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As science and technology rapidly progress, it becomes increasingly important to understand how
individuals comprehend expository technical texts that explain these advances. This study examined
differences in individual readers’ technical comprehension performance and differences among texts,
using functional brain imaging to measure regional brain activity while students read passages on
technical topics and then took acomprehension test. Better comprehensionof the technical passages
was related to higher activation in regions of the left inferior frontal gyrus, left superior parietal lobe,
bilateral dorsolateral prefrontal cortex, and bilateral hippocampus. These areas are associated with
the construction of amentalmodel of the passage andwith the integration of newandprior knowledge
in memory. Poorer comprehension of the passages was related to greater activation of the
ventromedial prefrontal cortex and the precuneus, areas involved in autobiographical and episodic
memory retrieval. More comprehensible passages elicited more brain activation associated with
establishing links among different types of information in the text and activation associated
with establishing conceptual coherence within the text representation. These findings converge with
previous behavioral research in their implications for teaching technical learners to become better
comprehenders and for improving the structure of instructional texts, to facilitate scientific and
technological comprehension.

Learning technical information from text in a technological world is a
central cognitive skill that is taught in schools, tested by educational insti-
tutions and industry employers, and remains a crucial ability for a growing
number of occupations as well as for everyday life. Reading comprehension
skills are engaged every timewe read a user’smanual, aWikipedia article, or
a technical handbook.Neurocognitive research approaches using functional
brain imaging have the potential of substantially increasing the under-
standing of the processes underlying technical reading comprehension, and
concomitantly, revealing possible opportunities for enhancing this process.

This study used brain imaging to address two central sets of questions
regarding the processes necessary for comprehending technical information
from a text. First, is it possible to identify the neuropsychological processes
that distinguish good and poor comprehenders? In what way are some
people better able than others to grasp from their reading how a techno-
logical device works? What are they doing differently than poor compre-
henders? Although there is a long history of psychological and educational
research approaches to these questions1–6, as described below, there ismuch
less converging evidence from neuroscience research. The answers to these
questions derived from brain imaging may converge with behavioral
research in suggesting comprehension strategies that can be taught to

learners to enhance their comprehension of novel technical material. It also
may add new insight into the underlying processes used by better com-
prehenders of technical material, suggesting additional comprehension
strategies.

Second, what conceptual and structural aspects of technical texts are
associated with better or poorer comprehension? Are there certain prop-
erties shared by more comprehensible texts that facilitate effective com-
prehension?Do the processes used to successfully acquire and integrate new
knowledge reveal how writers should compose and structure a technical
passage to foster comprehension andmemory for novel technical material?
Again, previous behavioral research has addressed these questions5,7–10, but
far less is known about how the brain responds to the properties of technical
texts. Exploring the answers to these questions from a neurocognitive
approach may provide additional insight into how texts can be better
engineered to improve the comprehensibility and retention of new technical
information.

The present study addressed these questions by acquiring brain acti-
vation data (fMRI) as participants, varying in comprehension skills, read
short technical expository passages for comprehension. The choice of
materials and experimental design was intended to make the task
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ecologically valid, resembling a real-world comprehension task, with the
goal of enhancing the understanding of how new technical knowledge is
acquired from text in the context of a realistic comprehension situation. The
fMRI data were acquired during the reading of the passages and the goal of
the study was to develop an understanding of how the neurocognitive
processes that occur during reading are related to comprehending the text,
as assessed by amultiple-choice comprehension test. The comprehension of
individual participants and the comprehensibility of individual technical
passages were used to identify brain areas whose activity underlies com-
prehension performance.

There is increasing recognition that focusing on brain localization of
individual component processes of reading comprehension may fail to
explain the complexity of real-world text comprehension11, and similar
concerns have been raised about purely behavioral studies of expository text
comprehension12,13. Many previous findings are based on experimental
studies designed to isolate a single linguistic process while controlling the
effects of others14,15. This type of functional decompositionmay obscure the
effects of other processes that can make comprehension the outcome of a
more dynamic and interactive network of neural processing. This concern
becomes especially salient when considering individual differences in
comprehension performance. Recent neuroimaging studies of text com-
prehension have used naturalistic designs that attempt to investigate the
collective neural signature of the participating processes16–18. The present
study used realistic technical passages to be learned in a conventional
reading comprehension task.

Several behavioral studies have investigated the specific processes that
are engaged by the distinguishing properties of technical texts6,9,13,19. Expo-
sitory technical texts typically describe a set of related concepts and their co-
functioning in various events20,21. Compared to narrative texts, technical
texts often contain less familiar vocabulary, are less likely to reflect everyday
experiences, and usemore complex linguistic structures, properties that can
make themmore difficult to comprehend and learn4. In addition, technical
texts typically require fewer inferences to be made19, and their compre-
hension may depend more heavily on previous knowledge22. Only a few
previous neuroimaging studies have investigated the neural basis of expo-
sitory text comprehension23–28, despite its relevance for STEMeducationand
job performance. The present study addresses this gap between behavioral
and neuroimaging research in understanding expository text
comprehension.

Reading comprehension depends on a large number of component
processes, and the efficiency with which each one of them is executed can
vary across individual readers.At the single-word and single-sentence levels,
these processes include decoding of word forms, retrieval and selection of
word meanings, syntactic processing of multi-word constituents, con-
struction of propositions and assignment of case (or pragmatic) roles,
establishment of cohesion among propositions, and themaintenance of the
propositions in working memory. At the discourse level, additional pro-
cesses are engaged, including the establishment of global coherence across
sentences, maintenance of distantly related propositions in working
memory, retrieval of semantic knowledge structures from long-term
memory, and the integration of retrieved knowledge with information from
the text. Particularly relevant for technical comprehension is the construc-
tion of a mental model or situation model of the referents of the text and
their interrelations2,29. The mental model is constructed with the aid of the
reader’s existing world knowledge to enable various types of inferences (e.g.,
bridging, predictive, causal, elaborative) that complete theunspokenparts of
the text6.

Individual comprehenders may differ in their proficiency in any of
these processes30–33. In addition, they may differ in the background
knowledge they bring to the comprehension task, and as one would expect,
prior knowledge in a domain affects howproficiently newknowledge in that
domain is acquired34,35. Furthermore, proficiency in the underlying pro-
cesses interacts with both prior knowledge and the structure of the text in
determining comprehension performance7,8,36. The present study assessed
which of the underlying processes, identified in regional patterns of brain

activation, accounted for differences among individuals in their ultimate
reading comprehension performance.

Neuroimaging studies have indicated a set of underlying brain regions
that become activated by the engagement of text comprehension processes.
Lexical retrieval and semantic knowledge representation involve an exten-
sive network including the left-lateralized parietal, temporal, and inferior
frontal lobe areas that make up the core language network, and they also
involve bilateral activity in the ventral temporal cortex, the anterior tem-
poral lobes, the hippocampus, and the ventromedial and ventrolateral
prefrontal cortex37–39. Reading comprehension of extended discourse also
depends on a brain network that carries out conceptual and semantic
integration, which overlaps with semantic processing and representation
regions and also includes lateral areas of the prefrontal cortex in both
hemispheres40,41.

The construction of a mental model includes using previous knowl-
edge drawn from semantic memory (knowledge of words, facts, and con-
cepts not associated with a specific learning experience) and episodic or
autobiographical memory (knowledge of past experiences). Semantic
memory storage is distributed across the neocortex in a number of brain
regions specialized for particular types of information17,39,42,43, and the
retrieval of semantic knowledge and its integrationwith new or inconsistent
prior knowledge is associated with lateral prefrontal regions44,45. Episodic
memory storage is associated with the medial temporal lobe and
hippocampus46 and episodic retrieval is associated with medial prefrontal
regions47–49.

In sum, there is extensive literature associating individual brain regions
and networks of regions with particular text comprehension processes. This
literature provides the basis for inferring which processes are occurring
given the observed brain activity during the reading of a particular text by a
particular participant. These associations are based on a large literature of
multiple studies in which there is activation in particular regions during the
execution of a task assumed to engage a given process. This literature, such
as the compendiumprovidedby theNeurosynthdatabase50 canbe leveraged
to clarify which processes are occurring by providing posterior probabilities
of the likelihood that a process is associated with activation in a particular
area51,52. In our study, the degree of engagement of a given process (assessed
by its associated activation level in a given region) during the reading of a
technical passage was used to predict the degree of mastery of the passage
content.

In this study, the fMRI brain activity of 31 college-age participants of
varying comprehension skills was acquired while they read a set of 16
technical passages for comprehension three times, followed by a multiple-
choice comprehension test. Behavioral research has demonstrated that
repetition of spoken passages increases memory performance, and also
results in qualitative shifts in processing5,53,54, andbrain imaging studies have
indicated that there are corresponding related changes in regional brain
activity over repeated hearing or reading of the same passage25,55.

The brain activation observed during the reading was used to predict
howwell individual participants would perform on the comprehension test
and to infer which of the underlying processes distinguished the better
comprehenders from the poorer comprehenders. (We refer to the predic-
tion of comprehension performance from brain activity in the statistical
sense because a direct causal link from neural activity to cognitive perfor-
mance is not attainable in fMRI studies.) Similarly, brain activation during
reading was used to indicate which passages would be more difficult to
comprehend than others and to infer which of the underlying processes
were modulated by passage difficulty.

Results
Summary
The brain activation patterns acquired during participants’ reading of the
technical passages were systematically predictive of two types of outcomes.

First, regional brain activation during the reading of the technical
passages was related to performance on a post-scan comprehension test.
The brain regions whose activation best predicted comprehension of the
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technical content of the passages were strongly associated with several main
types of processes: verbal working memory supporting syntactic and
semantic language comprehension, retrieval of prior knowledge, spatial
aspects of mental model construction, and building new semantic knowl-
edge structures.

A second finding was that the regional brain activation during the
reading of the technical passages was also related to how easy or hard the
passage was to comprehend. The modulation of passage comprehension
difficulty was related to the activation in brain regions associated with
establishing links among different types of knowledge representations;
typically these different types of knowledge representations are distributed
across the cortex. The modulation was also related to activation in regions
associated with establishing conceptual coherence.

Brain regions and processes related to individual participant’s
comprehension
A set of regions associated with language processing and memory, spatial
imagery, episodic encoding, and semantic knowledge retrieval and reor-
ganization was more highly activated in readers who displayed better
comprehension of the technical passages. Positive correlations were found
between technical text comprehension and activation in language proces-
sing areas (the pars opercularis and pars triangularis portions of the left
inferior frontal gyrus (L IFG)); in spatial processing areas (the left superior
parietal lobule (SPL)); in a semantic integration area (left dorsolateral pre-
frontal cortex (L DLPFC); and in areas involved in the encoding and con-
solidation of new declarative knowledge (left and right hippocampal areas).
The areas showing a positive relationship between activation and compre-
hension of the passages are shown in red in Fig. 1. The peak t-values and
MNI coordinates for clusters of voxels showing a difference in correlation
with comprehension from zero and MNI coordinates are presented in
Table 1.

Other brain areas showed a negative relation between compre-
hension of the technical passages and activation during the reading of
the passages (greater activation was associated with poorer compre-
hending of participants). These areas are associated with the retrieval
of information from episodic or autobiographical memory (left
superior frontal gyrus (L SFG), left and right ventromedial prefrontal
cortex (L and R VMPFC), and the right precuneus (R Precuneus)),
and areas associated with the integration of newly learned knowledge
with information retrieved from episodic or autobiographical mem-
ory (left and right medial prefrontal cortex). These areas are shown
in blue in Fig. 1 and are presented at the bottom of Table 1.

The activation in regions showing a positive or negative relationship
between activation and comprehension performance was remarkably
similar across the three presentations. Regions positively related to com-
prehension in all three readings of the sentences included the left inferior
frontal gyrus (L IFG), the left superior parietal lobule (L SPL), the leftmiddle
frontal gyrus (L MFG), and areas involved in the encoding and consolida-
tion of new declarative knowledge (left and right hippocampal areas and
right precuneus). Supplementary Fig. 1 in the online Supplementary
Information shows the regions related to comprehension separately for each
presentation.

Multiple regression modeling of the relation between activation
and individual participant’s comprehension performance
A stepwise regression indicated that activation levels in four regions were
particularly related to individual participants’ comprehension performance:
left ventromedial prefrontal cortex (LVMPFC), left inferior frontal gyrus (L
IFG), right dorsolateral prefrontal cortex (R DLPFC), and the right hip-
pocampus (RHC). Thesewere also themost influential regions asmeasured
by their standardized regressionweights (ßs) in amodel includingall regions
as predictors. The brain activation levels of each participant (averaged over
the three readings of the passage) in each of the 12 regions described above
were entered as the independent variables in the stepwise regression model
to evaluate their relationship to the mean comprehension performance of
each participant (averaged over the 16 passages). The selected regions were
the first four independent variables that entered the model (thus, a forward
selection process, with theminimum Schwartz Bayesian Criterion dictating
when to stop adding variables). The resulting model was free from serious
multicollinearity (variance inflation < 1.5 for each of the selected variables,
with the minimum tolerance among them being 0.74). As the direction of
correlations shown in Fig. 1 and in Table 1 suggest, only the left ven-
tromedial prefrontal cortex (L VMPFC) had a negative regression weight.
Interestingly, it was also themost influential of the four variables selected by
the stepwise procedure (ß =−0.49); the negative regressionweight indicates
that participants who performed more poorly on the comprehension test
tended to have higher activation in this area. The remaining three predictive
regions had positive regression weights. The better comprehenders had
higher levels of activity in L IFG, RDLPFC, and RHC. The fit of this model
using activation in these four regions as independent variables was reliable
(F(4,26) = 20.43,MSE = 0.007, p < 0.00001) and resulted in an R2 of .76
(adjusted R2 = 0.72, Fig. 2).

Cross-validation methods that trained the models on a subset of
the data and tested them on the unseen subset established good

Fig. 1 | Regions where brain activation was related
to individual differences in reading comprehen-
sion. Red: Regions where activation was greater for
participants who were better comprehenders. Blue:
Regions where activation was greater for partici-
pants who were poorer comprehenders. See Table 1
for region abbreviations.
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predictive generalizability of the model. The results of the stepwise
analysis reported above indicated that individual participant com-
prehension performance was reliably associated with brain activation
in the selected regions from the full dataset including all three
readings of the sentences. This cross-validation procedure establishes
predictive validity across independent datasets, beyond showing
predictiveness across correlated datasets, as the full stepwise model
above does. Cross-validation was carried out by using the data from
two presentations (averaged over two readings of the full set of
passages) to select ROIs and train a regression model. Comprehen-
sion performance in the third, left-out presentation was then pre-
dicted using the regression weights from the training model. This

cross-validation was repeated using each pair of presentations for
training and each left-out presentation for testing. The ROIs selected
for training in each cross-validation fold were again based on the
correlation of activation and comprehension but were calculated
separately for each pair of training presentations. Each of these cross-
validated models demonstrated a reliable relationship between acti-
vation in the selected ROIs and comprehension performance (R2 = 0.47,
(F(4,26) = 5.67, MSE = 0.017, p = 0.00203), R2 = 0.49 (F(4,26) =
6.18, MSE = 0.016, p = 0.00123), and R2 = 0.49 (F(4,26) = 6.23, MSE =
0.016, p = 0.00114), for the three possible leave-one-out folds). The
fit of the average of the three cross-validation models is presented
in Fig. 3.

Table 1 | Regions of interest based on their correlation between activation during reading and comprehension

Regions of Interest Abbreviation in Figure 1 Peak
t-value

Peak MNI coordinates Volume (mm3) Processes

x y z

Regions with a Positive Correlation Between Activation and Comprehension

*Left Inferior Frontal L IFG 3.36 −39 26 13 9,099 Language Processing

Left Superior Frontal L SFG 2.40 −24 −1 73 540 Premotor Processing

Left Superior Parietal L SPL 2.24 −24 −49 55 621 Spatial Processing

Left Dorsolateral Prefrontal L DLPFC 1.90 −30 47 7 162 Semantic Knowledge Integration

*Right Dorsolateral Prefrontal R DLPFC 2.10 24 29 25 216 Semantic Knowledge Integration

Left Hippocampus L HC 2.09 −36 −40 −5 594 Episodic Encoding

*Right Hippocampus R HC 2.17 33 −31 11 135 Episodic Encoding

Regions with a Negative Correlation Between Activation and Comprehension

Right Ventromedial Prefrontal R VMPFC 2.70 6 68 1 436 Episodic Knowledge Integration

*Left Ventromedial Prefrontal L VMPFC 2.64 −12 68 −5 459 Episodic Knowledge Integration

Left Superior Frontal L SFG 2.09 −24 38 52 216 Episodic Retrieval

Right Precuneus R Precuneus 2.47 18 −52 28 918 Episodic Retrieval

Right Inferior Parietal R IPL 2.04 60 −58 37 135 Coherence Detection

Entries with an * are the most predictive variables of individual comprehension performance.
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Fig. 2 | Relationship between individual participant comprehension perfor-
mance and performance predicted from activation in key cortical regions. Each
point represents a participant. Values on the axes are the proportion of correct
responses on a multiple-choice comprehension test. Dotted lines show the 95%
confidence intervals on prediction.
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Brain regions and processes related to individual passage
comprehension difficulty
The comprehensibility of each of the 16 passages was related to the levels of
brain activity in 13 brain regions whose voxelwise activation was reliably
(p < 0.05) correlated with themean comprehension level (t-tests comparing
the values to zero on these voxelwisemaps of the correlation coefficients for
the 31 participants identified in these 13 regions, as shown in Fig. 4 and
Table 2).

The activation levels in these 13 brain regionswere entered as predictor
variables in a stepwise regressionmodel that identified four regions that best
explained the variance in passage comprehensibility based on theminimum
Schwartz Bayesian Criterion: the pars opercularis of the left inferior frontal
gyrus (L IFG), the right temporal pole (RTP), the left inferior parietal lobule,
and the medial anterior cingulate/dorsomedial prefrontal cortex (M ACC/
DMPFC). This reduced model, based on the regions whose activation was
correlated with comprehension, straightforwardly predicted the mean
comprehension of each passage (R2 = 0.88 (Adj. R2 = 0.84), F(4,11) = 20.02,

MSE = 0.003, p = 0.00005), as shown in Fig. 5. (The cross-validated model
with predictive validity is reported below). The four selected variables
entered the stepwise model and stayed without removal (a forward
regression model). Two of the four selected regions were also the most
influential as measured by their standardized regression weights in the full
13-ROI model (the M ACC/DMPFC ß =−0.99, L IFG ß = 0.74), and there
were no collinearity problems with the four selected predictors (all variance
inflation estimates < 2.0, all tolerances > 0.5). These regions predictive of the
difficulty of comprehending individual passages are involved in lexical
access and serve as a semantic hub that binds together semantic knowledge
of different types37,38,56,57.

The ability to predict comprehension difficulty at the passage level
from activation was cross-validated using the data from each pair of pre-
sentations (readings of the set of passages) to select ROIs and to train a
regression model. As with the prediction of comprehension at the partici-
pant level reported above, data from the remaining presentationwas used to
test the generalizability of the model. (The presentation-specific regions of

Fig. 4 | Regions of correlation between brain
activation during the reading of individual pas-
sages and comprehension performance on the
corresponding passages. Red: Regions whose acti-
vation was greater for better-comprehended pas-
sages. Blue: Regions whose activation was greater for
more poorly comprehended passages. See Table 2
for region abbreviations.

Table 2 | Regions of interest based on activity correlations with passage comprehensibility during reading

Region of Interest Abbreviation in Figure 3 Peak
t-value

Peak MNI coordinates Volume (mm3) Processes

x y z

Positively related to passage comprehensibility

*Left Inferior Frontal (pars opercularis) L IFG 2.04 45 50 −8 810 Semantic Processing

Left Temporal Pole L TP 2.58 −39 −1 −38 351 Semantic Processing

Left Middle Temporal L MTG 2.98 −57 −34 −17 1998 Semantic Processing

Left Ventrolateral Prefrontal L VLPFC 2.48 −21 47 −14 1836 Semantic Knowledge Integration

Right Ventrolateral Prefrontal R VLPFC 2.35 21 53 −14 1674 Semantic Knowledge Integration

Right Post. Sup. Temporal R PosSTG 2.46 45 −52 19 432 Semantic Processing

Negatively related to passage comprehensibility

Left Superior Temporal L STG 2.70 −51 −22 1 6048 Semantic Processing

Left Parietal/Precuneus L SPL/PC 3.05 −12 −61 43 2214 Spatial Visualization

*Left Inferior Parietal L IPL 2.23 42 −49 19 405 Semantic processing

Left Dorsomedial Prefrontal L DMPFC 2.68 −12 20 46 1863 Executive Control

*Medial Anterior Cingulate/Dorsomedial PFC M ACG/D MPFC 4.08 12 14 28 2943 Executive Control

*Right Temporal Pole R TP 2.58 42 11 −26 675 Semantic Processing

Right Superior Temporal R AntSTG 2.06 57 −10 −2 2592 Semantic Processing

Entries with an * are the most predictive variables of individual comprehension performance.
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activity are shown in Supplementary Fig. 2.) Each of these cross-validation
models demonstrated a reliable relationship between activation in the
selected ROIs and comprehensibility (R2 = 0.79, (F(4,11) = 10.37, MSE =
0.005, p = 0.00099), R2 = 0.73 (F(4,11) = 7.60, MSE = 0.006, p = 0.00344),
and R2 = 0.76 (F(4,11) = 8.57, MSE = 0.007, p = 0.00215), for the three
possible leave-one-out folds). The mean predicted comprehensibility of
each passage across the three training/test combinations resulted in an R2 of
0.44 (F(1,14) = 11.08, MSE = 0.01, p = 0.004970) (see Supplementary Fig. 3
for a plot of the cross-validated model fit.).

Predicting individual differences in comprehension on the basis
of psychometrically assessed cognitive ability
An interesting question iswhether the brain activitymeasureswere superior
to behavioralmeasures of cognitive ability in predicting individuals’ reading
comprehension performance. (Supplementary Table 1 presents the corre-
lations among all individual differences measures.) The Nelson–Denny
Reading Comprehension measure58, which is very similar to the target
comprehension test and hence is not an independent predictor, was
unsurprisingly significantly correlated with technical passage comprehen-
sion (R2 = 0.40, F(1,29) = 19.37, MSE = 0.017, p = 0.000133). Other psy-
chometric measures were also mildly predictive of comprehension
performance. The Raven Progressive Matrices Test59, a measure of fluid
intelligence, was reliably related to comprehension (R2 = 0.30,
F(1,29) = 12.18, MSE = 0.022, p = 0.001565). The Reading Span Test60, a
measure of working memory capacity for language comprehension, was
also reliably related (R2 = 0.22, F(1,29) = 8.39, MSE = 0.022, p = 0.00711).
Also mildly related was the Bennett Mechanical Comprehension
Test61, a measure of mechanical aptitude testing spatial visualization and
knowledge of basic physical and mechanical laws and their application in
solving mechanical problems (R2 = 0.18, F(1,29) = 6.50, MSE = 0.023,
p = 0.016336). A multiple regression model using the latter three psycho-
metric measures to predict comprehension resulted in a multiple R2 of 0.36
(F(3,27) = 4.96, MSE = 0.019, p = 0.00188). By comparison, as reported
above, the brain activation measures in four brain regions (L IFG, L IPL, M
ACC/DLPFC, and R HC) predicted comprehension with a multiple R2 of
0.76. To quantitatively compare which type ofmeasure wasmore predictive
of comprehension, one setofmeasures (psychometric or brain imaging)was
included in an initialmodel and the alternative set ofmeasures was added to
that model to test whether the improvement in prediction was reliable. The

resulting analysis indicated that the addition of the psychometric measures
to the brain imagingmeasures did not result in a significant improvement in
prediction (increment in R2 = 0.048, F(3, 24) = 2.09, MSE = 0.019,
p = 0.12813). By contrast, the addition of the brain imagingmeasures to the
psychometric measures resulted in a reliable improvement in prediction
(increment in R2 = 0.47, F(4, 24) = 14.99, MSE = 0.007, p < 0.00001). Thus,
including the brain imaging measures provides additional ability to predict
comprehension in individual participants, and also provides additional
insight into the psychological processes underlying the reading compre-
hension performance.

Predicting passage difficulty from text properties
The prediction of passage-level comprehensibility based on brain activation
measureswas superior to thepredictionbasedon readabilitymeasures of the
texts. Coh-Metrix natural language processing procedures62 were used to
describe each text on five measures of readability (Narrativity, Syntactic
Simplicity,WordConcreteness, Referential Cohesion, andDeepCohesion).
(The inter-correlation of these measures is presented in Supplementary
Table 2.) A stepwise regression using these predictors of individual passage
comprehensibility indicated that only Syntactic Simplicity (which predicted
better comprehension) approached significance in explaining the variance
in passage comprehensibility (R2 = 0.24, F(1,14) = 4.45, MSE = 0.0001,
p = 0.053386).

Although the Coh-Metrix measure of Deep Cohesion was not reliably
related to passage difficulty, it was related to activation in two regions. As an
alternative approach to explaining how features of the texts might influence
comprehension processes, the Coh-Metrix measures were used to predict
brain activation in each of the regions selected by the main stepwise
regression relating activation to comprehensibility (L IFG L IPL, R TP, and
M ACC/DMPFC). The stepwise regression predicting activation in L IFG
found that only themeasure of Deep Cohesionmet theminimum Schwartz
Bayesian Criterion (R2 = 0.45, F(1,14) = 11.51, MSE = 0.0001, p < 0.00438).
The stepwise model for L IPL also selected only the measure of Deep
Cohesion (R2 = 0.21, F(1,14) = 3.67, MSE = 0.0003, p = 0.076051). For the
remaining two regions, stepwise regression models found no relationship
between any of the six Coh-Metrix measures of text features and brain
activation. Even though Deep Cohesion did not directly predict passage-
level comprehensibility, it is possible that activation in L IFG and L IPL
mediates the relationship between cohesion and comprehensibility. In both
regions, more cohesive passages evoked greater activation, and greater
activation in these regions was related to better comprehension of the
passages.

Predicting passage difficulty from familiarity with the content
Rated familiarity with the passage topics was only moderately related to
comprehensibility. The passage topics were rated as relatively unfamiliar by
the participants (mean rating = 2.83 (SD = 0.88) on a 7-point scale where 7
indicated “very familiar”). The mean of the correlations between a partici-
pant’s familiarity rating for a topic (based onhaving seen only the topic title)
and their comprehension scores on the passage on that topic was modest
(meanFisher’s z-transformed r = 0.24, SD = 0.28).Note that each individual
passage had a limited number of possible performance levels, based on
responses to fourmultiple-choice test questions, eachwith four alternatives.
This may limit the information these correlations can provide. Despite the
weak correlation, this mean across participants was nevertheless reliably
greater than zero (t(30) = 4.65, p < 0.000005).

Changes in activation with repetitions of the passages
As expected, there were changes in activation over the course of the three
readings of the passages, but they were not the simple monotonic changes
one might predict if processes became more or less active with each addi-
tional exposure. These changes were evaluated using whole-brain paired
t-tests among the three pairs of passage repetitions across all participants.
The results indicated that overall activation increased between the first and
second reading of the passages in the bilateral occipito-temporal cortex, in
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the left superior temporal sulcus and anteriormiddle temporal gyrus, and in
the right temporal pole (see Supplementary Fig. 3a). These same areas
decreased in activation from the second to third reading of the passages
(see Supplementary Fig. 3b). In the right inferior frontal gyrus and the
medial superior frontal gyrus, activation increased by the third reading. This
invertedU-shaped functionof activation in temporal language areas and the
corresponding increase in lateral andmedial frontal areasmay reflect a shift
from semantic to executive processing with repeated presentations.

Discussion
This study produced two centralfindings concerning the processes involved
in the comprehension of technical information from a text, namely: (1) it
identified the neural and psychological processes that are related to indi-
vidual differences in the comprehension of technical texts, and (2) it iden-
tified the neural and psychological processes that are related to more
comprehensible versus less comprehensible passages.

Individuals with higher comprehension showed more activity during
reading in the left inferior frontal lobe, the left superior parietal lobe, the
bilateral dorsolateral prefrontal cortex, and the bilateral hippocampus.
Processes subserved by these regions are consistent with the construction of
mentalmodels that incorporate spatial imagery and integrate prior semantic
knowledge with new information. By contrast, participants with poorer
comprehension had higher activation in the right inferior parietal lobe and
the left and right ventromedial prefrontal cortex. Poorer comprehenders
engaged in more processing of the meanings of individual words and more
processing of episodic or autobiographical knowledge.

The comprehensibility of individual technical passages was associated
with the difficulty of accessing the meaning elements of the concepts in the
text and integrating the concepts with each other, a difficulty best predicted
by the brain activity in anterior left temporal lobe areas, consistent with
previous research on the role of these regions37,38. Better comprehended
passages were also associated with more activity in an area of the right
temporal lobe that is involved in establishing discourse level coherence
across propositions, which is also consistent with previous research63–66.

The new insights into the neural and cognitive processes that underlie
successful expository comprehension converge with prior behavioral
research in their practical implications. These implications include sug-
gestions for the teaching of particular comprehension strategies and for
improving thewriting of such texts to facilitate comprehension, as discussed
in more detail in a later section.

Among the better comprehenders, therewasmore activation in the left
inferior frontal gyrus, associatedwith phonological, semantic, syntactic, and
propositional maintenance processes67 that constitute verbal working
memory for language60,68. Individual differences in working memory
capacity have long been known to predict language comprehension at
multiple linguistic levels, including discourse-level comprehension63,69. The
findings here show that more activation in this region during the reading of
technical texts (enablingmore maintenance of the text representation in an
activated state) helps predict individual differences in comprehension
performance.

Brain regions responsible for spatial processing and spatial imagery
(SPL and IPS) were more active among better comprehenders, suggesting
that their spatial cognition facilitated comprehension70. This was coupled
with greater activation in lateral prefrontal semantic structure-building
areas, suggesting that spatial imagery was used to construct an integrated
mental model71. This is consistent with behavioral evidence that readers
incorporate such spatial imagery into their situation models72,73. Spatial
mentalmodelsmay also serve as amedium for “mental animation” that can
represent the causal anddynamicproperties of a system25. Thepassagesused
here generally contained highly visuospatial conceptual content and the
greater activation of the better comprehenders most likely reflects greater
visualization of the content.

During the reading of the passages, better comprehenders showed
greater activation in the bilateral anterior dorsolateral prefrontal cortex and
bilateral hippocampus, whereas poorer comprehenders showed higher

activation in the medial ventrolateral prefrontal cortex and the precuneus.
The activation pattern in better comprehenders is associated with the
encoding and integration of new semantic information with retrieved
semantic knowledge to construct newknowledge structures44,45. By contrast,
the activation in poorer comprehenders in more medial prefrontal areas is
associated with relating new information to retrieved episodic memories or
autobiographical knowledge47–49. Numerous psychological and educational
studies have firmly established the role of prior knowledge in reading
comprehension performance7,8,30,35,74–76. The implication of the present
findings is that the comprehension of technical information is betterwhen it
is related to previous semantic knowledge thanwhen it is related to previous
episodic knowledge.

In summary, during the reading of expository texts, greater activation
of regions associated with verbal working memory, spatial visualization,
mental model construction, and the semantic integration of new and
retrieved knowledge was observed in the better comprehenders.

Activation in frontal and temporal lobes that was related to individual
passage difficulty reflects processes that integrate different types of semantic
information from different cortical areas56,57,77. The right temporal pole’s
activation in response to the more difficult passages may result from such
texts containing information inconsistent with world knowledge. This
region has previously been shown to activate during the comprehension of
narrative texts that contain details that are inconsistent with a global
theme78. In contrast, the right posterior temporal lobe activated more for
passages that were better comprehended, consistent with its role in drawing
inferences that are required to build a coherent situation model63–66,78. The
current findings indicate that passage difficulty is modulated by processes
that bring together information from anatomically distributed component
representations and that bind together different types of information. The
fMRI technology allows the underlying neural processes that occur during
the actual reading to be observed andmeasured and subsequently related to
the resulting comprehension performance.

Thefindings that better technical comprehension involves activation in
regions associated with language and verbal working memory, spatial
mental model construction, and knowledge integration support the teach-
ing of several strategies that might improve comprehension of technical
passages. Less familiar concepts could be introduced and explained prior to
theirmention in a text. This is consistent with educational research showing
that skilled comprehenders have more immediate access to word meaning,
facilitating the integration of individual words into a mental model30 and
that teaching themeanings of unfamiliar concepts in the texts ahead of time
improves text comprehension79. In addition, explicitly teaching visualiza-
tion strategiesmaybe an effectiveway to improve theperformanceof poorer
comprehenders of technicalmaterial. Behavioral researchhas demonstrated
that spatial ability is related to success in science, technology, engineering,
and math (STEM) fields80, and that computer-based instruction in spatial
visualization strategies improves performance in reading comprehension81.
Explicitly teaching individuals to make the type of bridging and causal
inferences that are necessary for building a situation model may also
enhance the comprehension of technical passages. One of themost effective
ways of facilitating such inference generation is teaching self-
explanation27,82–84.

Thefinding that activation in areas associatedwith semantic access and
integration was related to the difficulty of individual passages suggests that
technical texts can be improved by making them more cohesive. A robust
finding in the psychological and educational literature is that text cohesion
facilitates coherence and improves comprehension of discourse8,9,36,62,85.
Although the present study did not find reliable correlations between pas-
sage comprehension and measures of passage cohesion, the materials were
not designed to vary greatly in cohesion. Nevertheless, the fMRI data seem
to be sensitive to this aspect of the structure of the passages, as evidenced by
the reliable correlations between ameasure of deep cohesion and activation.
This activation was predictive of comprehension and may serve as a med-
iating individual difference variable indicative of the interaction between the
text and the brain in determining comprehension. Explicit cohesive devices
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that can be incorporated across sentences and paragraphs include overlap of
arguments and clear indications of causal, temporal, and spatial relations
that are not overtly stated.

This study represents an advance in understanding the sources
of individual differences in comprehending complex technical
information. The brain activation data showed that better compre-
henders engage more of three key cognitive processes: they keep
more verbal information temporarily active in memory while read-
ing, they are more likely to imagine the spatial relationships among
the objects described, and they relate new information with pre-
viously learned world knowledge. These findings suggest that
teaching comprehension strategies that explicitly engage these pro-
cesses could improve technical comprehension among students who
are poorer at this task. In addition, passages that are harder to
comprehend inadequately interrelate different types of information,
evoking additional integrative and inferential processing. Instruc-
tional texts that make such relations more explicit may facilitate
comprehension and learning.

As society becomes increasingly dependent on technical learning from
text, the needs for new instructional approaches arise. Functional neuroi-
maging research can inform the quest for suchmeta-cognitive instructional
approaches. The research on reading comprehension is just one example of
the potential impact of this approach.

Methods
Participants
Thirty-one right-handed, nativeEnglish speakers between the ages of 18 and
35 (25 females and6males) from thePittsburgh areaprovidedusable data in
the fMRI scanning task. These participants were selected from a pool of 265
individuals who participated in an online reading comprehension test to
identify participants at the extremes of this distribution of reading com-
prehension performance. Eleven participants were excluded from the fMRI
analysesdue to excessive headmotion (8), because they fell asleepduring the
scan (2), or were found to have an anatomical brain abnormality (1). All
participants gave signed informed consent approved by the Carnegie Mel-
lon Institutional Review Board.

Materials
Twenty-four passages (presented in Supplementary Table 3) were devel-
oped that described either mechanical devices or general knowledge topics.
Each passage consisted of five sentences with a mean passage length of 132
words. The topics of the 16 passages used in the fMRI study were Bilge
Pump, LiDAR, Refrigeration System, Automatic External Defibrillator,
Screw Propeller, Sonar, 3D Printer, Aircraft Carrier Catapult, Bacteria,
Acoustics and Cochlear Implants, Fever, Tumors Oncology Cancer, Pho-
tography, Intellectual Property, Beverages, and Mechanical Engineering of
Robots. The eight remaining passages were used for pretesting of partici-
pants and familiarization with the reading comprehension task. The topics
of the pretest passages were Boiler, Pressure Safety Valve, Turbine, Landing
Gear Door Latching System, Automatic Direction Finder, N95Masks, The
Clock’s Timekeeper, and Electronic Circuits.

Procedures
Pretest screening session. Prior to participation in the fMRI session,
participants first completed two reading comprehension tasks in a one-
hour interactive online Zoom session to identify those who were parti-
cularly good or particularly poor at technical comprehension. The par-
ticipants read two iterations of the set of eight screening passages,
presented as a 17-min video over Zoom. The presentation of screening
passages followed the same procedures as the fMRI task, as described
below. The fMRI study enrolled only participants with either high or low
reading comprehension scores (High = 88–100% correct; Low = 41–72%)
in the pretest. Following the comprehension test, the participants com-
pleted theNelson–DennyReadingComprehensionTest58 as an additional
assessment of reading comprehension skills.

Experimental session. Prior to the fMRI scanning, familiarity ratings on
a 1–7-point scale for each of the 16 passage topics were acquired (1 being
not familiar at all, and 7 being very familiar), along with a Handedness
Questionnaire86.

Following the presentation of one warmup passage (on the topic of
Wheelchairs), the set of 16 test passages was presented three times (in
different random orders) by first displaying the passage title for 1.5 s, fol-
lowed by a fixation point for 0.5 s. The passage was then displayed using a
moving window paradigm that presented one phrase (consisting of 1–4
words) at a time. The segmentation into phrases attempted to respect
syntactic boundaries. Phrases longer than 4 words were presented in two
successive cumulating segments. The displayed phrase disappeared when
thenext phrasewaspresented.Themovingwindowmoved from left to right
and down successive lines in the locations where the text would normally
occur. To present the text at a comfortable reading rate, the presentation
duration parameters were based on an approximate average modulation of
gaze durations by word length and frequency during text reading87, plus an
intercept of 300ms. The phrase presentation duration was 300ms+ 16ms
per character+ (400ms–(31.26*log (word frequency of least frequent
word))). There was a pause of 4 s after each of the first four sentences of a
passage during which the fixation point (an asterisk) was displayed, pro-
viding time to process the most recent sentence as well as integrate the new
information with the previous sentences. This echoes the natural pause
observed at the ends of sentences87. After the final sentence, an ‘X’ was
displayed for 6.5 s to mark the end of the passage.

During the first two presentations of the passages, the stems of two (of
the ultimate 4) questions (but not the response alternatives) were presented
following each passage, to orient the participants to the type of information
that would be interrogated (see Supplementary Table 4). The same ques-
tions were presented in the first two presentations. The two questions were
displayed simultaneously for 5–10 s (the precise duration being dependent
on their character length). Following the presentation of the two questions,
an ‘X’ fixation point, 3.5 s in duration, was presented before the next
passage began.

After completing the comprehension task, 29 of the participants also
performed a recall task in the scanner whose analysis is not reported here
because of its marginal contribution to the goals of the main study.

In the post-scan comprehension test, comprehension was assessed
with four multiple-choice questions (each having four possible response
alternatives) regarding each of the 16 passages. The stems of two of the four
questions per passage were presented in conjunction with the first and
secondpresentationsof thepassages (see SupplementaryTable 4).Theother
two questions had not been previously seen by the participants. Participants
also completed the following psychometric tests after the scan: The Reading
Span Test60, Raven’s Standard Progressive Matrices88, and the Bennett
Mechanical Comprehension Test (abbreviated version)61.

fMRI acquisition
Functional images were acquired on a Siemens Prisma (Erlangen, Ger-
many) 3.0 T scanner at the Brain Imaging Data Generation & Education
(BRIDGE) center, jointly operated by Carnegie Mellon University and the
University of Pittsburgh. A multiband slice-accelerated BOLD spin-echo
echo planar acquisition sequence89 was used to acquire 40, 3-mm-thick
slices with no gap in each TR (1000ms) using a multiband factor of 2, an
AC-PC slice orientation covering all of the cerebral cortex, a TE of 25ms, a
tip angle of 64°, a 192 × 192mm field of view and a 64 × 64 in-slice matrix.
SPM software90 was used to correct head motion in the images and nor-
malize them to the Montreal Neurological Institute template91.

Data analysis
The mean percentage signal change (MPSC) relative to the fixation con-
dition was computed at each gray matter voxel for each image of each
stimulus presentation. The main measure of activation evoked by a passage
consisted of the voxel activation levels acquired for each sentence around the
peak of the hemodynamic BOLD response and averaged across the five
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sentences of the passage. The data acquisition interval for each sentence
included four brain images acquired once per second (i.e. a TR of 1000)
within a4-swindow, offset5 s fromthe stimulusonset (i.e. images 5–8).This
windowwasnot dependent on the duration of the sentencepresentation but
rather was intended to capture the peak of the BOLD response to the
sentence.

Identification of regions responsive to individual differences in
comprehension. Cortical areas that responded differentially across
participants during reading were identified by statistical parameter maps
of voxelwise correlations betweenMPSC (averaged over all passages) and
comprehension performance on the post-scan test. Voxelwise one-
sample t-tests identified clusters of positive and negative correlations
with comprehension. These analyses were performed in SPM using a
height threshold of p < 0.05 and a cluster extent threshold of 10 voxels. A
set of 12 regions of interest (ROIs) met these criteria for region selection
(Fig. 1 and Table 1).

This ROI selectionprocedurewas also performed separately for eachof
the three presentations (i.e. the three repeated readings of the set of 16
passages), as well as for each possible pair of presentations, to provide
independent ROIs for uncontaminated cross-validation of the
regression model.

Predictivemodelingof individual differences in comprehension. The
MPSC data (averaged over the three presentations) from the correlation-
basedROIswere entered into a stepwise regressionmodel as independent
variables, with the participants’ mean comprehension scores (averaged
over the four comprehension questions) for each passage as the depen-
dentmeasure. The purpose of the stepwise analysis was to select from this
full set of regions those that together contributed most to predicting
comprehension performance. The stepwise selection procedure used a
p < 0.15 criterion for entry and a p < 0.15 criterion for retention in the
final model, which used the minimum Schwartz Bayesian Criterion for
stopping. Multi-collinearity was assessed with variance inflation and
tolerance measures at each step. To evaluate the fit of the resulting model
(which included only MPSC data from the stepwise-selected ROIs), the
predicted comprehension values from this model were compared to the
observed comprehension values, resulting in an R2 value quantifying
the variance in comprehension explained by the activation in the
selected ROIs.

Cross-validation of the prediction of participant-level comprehension
from participant-level activation was performed by training three separate
models on the MPSC data from each possible pair of presentations of the
passages, and by testing the resulting model by applying the obtained
regressionweights to the averagedMPSCdata in the correspondingROIs in
the remaining, left-out presentation. ROIs in each training set were selected
as the cluster of comprehension-correlated voxels whose peakwas closest to
that of the selected ROIs from the descriptive stepwise model above. The
data from the test presentation was extracted from these training-based
ROIs rather than those defined in the test presentations. The predicted
comprehension performance was averaged for each participant over the
three folds of the cross-validatedmodels andwas compared to the observed
comprehension performance for that participant, resulting in a cross-
validated R2 measure of the fit.

Identification of regions and predictive modeling of the compre-
hension of individual passages. Regions of interest (ROIs) for mod-
eling the comprehensibility of individual passages were selected on the
basis of statistical parameter maps of the voxelwise correlation between
the mean comprehension of an individual passage (averaged over all
participants) and the MPSC in each voxel. A one-sample t-test identified
regions that were reliably positively or negatively related to compre-
hensibility over the 16 passages (threshold p < 0.05, minimum cluster
size = 10). Thirteen ROIs met these criteria (Fig. 4 and Table 2).

This same ROI selection procedure was also performed separately for
each of the three presentations (i.e. repeated readings of the set of 16 pas-
sages) to provide independent ROIs for uncontaminated cross-validation of
the prediction of individual passage comprehension.

Multiple regression prediction of mean comprehension perfor-
mance of each passage. Mean comprehensibility of individual pas-
sages was predicted using the same regression methods and criteria as
those used for predicting individual participant comprehension. Stepwise
selection was used to identify regions in which the MPSC significantly
contributed to the prediction of the comprehensibility of individual
passages, and the fit of the model was evaluated by the R2 value quanti-
fying the variance in observed comprehensibility explained by the pas-
sage comprehensibility predicted by activation in the selected ROIs.

As with the prediction of participant-level comprehension perfor-
mance, cross-validation of the ability of activation to predict passage-level
comprehensibility involved fitting a separate model using the MPSC in the
independently selected ROIs for each possible pair of presentations to
predict comprehension performance and applying the resulting regression
weights to the averaged activation in corresponding ROIs in the test pre-
sentation. The predicted comprehension performance was averaged for
each individual passage over the three folds and was compared to the
observed comprehension performance for that passage, resulting in a cross-
validated R2 measure of the fit.

Assessing changes in activation across presentations. Correlation
maps for each presentation based on participant-level and passage-level
comprehension means were examined to qualitatively judge the con-
sistency of the voxelwise relationships between comprehension and
activation over the three presentations. To quantify changes in activation
across presentations, the overallMPSC (the overall voxelwisemean signal
during fixation subtracted from that during that passage reading) was
calculated for each participant. Second-level voxelwise paired t-tests were
then performed on this MPSC data for the 31 participants contrasting
each pair of presentations. The resulting statistical parameter maps were
thresholded (p < 0.05, minimum cluster size = 10), to identify regions
that increased or decreased in overall comprehension activation relative
to the baseline for each pair of presentations.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All data are available by request directed to the corresponding author. There
are no limits on data sharing.

Code availability
All codes used for the analyses are available by request directed to the
corresponding author.
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