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Relation of life sciences students’
metacognitive monitoring to neural
activity during biology error detection
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Metacognitive calibration—the capacity to accurately self-assess one’s performance—forms the
basis for error detection and self-monitoring and is a potential catalyst for conceptual change. Limited
brain imaging research on authentic learning tasks implicates the lateral prefrontal and anterior
cingulate brain regions in expert scientific reasoning. This study aimed to determine how variation in
undergraduate life sciences students’ metacognitive calibration relates to their brain activity when
evaluating the accuracy of biological models. Fifty undergraduate students enrolled in an introductory
life sciences course completed a biologymodel error detection task during fMRI. Students with higher
metacognitive calibration recruited lateral prefrontal regions linked in prior research to expert STEM
reasoning to a greater extent than those with lower metacognitive calibration. Findings suggest that
metacognition relates to important individual differences in undergraduate students’ use of neural
resources during an authentic educational task and underscore the importance of fostering
metacognitive calibration in the classroom.

Self-regulated learning is the extent to which students are engaged,
motivated, and behaviorally active in their learning1. Self-regulated
learners accomplish tasks or goals by continuously monitoring and
correcting the effectiveness of their strategies and past behaviors to better
control future learning2. Metacognitive calibration, the match between a
student’s objective performance and their subjective self-assessment of
that performance3,4, is fundamental to self-regulated learning because it
forms the basis for performance monitoring5. Students with more
accurate calibration presumably have more reliable information on
which to base their deployment of effortful, strategic, cognitive resources
to optimize task performance6.Metacognitive calibration has been linked
to dorsomedial prefrontal systems thought to be involved in monitoring
and detecting errors in performance, as well as to lateral PFC regions
linked to effortful cognitive control7. However, neuroimaging studies of
metacognitive calibration generally have used experimental tasks rather
than tasks reflective of authentic educational experiences, leaving a gap in
understanding how metacognition relates to students’ neural processes
in classroom-relevant learning. Modeling and model evaluation are
authentic tasks in scientific practice and education8, and expert scientists
are skilled at detecting inaccuracies in models9. This study aimed to
determine the relation of metacognitive calibration to student perfor-
mance and neural activity when evaluating biological models.

Although a general definition of metacognition is “thinking about
thinking”10, contemporary conceptualizations typically divide it into two
distinct processes: knowledge about cognition, including self-monitoring,
and self-regulatorymechanisms10–12. Self-monitoring involves knowinghow
well one is performing and recognizing the likelihood of accuracy or inac-
curacy in one’s judgments or behaviors. Conversely, metacognitive self-
regulation concerns the process of organizing one’s cognition, planning,
being aware of one’s comprehension, and evaluating the efficacyof strategies
during task performance13,14. Learners who develop high self-monitoring
and self-regulation skills revise and reconstruct concepts to advance their
knowledge and achieve high self-efficacy, persistence, and self-discipline in
performing tasks15–17.Well-calibrated self-assessments also havebeen linked
to students’ use of more effective study strategies and to higher levels of
academic growth over time18–20.

Student ratings of confidence in their own performance offer one
means of assessing self-awareness and calibration21. For well-calibrated
learners, confidence ratings should correspond with actual performance22.
That is, students should have high confidence when they are accurate and
low confidence when not. Although confidence estimates are higher for
correct relative to incorrect trials23, lower-performing students tend to be
more overconfident in their performance predictions, while higher-
performing learners are accurate or underconfident in their self-
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assessments12,24,25. Additionally, learners tend to be overconfident when
evaluating complex or difficult information and underconfident about
relatively easier information26.

Metacognition has repeatedly been linked to the prefrontal cortex
(PFC), with greater activity in the dorsolateral and anterior medial PFC
being associated with higher levels of self-awareness and metacognitive
accuracy27–29. Severalmetacognition studies highlight the ventromedial PFC
and posterior medial frontal cortex as central brain areas related to con-
fidence estimates30,31 and error detection processes32–34, while both the
frontopolar cortex and the lateral PFC are involved in explicitmetacognitive
judgments23,35, metacognitive control, and subsequent behavioral
regulation36,37. More generally, areas in the dorsal anterior cingulate cortex
(ACC)are thought tomonitor for conflict or errors inperformance,whereas
the lateral PFC presumably uses these inputs to bias behavior toward more
adaptive cognitive strategies7,35,38. From these studies, it is reasonable to
hypothesize that studentswithhigher levels ofmetacognitive calibrationwill
show higher levels of activity in medial and lateral PFC regions during
academic tasks, reflecting optimal use of self-monitoring and regulatory
processes to guide performance. However, given that these studies have
often involved experimental tasks, the extent to which these same neural
regions are linked tometacognitionduringmore authentic educational tasks
remains unclear.

Model-based reasoning, a core emphasis area in STEMeducation, offers
a particularly relevant context for understanding how metacognitive cali-
bration relates to students’ brain activity during authentic learning
experiences39. From simple flowcharts and graphs to complex computer
simulations,models pervade all areas of science and are how scientists reason,
evaluate hypotheses, and convey ideas40,41. Undergraduate biology students
encounter models through textbooks, lectures, note-taking, and classroom
activities that convey foundational introductory principles regarding genetic,
ecological, and cellular systems42. Each time they encounter amodel, students
must determine whether their prior knowledge of the topic is in agreement
with the observed model. Measuring biology students’ capacity to detect
errors in models constitutes a powerful means to assess the relation of their
metacognition to their performance of this critical scientific skill.

Linking metacognitive calibration to model error detection also offers
the potential for understanding how to elicit conceptual change to ulti-
mately foster a deeper understanding of fundamental scientific concepts43.
To learn scientific concepts, students must be able to actively refine their
learning process and integrate new concepts and relationships with their
prior knowledge44. Learnersmustfirst becomedissatisfiedwith their existing
conceptions, embracing new conceptions as plausible45. However, con-
ceptual alterations prove difficult when learners hold misconceptions46,47

because these errors continue to be recalled and reinforced until scientifi-
cally accurate knowledge outcompetes them48. Absent or poor metacogni-
tion may predict the extent to which learners both ignore new information
and resist changing their minds, even when new information indicates
errors in their original beliefs27. For learners who hold misconceptions,
conceptual change is more predictable when an alternative scientific view-
point initiates cognitive conflict, allowing error detection in the
misconception49.

Metacognitive calibrationmay be a critical initial step in the process of
conceptual change50. Students who are more metacognitively aware of
misconceptions about a given topic are more likely to detect and remedy
those misconceptions to develop a deeper understanding of a concept or
topic, decreasing the likelihood of entrenching misconceptions51. Con-
versely, students who are unaware of their misconceptions may become
overly secure in those misconceptions (i.e., they do not know what they do
not know)51,52 and may consequently miss opportunities for knowledge
revision53. Evaluating how students’metacognitive calibration links to their
error detection and ultimate learning may offer clues as to how metacog-
nition supports conceptual change.

Limited literature on the neural regions involved in expert science
cognition highlights its association with prefrontal regions linked to error
detection, conflict monitoring, and inhibition54. Additionally, experts

evaluating the accuracy of scientific circuits activate anterior cingulate
cortex (ACC), ventrolateral PFC (VLPFC), and dorsolateral PFC (DLPFC)
to a greater extent thannovices,who tend to activatemore limitedprefrontal
regions55,56. These brain regions are thought to work in concert to support
scientific reasoning. The lateral PFC provides the cognitive control neces-
sary for logical thinking, flexible reasoning, and inhibition of inappropriate
responses or attentional stimuli32,57; the ventromedial PFC integrates emo-
tional and cognitive factors to guide decision-making56,58; and the ACC
contributes to inhibitory processes and error monitoring, helping indivi-
duals stay on track and correct or adjust their reasoning when necessary59.

With respect to metacognition, novice students exhibited greater
dorsomedial frontal activity when they were confident vs. not confident in
their responses to physics electric circuit diagrams60. Taken together, these
studies implicate ACC and lateral PFC regions in the expert processing and
resolution of science misconceptions. Assuming that students with higher
metacognitive calibration are better equipped to engage in ‘expert’-like error
detection and associated engagement of control, we expected such students
to use these regions to a greater extent than their less calibrated peers when
evaluating biological models.

Conceptual change theories identify metacognitive calibration as a
critical process that enables students to detect and resolve gaps in their
knowledge. However, neuroimaging studies typically examine the neural
bases ofmetacognitive processing and calibration accuracy in the context of
novel or self-reflection-based tasks, rather than educationally authentic
tasks like those involving scientific reasoning61,62. Further understanding of
the neural bases of metacognitive monitoring during an authentic task of
model error detection will offer new insights into themechanisms by which
this construct supports students’ development as scientists. The limited
neuroimaging research on scientific cognition indicates that ‘expert’ scien-
tists activate DLPFC, VLPFC, and ACC brain regions to a greater extent
than ‘novice’ undergraduates when reasoning about scientific phenomena,
particularly when accurate reasoning involves detecting and inhibiting
misconception55,63. The current study’s goal was to examine the relation of
students’ metacognitive calibration to their neural activity during a biolo-
gical model evaluation task. Specifically, we aimed to determine how indi-
vidual differences in students’ calibration accuracy64,65 related to their
activity in lateral prefrontal and ACC regions linked both to metacognition
and to scientific expertise (see “Methods” section). Based on the theory that
accurate calibration serves as a foundation for error detection and con-
ceptual change, we hypothesized that students with higher metacognitive
calibration would show higher levels of activity in prefrontal regions linked
to these scientific processes.

Results
Behavioral results
Table 1 presents descriptive statistics and correlations among the different
behavioral variables. Students on average were correct on 65% of themodel
evaluation task trials, whereas they were confident ~75% of the time. Figure
1 illustrates the significant difference in student confidence levels for
accurate vs. inaccurate trials of the model evaluation task (t(49) = 7.72,
p < 0.001, d = 1.09), although students still responded that they were con-
fident more often than not for trials where they made an inaccurate
response. The moderate correlation between total accurate responses and
total confident responses (r = 0.403,p = 0.004) indicated that asparticipants’
accuracy increased, their overall confidence levels also increased (for further
behavioral findings highlighting the importance of self-monitoring sees1,2).

The different metrics for metacognitive calibration, sensitivity, and
efficiency, as calculated from students’ confidence ratings and accuracy in
the fMRI model evaluation task, were robustly inter-correlated (p’s < 0.01).
Neither student’s ϕ scores nor their metacognitive efficiency scores corre-
lated with their model evaluation accuracy, although meta-d’ scores did, as
expected (p < 0.001). Final course grade in the introductory life science
course correlated slightly with model evaluation task accuracy (p = 0.008),
but not with confidence, p = 0.39. Measures of metacognition showed
minimal correlations with final course grades, except for meta-d’, p = 0.05.
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Neuroimaging results from the model evaluation task
Overall patterns of brain activity for confident and non-confident
responses. Table 2 and Fig. 2 show that during trials where students
indicated they were Confident > Not confident, widespread neural
activation occurred across occipital regions, and in the parietal cortex
and lateral and medial PFC (see Supplementary materials for the same
analysis using a more conservative statistical threshold). We per-
formed a further contrast of Error > No error models only for trials
where students were confident, which indicated that students showed

increased activity in a medial frontal cluster, in bilateral inferior
prefrontal/insular regions, and in the lingual gyrus (Table 2, Supple-
mentary Fig. 2). Finally, we contrasted trials where students were
confident and accurate in their response > confident but inaccurate
(i.e., overconfident) in their response. This analysis revealed that
students exhibited more activity in a single cluster in the left lingual
gyrus when they were confident and accurate relative to confident and
inaccurate (Table 2, Supplementary Fig. 3). Overall when examined by
trial type, students exhibited greater activity in lateral and medial PFC

Table 1 | Descriptive statistics and correlations among the behavioral variables

Variable M (SD) 1 2 3 4 5 6 7 8 9 10

1. Total accuracy
23.40 (4.02)

2. Total responses of ‘confident’
27.28 (4.38)

0.40**

3. Phia

0.10 (0.19)
0.25 0.17

4. Confidence bias
−0.27 (0.25)

0.16 0.39** −0.84**

5. Type 1 d’
0.90 (0.67)

0.97** 0.36** 0.28 0.09

6. Meta d’
0.72 (0.89)

0.54** 0.30* 0.90** −0.61** 0.57**

7. Meta-efficiency
−0.18 (0.75)

−0.23 0.03 0.82** −0.81** −0.22 0.67**

8. Biology self-efficacy
3.78 (0.53)

0.23 0.24 0.11 0.07 0.20 0.18 0.03

9. KBIT Reading
106.36 (9.28)

0.13 −0.01 0.06 0.02 0.16 0.07 −0.06 0.03

10. Engagement
4 (0.47)

−0.02 −0.09 −0.12 0.08 −0.06 −0.18 −0.16 0.12 −0.01

11. Final Course Grade
3.55 (0.62)

0.40** −0.13 0.23 −0.13 0.34* 0.28* 0.03 0.21 0.19 0.23

*p < 0.05, **p < 0.01.
aN = 47.
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Fig. 1 | Student confidence levels for accurate vs. inaccurate trials in themodel evaluation task. Proportion of accurate and inaccurate trials for which students responded
that they were confident during the model evaluation task. Note: Error bars = standard error of the mean.
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regions when they were confident, although PFC activity did not
diverge for trials where students were overconfident vs. calibrated in
their responses.

Relation of individual differences in student confidence to neural
response patterns
Focusing on the Error >No error model contrast, we evaluated the relation

Table 2 | Maximum coordinates for neural clusters with significant BOLD signal change for different trial type contrasts

Contrast Voxels Max Z p MNI Brain region

x y z

Confident > Not confident 22,248 5.7 <0.001 −34 −58 48 L Inferior parietal lobule (BA 7)

2312 5.2 <0.001 −56 10 28 L Inferior frontal gyrus (BA 9)

383 4.63 <0.001 −4 10 50 Medial frontal gyrus (BA 6)

272 4.51 <0.001 30 22 8 R Insula

239 4.52 <0.001 20 40 −10 R Anterior cingulate (BA 10)

230 4.69 <0.001 12 −18 10 R Thalamus

188 4.56 0.001 26 −42 −16 R Parahippocampal gyrus (BA 37)

183 4.19 0.002 −32 36 4 Inferior frontal gyrus (BA 47)

120 4.5 0.02 −34 −20 −10 L Hippocampus

98 4.34 0.040 −10 −36 −18 Cerebellum

Error model confident > No error model confident 201 4.68 <0.001 −6 48 6 L. Anterior cingulate (BA 32)

165 3.84 0.002 −12 −80 2 L. Lingual gyrus (BA 17)

142 4.49 0.005 −32 20 −16 L. Inferior frontal gyrus (BA 47)

106 4.44 0.023 44 22 −18 R. Inferior frontal gyrus (BA 47)

Confident accurate > Confident inaccurate response 333 3.93 <0.001 −6 −84 −14 L. Lingual gyrus (BA 17)

Fig. 2 | Contrast of confident > non-confident trials in the model evaluation task. Note: PE parameter estimate. Graphs reflect the mean parameter estimates extracted
from the cluster. Error bars reflect standard errors of the mean.
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of overall accuracy and confidence to students’ neural responses by
including these variables as covariates of interest in the group designmatrix.
There was no association of students’model evaluation accuracy with their
neural response patterns for this contrast. Likewise, students’ overall con-
fidence was not linked to their brain activity. However, students with lower
confidence bias showed more activity in two clusters centered in the left
inferior frontal gyrus (Table 3, Fig. 3).

Relation of studentmetacognitive calibration to neural response
patterns
Controlling for accuracy on the model evaluation task, students’ ϕ values
were positively associated with and their level of activity in the right middle
frontal gyrus for the Error >No errormodel contrast (seeTable 3). Students
with higher ϕ scores showed a greater increase in activity in this cluster,
which spanned BA 8 and 9 (Fig. 4). Comparable results emerged when we
instead used the metacognitive efficiency score (i.e., d’–meta d’), which was
positively linked to activation in a right middle frontal cluster that over-
lapped with the cluster identified for ϕ. Controlling for accuracy, students’
meta-d’ scores were associated with activity in the left inferior parietal,
superior occipital and postcentral gyri (Fig. 5).

Discussion
Metacognition is central to science education: it is critical to conceptual
change and to cultivating a deep understanding of scientific concepts66.
Specifically, in biology education, students with a higher awareness of the
learning process and a stronger ability to monitor, regulate, and control
learning manifest a more meaningful understanding of targeted biology
concepts and better scientific inquiry skills67,68. The current study evaluated
the relation of students’ metacognitive calibration to their neural activity
when evaluating errors in biology models. A major finding is that students
with higher metacognitive calibration and efficiency recruit lateral pre-
frontal regions to a greater extent than their peers with lowermetacognitive
calibration when evaluating error-containing models. This finding has
implications for understanding the role of metacognitive monitoring in
students’ learning behavior and for approaches to STEM instruction.

Controlling for task accuracy, higher metacognitive calibration, as
measured using phi, was linked to higher levels of activity in the right
dorsolateral PFC. The same effect was when we instead used students’
metacognitive efficiency scores, whichmore rigorously parsemetacognitive
calibration from confidence response biases and task performance65. Those
few neuroimaging studies that have focused on STEM learning have linked
the recruitment of lateral prefrontal and ACC brain regions to ‘expert’
scientific reasoning, with the lateral PFC being especially linked to accurate
error detection within STEM experts’ domains of expertise9,59. Therefore,
the students in our study with higher levels of calibration may be more
‘expert-like’ in the regions they deploy when evaluating error-containing
models. Brault Foisy and colleagues63 suggested that lateral prefrontal
activity may be especially relevant for resolving interference when viewing

scientific errors ormisconceptions. Given that theDLPFC forms a core part
of the fronto-parietal network associated with executive control69, findings
may indicate that these students are more effectively deploying executive
resources to resolve the errors present in these models. Against a growing
literature showing that error detection and the associated recruitment of
lateral PFC is a marker of STEM expertise, our study links the lateral PFC
recruitment to students’metacognitive calibration. Effective metacognitive
calibrationmay act as a bridge to conceptual change by facilitating students’
use of higher-level conflict resolution and executive resources associated
with the lateral PFC.

Surprisingly, students’ behavioral phi, meta-efficiency, and confidence
bias scores were not linked significantly to their ultimate course grades,
although both model evaluation accuracy and meta-d’ scores were sig-
nificantly correlated with course grades. Meta-d’ reflects the predicted d’ of
an individual, given their proportions of calibrated vs. non-calibrated
confidence ratings70. The more meaningful indicator of a student’s meta-
cognitive calibration relative to other students is thus the metacognitive
efficiency score. The lack of correlation betweenmeta-efficiency and course
grades may indicate that, once we consider the individual’s error detection
performance, calibration is less related to overall class grades. Thus,
althoughhigher calibrationmaybe tied to the use of prefrontal brain regions
associated with effortful resource deployment and, in previous studies, to
students’ self-regulated learning and academic success71–73, it is students’
mastery of the concepts in these models and their ability to recognize
accurate relative to inaccurate models that ultimately is reflected in their
course performance. In summary,wediscovered that the neural resultswere
distinct from our behavioral results, indicating that there may be neural
implications of metacognitive calibration that cannot be inferred only from
behavioral results.

Students’mean confidence was slightly higher than their accuracy (27
vs. 23) on the model task and students in general responded that they were
confident more often than not for inaccurate trials. Indeed, some students
had a biased score that exceeded 0, which means that they had more con-
fident, inaccurate trials than confident, accurate trials. These descriptive
findings support the notion that students tend to overestimate their per-
formance, particularly when performance is low25. This overconfidence in
one’s abilities suggests a lack of metacognitive awareness of their deficits,
which may lead to ineffective self-regulation skills12. For example, an
overconfident student, believing they know thematerial,might decidenot to
study for a test, thus increasing that student’s probability of doingpoorlydue
to inadequate preparation.

Although we did not find an association between confidence bias and
performance or course grades, we did find that confidence bias correlated
with lower metacognitive efficiency and with less left inferior frontal signal
changewhen students viewed error-containingmodels. Bellon et al.22 found
that children showed activation in the left inferior frontal gyrus when rating
their confidence in arithmetic problem-solving and that the extent of chil-
dren’s activity in this region was linked to their mathematics performance.

Table 3 | Maximum coordinates for correlations of student metacognitive metrics with BOLD activity during model error
detection

Variable Voxels Max Z p x y z Brain region

Confidence bias 265 4.3 <0.001 −50 26 −4 L Inferior frontal gyrus (BA 47)

129 4.35 0.007 −4 16 6 L. Inferior frontal gyrus (BA 44)

Phi 149 4.25 0.003 40 44 22 R. Middle frontal gyrus (B9)

Meta-d' 128 4.11 0.007 −46 −56 46 L. Inf parietal lobule (BA 40)

100 4.53 0.002 −24 −28 68 Postcentral gyrus (BA 3)

91 3.88 0.011 −32 −80 38 Superior occipital gyrus (BA 19)

Meta-efficiency 105 4.31 0.022 −24 −28 68 L. Postcentral gyrus (BA 3)

89 4.09 0.045 40 42 20 R. Middle frontal gyrus (BA 9)

All correlations are with the contrast of Model Error > No Error; correlations with phi and confidence bias control for students’ error detection accuracy.
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Unlike Bellon et al., we examinedneural activity duringmodel evaluation as
opposed to during the interval when students were making confidence
ratings. However, the overlapping link to the left inferior frontal gyrus
perhaps suggests that this region is important formodulating links between
confidence and achievement.

Interestingly, differences in neural activity for accurate and confident
relative to inaccurate and confident trials were confined to the lingual gyrus;
therewerenodifferences inprefrontal activity for this contrast. Potvin et al.60

similarly found that calibrated vs. overconfident trials in an electric circuit
validation task were linked to parietal, premotor, and fusiform regions
rather than prefrontal regions. It is possible that this activity in posterior
regions for correct and calibrated trials reflects the use of visual processing
resources to support accurate processing and evaluation of the model.

A significant study limitation is that one model evaluation task is not
necessarily synonymous with overall academic performance or general
metacognitive abilities. Additional assessments would be beneficial for
determining and evaluating the neural and behavioral effects of metacog-
nitive processes and of different forms of instruction. It is also important to
note that the relationship between brain activity and metacognitive cali-
bration is complex and multifaceted. Different aspects of metacognition,
such as monitoring, control, and evaluation, may involve distinct brain
regions and networks. Individual differences in brain structure and func-
tioning, as well as task-specific factors, can influence the relationship
between brain activity and metacognition. There is continued debate, for
example, as to whether metacognitive calibration is task-specific or a gen-
eral, trait-like characteristic74,75.

Another limitation of the study was that we had insufficient trial
numbers to fully cross accuracy and confidence at the trial level to examine
implications for brain activity: high levels of confidence meant that there
were small numbers of trialswhere studentswere underconfident.Contrasts
of confident vs. non-confident trials or calibrated vs. overconfident trials
may also be less reliable because of unbalanced trial numbers for these

conditions. Moreover, given the complexity of the task stimuli, each error-
containing model was equated in complexity to non-error-containing
models. Because the control for stimulus complexity was lost when we
removed inaccurate trials, our primary contrast was based on all trials,
regardless of students’ accuracy. Future studies should examine how accu-
racy modulates these relationships. Other limitations included a dis-
proportionate representationof females andEuro-AmericanWhites, aswell
as a small range in GPAs, whichmay have limited our power to capture the
full extent of variation in students’metacognitive monitoring performance.

Future research is needed to determine how these individual differences
in brain activity relate to ongoing academic achievement. One especially
intriguing question is whether and how manipulations to instructional
design, such as immediate feedback following errors, may impact students'
brain activity and, ultimately, help students become more self-regulated
learners76. Likewise, future research should also examine how studentsmight
be encouraged to reflect on their calibration accuracy and whether such
reflection might aid in the process of conceptual change in science. Devel-
oping a more nuanced confidence scale might be beneficial to examine
confidence judgments in relation to metacognitive calibration. Lastly, addi-
tional research is needed to determine how metacognitive calibration affects
students’ learning and academic performance throughout their educational
trajectory to understand learning acquisition for longer-term retention.

The present study’s finding that students with higher metacognitive
monitoring and less confidence bias deployed more ‘expert-like’ lateral
prefrontal activity when they encountered error-containing models
underscores a need to foster and nurture metacognition and self-awareness
in the classroom. Conceptual change is theorized to drive science learning
and hinges on students’ willingness to engage with or experience conflict
from new ideas45,47,55,77–79. Error detection is crucial for effective learning,
helping students to identify knowledge gaps, facilitating deeper processing
and reflection, and ultimately leading to improved mastery. Embracing
errors as valuable learning opportunities can significantly enhance the

Fig. 3 | Confident and accurate relative to confident and inaccurate trials in the
model evaluation task. Relation of confidence bias to neural activity in left inferior
prefrontal cortex during students’ evaluation of error > no error models. Note:

Graph is shown for illustrative purposes and reflects mean parameter estimates
extracted from the cluster. PE Parameter estimate.
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learning process and foster continuous growth and improvement80–82. Stu-
dents who persistently learn from their own errors through self-reflection
may be more motivated to continue to learn after failure, to correct their
errors, and to recognize misconceptions83,84. Instructors might provide
opportunities for students to reflect on their coursework by focusing on the
learning process rather than on the content itself85, thereby engaging stu-
dents in reflexive and adaptive thinking. They may also provide direct and
immediate feedback, a coremechanismof self-regulated learning,which can
positively impact academic achievement86. Finally, instructors may need to
teach effective study habits to help students act on their metacognitive
judgements, as students may lack this knowledge even when they are pre-
pared to alter their strategies87. These instructional strategies may represent
effective pathways for helping STEM students to be active, self-regulated
learners and for moving them toward more expert model evaluation
capacities.

Method
Participants
Fifty-one undergraduate students were recruited through class announce-
ments from five separate sections of one introductory life sciences course
taught by two different instructors in two consecutive academic years at a
largeMidwesternuniversity. First,we recruited fromthe sections taughtby a
professor who heavily used model-based instruction (n = 35 students). To
maximize our sample size from the following academic year’s sections we
recruited more students from one section taught by the professor who also
used model-based instruction (n = 6), and students from sections of the
same course taught by an instructor who used less model-based instruction
(n = 10). Both instructors have taught the introductory life sciences course
for over nine years and used models regularly in their pedagogy. While
specific models in this study were never seen or used in the course, the
concepts are foundational to biology. While students may have been

exposed to textbooks or classes using foundational biologymodels, students
were not familiar with the models as presented in this study. Therefore,
students needed to draw on their knowledge and understanding of these
biological systems, as opposed to visual recognition of the model, to
determine whether eachmodel included an error (see supplementary Fig. 4
for an example of a presented model).

Students were screened to ensure that none had a learning disability,
Attention-Deficit/Hyperactivity Disorder, experience of concussion, or
otherneurological diagnosis thatmight impactneural responsepatterns and
that none had contraindications to MRI. One student was excluded from
analyses because they consistently gave the same response to every task trial.
Of the final analytic sample (Valid N = 50, Mage = 19.62, SDage = .0.90), 35
(70%) were first-year freshmen, 12 (24%) sophomores, and three (6%)
juniors. Seven (14%) were first-generation college students. Forty-three
(86%) were European American/White, three (6%) Hispanic, three (6%)
Asian, and one (2%) identified as both European American/White and
Hispanic. All but two students were native English speakers, 38 (76%) were
female, 10 (20%) male, and two (4%) another gender. The average grade-
point average (GPA), on a 4.0 scale and collected through a third party from
the Registrar’s Office, was 3.54 (SD = 0.53). The average final course grade
from the introductory life sciences course, also on a 4.0 scale, was 3.55
(SD = 0.62). For analyses, final course grades are used, rather than cumu-
lative GPAs, because final course grades are a more concise measure of
student biology knowledge. On average, participants’ combined aggregated
standardized score on the Kaufman Brief Intelligence Test, Second Edition
(KBIT-2)88 was 103.37 (SD = 11.07), with all students falling within two
standard deviations of the normative mean.

Procedure
All procedures were approved by the University of Nebraska Human
SubjectsProtectionCommittee, andparticipants providedwritten informed

Fig. 4 | Phi correlation and students’metacognitive efficiency. Relation of student
ϕ (orange) and metacognitive efficiency (purple) sores with activity in the right
middle frontal gyrus during students’ evaluation of error > no error models. Note:

Graph is shown for illustrative purposes and reflects mean parameter estimates
extracted from the cluster. PE parameter estimate.
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consent to participation. Scans were also sent to a radiologist for review and
students were informed of any incidental findings, with all of these being
limited to sinus congestion. Students were compensated with $50 cash after
attending a 2-h appointment at the university’s imaging center, where they
completed the fMRI task. Study appointments occurred after the semester’s
fourth week to allow students to become familiar with core course concepts
and with the process of evaluating models or diagrams in biology.

Students underwent MRI in a 3 T Siemens Skyra scanner using a 32-
channel head coil.After beingfittedwith earprotection, students reclinedon
the scanning table. First, a T1-weighted MPRAGE was acquired (TR = 1,
TE = 2.95ms, voxel size = 1mm3, flip angle = 9, field of
view = 270,176 sagittal slices) for registration purposes. This scan was fol-
lowed by T2*-weighted echoplanar images (TR = 1 s, TE = 25ms, 3mm
voxels, flip angle = 90°, FOV = 224mm) collected during the model
evaluation task.

Model evaluation task
In the scanner, participants evaluated a series of models, formatted as flow
charts, diagrams, or textbook-like images, that captured abreadthof content
from the introduction to the life sciences course (e.g., human evolution,
central dogma, genetic mutation). Stimuli were designed to examine the
participants’ ability to detect errors and inhibit misconceptions (Fig. 6). To
provide context for themodel, students first saw a 2-s prompt, e.g., “Is there
an error in the relationships?” They then viewed a model and the same
prompt for 10 s, after which they could take up to 30 s to indicate via a
response pad whether the model was correct or incorrect. Lastly, partici-
pants were cued to indicate whether they were confident in their response
(yes or no). Participants completed three separate, randomly ordered runs

lasting approximately 5min each. Each run was composed of 12 randomly
ordered trials. Generally, there were two incorrect versions for every correct
version of a model, with 14 total correct models and 22 error-containing
trials. Trials were followed by a baseline rest periodwith a jittered interval of
2–10 s, duringwhich students saw randomfigures extracted from themodel
stimuli but without any words. Because students took varying times to
respond, the number of volumes collected for each student varied between
231 and 424 volumes per run.

Data analysis
Collectingmultiple confidence ratings affords calculation of a simple phi
coefficient (ϕ), the correlation between students’ accuracy and con-
fidence ratings across all trials of a task65. Although widely used in the
education literature, this method is susceptible to bias based on the
participant’s task performance and does not adequately parse students’
confidence bias—their general tendency to make high or low confidence
ratings—from their capacity to discriminate correct from inaccurate
responses35,70. Consequently, cognitive neuroscience researchers
recommend using model-based Signal Detection Theory metrics to
provide response-bias-freemeasures of how precisely confidence ratings
track task accuracy64,65. These measures include meta-d’, a measure of
Student’s metacognition that is conditioned on their task performance
distribution, and metacognitive efficiency, which reflects the difference
between a student’s sensitivity to their performance and their actual task
performance. An ‘ideal metacognitive observer’ should exhibit little
difference between their meta-d and their task performance65. Such
signal detection metrics parse students’ confidence biases and task
performance from their capacity to discriminate optimally from less

Fig. 5 | Students’meta-d’ scores and error > no error contrast. Correlation of studentmeta-d’ scores with left inferior parietal activity during the evaluation of error > no
error models. Note: Graph is shown for illustrative purposes and reflects mean parameter estimates extracted from the cluster.
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optimal performance, enabling a deeper understanding of the implica-
tions of different aspects of metacognition for learning.

Using SPSS89, we calculated our primary metric for calibration
accuracy, the phi coefficient (ϕ), which reflects the correlation between
a student’s accuracy and confidence scores. Two students were exclu-
ded from this analysis because they reported that they were confident
on every trial; therefore, we could not calculate their ϕ. We also cal-
culated students’ total confidence (i.e., the total number of times they
responded ‘yes’ to the confidence prompt) and total accuracy across all
trials and runs of the task, as well as creating a biased score based on the
proportion of inaccurate trials where students reported they were
confident—the proportion of accurate trials on which they were
confident89. We used MATLAB scripts developed by Fleming64 to
calculate a type 1 d’ score, a type 2 meta-d’ score, and a metacognitive
efficiency score based on Bayesian estimation using Markov Chain
Monte Carlo simulation implemented with the JAGS package. The
advantage of this Bayesian approach to estimating these metacognitive
metrics is that it is more robust with small trial numbers and can be
used even when individuals have 0 responses in a particular cell. We
used d’—meta d’ as our estimate of metacognitive efficiency because
the alternative, ratio-based metacognitive efficiency score resulted in
some extreme values.

Functional MRI data were processed and analyzed using the FMRIB
Software Library90. Images were skull stripped, high pass filtered at 0.01 Hz,
realigned, spatially smoothedwith a 5mmGaussian kernel, registered to the
T1 image using boundary-based registration, and normalized to the MNI
2mm template. In the first levelmodels for each run, we regressed the fMRI
signal on task onsets convolved with a double gamma hemodynamic
response function. The interval of focus was between when participants
viewed the model and prompt to when they responded whether the model
was correct or incorrect, i.e., the ‘viewmodel’ and ‘respond’ phases in Fig. 1.
The ‘confidence’ and prompt slides were treated as nuisance regressors in
the design matrix, along with regressors for motion and temporal deriva-
tives. Contrasts were performed for trials reflecting Error > No Error
models. Furthermore, we contrasted trials where students responded they
were Confident >Not confident and trials where they were Confident and
Accurate > Confident and Inaccurate in their responses. Parameters for

each participantwere averaged infixed effectsmodels and passed to a group
mixed effects analysis. In separatemodels,we added students’metacognitive
scores as covariates of interest in the design matrix for the Error >No error
contrast. All contrasts were performed with a Z threshold of 3.1, p < 0.001
and a cluster-corrected p < 0.05.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Group statistical maps are available on NeuroVault at https://neurovault.
org/collections/13902/. Student behavioral data is available at the UNL data
repository: https://doi.org/10.32873/unl.dr.20230419. RawMRI data will be
made available to researchers upon reasonable request and is not publicly
available because participants did not agree to public data access during
informed consent.

Code availability
Analytic code is available from the authors upon request.
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