has not been previously described.
An Ntsr antagonist suppressed Gfap expression and in addition
had a small effect on Sox2 expression in NSCs. Type 1 NSCs are
characterized by presence of both glial fibrillary acidic protein
(Gfap) and Sox2 expression in the undifferentiated state.31 This
type 1 state triggers the cellular state transit to type 2 in NSCs that
express Sox2, but not Gfap,31 and is thought to be the state of self-
renewal. It has been found that NSCs have the potential to
differentiate into both neurons and astrocytes in their type
2 state.32 Use of the Ntsr antagonist might guide type 1 NSCs to
become type 2 NSCs, which have a high capacity to give rise to
neural lineages. This study suggests that Ntsr2 could be involved
in the cell state transition in the early cell fate decision-making
process. In the second data analysis, Ntsr2 was ranked at 304th
and was not lost in the independent data. The sequencing depth
of the second dataset was lower than that of the first dataset. This
may have resulted in the loss of co-expression structure. There-
fore, considering the difference in sequencing depth between the
first and second datasets, we consider that our method provided
reproducible results. However, since the Ntsr2 inhibition poten-
tially affects Stat3 signaling that may lead Gfap expression change,
we should evaluate Stat3 signaling more in detail to gain insight
on Ntsr2 biology during astrocyte differentiation. To further
analyze the Ntsr2-related cascade, we believe further develop-
ment of inhibitor libraries are required. First, we could not find an
appropriate small molecule inhibitor for directly inhibiting Ascl1.
Second, although JMB449 are known to inhibit both types of Ntsr
receptors, Ntsr1 and Ntsr2, there were no molecule that inhibits
only Ntsr2. However, the expression read counts were not
detectable for Ntsr1 in the data of all cell types; therefore, our
experimental design was appropriate for studying Ntsr2 using
JMB449.
Although the DVC analysis provided several possible clues, this

study could not definitively explain why the variability in DVC
gene expression is high in the undifferentiated state. A study of
variability in the hematopoietic differentiation system demon-
strated that both cell cycle and variations in cell size could, to a
small extent, explain this variability in gene expression.16 This
report also suggested that variability in gene expression could be
caused by other mechanisms. In this study, we identified
oscillatory genes as DVC genes in the process of astrocyte
differentiation. Our previous study showed that Hes1 is one DVC
gene that is important during neuronal differentiation. Hes1 was
also found to have oscillation in its expression levels before
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neuronal differentiation. Combining the data from our neuronal
and astrocyte differentiation studies enhances our hypothesis that
oscillations in gene expression in the undifferentiated state causes
a high transcriptional variability before differentiation occurs.
These oscillations may be one reason why the transcriptional
system becomes “fragile” before an upcoming cell state transition
such as cell fate decision. In the future, we intend to add more
time-course data representing other cellular states in the
differentiation process in order to extend DVC analysis to
investigate the cause of high transcriptional variability in the
differentiation process.

METHODS
Single-cell RNA-seq data and its preprocessing
The single-cell RNA-seq data from three types of cells namely 92 NSCs, 27
TAPs, and 22 astrocytes were obtained from the Sequence Read Archive
(SRP057125). According to archived data, Glast+Prom+ cells (designated as
NSCs) and Glast-Prom-Egfr+ cells (designated as TAPs) were isolated by
fluorescence activated cell sorter (FACS) from the su-ventricular zone (SVZ).
Glasthi (designated as astrocytes) were isolated from the striatum and
somatosensory cortex according to archived data. NSCs can produce
neural progenitor cells (TAPs or type C cells), which are a proliferative cell
population expressing markers of early neuronal differentiation. Some
NSCs can generate both neurons and astrocytes. TAPs are known to give
rise to neuroblasts (type A cells) that differentiate into primarily
interneurons. Although the complete lineages of neuronal and glial cells
in the mammalian brain remains unclear, according to such lineage
information, we hypothetically ordered the three types of cells (NSCs, TAPs,
and astrocytes) from the early lineage to the differentiated state. Another
dataset for validating our findings by DVC analysis included cell
populations isolated by FACS from GFAP-GFP transgenic mice: GFAP-
GFP+PROM1+EGFR+ (astrocytes), GFAP-GFP+PROM1+ (NSCs).22 To further
confirm our DVC analysis concept, we evaluated recent data (defined as
the second dataset) from Llorens-Bobadilla et al.,20 which showed similar
cell population data when representative biomarkers (Glast (Slc1a3) and
Cd9) were compared. This data included 53 NSCs and 13 astrocytes after
data filtering. The second dataset was preprocessed and DVC analysis was
carried out in the same manner as for the first dataset. The reads were
mapped to the mouse genome (ENSEMBL Release 83) using STAR.33

FeatureCounts was used to count the mapped reads for genes.34 TMM
(trimmed mean of the M value) normalization and CPM (counts per million)
transformations were performed using EdgeR to compare the expression
levels across the samples.35 A principal component analysis was applied to
the CPM data to remove oligodendrocyte-like cells from the NPCs. Filtering
out the genes with low expression levels (a read count < 2) for each cell
type resulted in the detection of 12,147 commonly analyzable genes
within the three cell states, and was used for the following analyses. The
CPM data were log2 transformed and standardized to the Z-score for each
gene across individual cells for each cell type.

Co-expression analysis
Hierarchical clustering was applied to identify co-expressed genes as
cluster modules. The gene expression values were standardized within
individual cells. For the clustering, only the single-cell data in the NSC state,
the first state in our analysis, were used to assemble the clustering tree. For
the clustering, both the Pearson correlation coefficient (PCC) and Wald
linkage method were used. For module detection, a dynamic tree-cutting
algorithm (hybrid mode, minimal module size of 100) was used. All
calculations were coded by R.

DVC analysis
The detailed procedure for the DVC analysis has been described in our
previous study.13 The analysis was conducted using the Bioconductor
package in the R language. The STS was used to rank the genes and
identify those with high DVC between two different cellular statuses (NSCs
vs. TAPs, or NSCs vs. astrocytes). The detailed description of STS calculation
is shown in the Supplementary note. The co-expression network of the
DVC genes included in the same module was displayed using Cytoscape
3.1.2.36 PCCs above 0.7 were shown as the connection between genes in
the network figure.

Functional enrichment analysis of candidate gene signature
The astrocyte differentiation-related gene sets (GO:0048708) for the
functional enrichment analysis were obtained from the Gene Ontology
database.37,38 The ChIP-seq data showing the transcription factor binding
sites and DNase-seq data showing open chromatin sites in NSCs were
obtained from a previously published study.26 The genomic regions
overlapping between ChIP-seq and DNase-seq data were discovered using
bedtools. The genes within 1M bases from the overlapping regions were
used in the transcription factor enrichment analysis to incorporate
potential enhancer regions into the analysis. The enrichment significance
was assessed using the cumulative hypergeometric probability with the
phyper function in R. The enrichment test is one sided. Ingenuity pathways
analysis (IPA®, Qiagen, http://www.ingenuity.com) was used to examine
the upstream regulators of the DVC genes. The reference dataset was set
as the 12,147 genes that represented all the genes used in the functional
enrichment analyses.
As a comparison, we applied a functional enrichment analysis on the

conventional “differently expressed genes (DEGs).” The DEG definition is
described in the Supplementary note.

Cell culture and Ntsr2 inhibition assay
Fetal-derived mouse NSCs (mNSCs, Cell Application Inc., San Diego, CA,
USA) at passage two were seeded at a density of 1.0 × 105 cells/cm2 in T25
flasks coated with poly-L-ornithine hydrobromide (Sigma-Aldrich, St. Louis,
MO, USA) and natural mouse laminin (Thermo Fisher Scientific, Waltham,
MA, USA) for maintenance and differentiation. The maintenance culture
and differentiation culture (astrocyte differentiation) was performed
according to the manufacturer’s protocol, with some modifications as
described in our previous work.39 mNSC’s were seeded in triplicate into a
coated six-well plate for the real-time PCR experiment, and into a 12-well
plate for immunohistochemical staining. The primers used in this study are
shown in Supplementary Table S5. For RT-PCR, total RNA was extracted
using RNeasy kit (QIAGEN, Germantown, MD, USA), and complementary
DNA was generated using Superscript II (Invitrogen, Carlsbad, CA, USA).
PCR was performed over 30 cycles for all genes except β-actin (25 cycles).
For Gfap immunohistochemistry, an anti-Gfap antibody (GR15465010,
ab53554; Abcam, Cambridge, MA, USA), and the secondary antibody anti-
goat DAG-IgG-Alexa Fluor 488 (GR2460881, ab150129; Abcam) were used.
The protocol for immunohistochemical staining is described in our
previous work.39 The Ntsr2 antagonist (JMV449), a pan neurotensin
receptor antagonist, was purchased from TOCRIS (Avonmouth, Bristol, UK),
and added to the mNSCs at final concentrations of 0.15 pM, 1.5 pM, 15 pM,
0.15 nM, and 1.5 nM.

Statistical analysis
The Leven test was applied to the RNA-seq data to evaluate the variability
among individual cells in each cell type. The Voom-limma method was
used to identify the DEGs between cell types.40 The p-values were adjusted
using the Benjamini–Hochberg method. These procedures were con-
ducted in R. The statistical tests are two sided.
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