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We study to what extent schools increase or decrease environmental and genetic influences on
educational performance. Building onbehavioral genetics literature on gene-environment interactions
and sociological literature on the compensating and amplifying effects of schools on inequality, we
investigate whether the role of genes and the shared environment is larger or smaller in higher-quality
school environments. We apply twin models to Dutch administrative data on the educational
performance of 18,384 same-sex and 11,050 opposite-sex twin pairs, enriched with data on the
quality of primary schools. Our results show that school quality does not moderate genetic and
shared-environmental influences on educational performance once the moderation by SES is
considered. We find a gene-environment interplay for school SES: genetic variance decreases with
increasing school SES. This school SES effect partly reflects parental SES influences. Yet, parental
SES does not account for all the school SES moderation, suggesting that school-based processes
play a role too.

Children who perform well in school are more likely to continue their
education andobtainhigher degrees,which in turnhas numerous economic
and social benefits including higher income, higher occupational status, and
better health1. Inequalities in educational performance thus translate into
inequalities in other domains. It is therefore important to know why some
pupils perform better than others and how inequality can be reduced. An
often studied sourceof differences in children’s performance levels are social
differences among them, most notably, the influence of their family socio-
economic status (SES) background2. Another important source of differ-
ences are genetic differences between children3. The extent to which these
family background influences and genetic influences play a role could be
dependent on children’s school environment. Higher-quality schools could
strengthen the influence of families and genes and thereby increase per-
formance differences between pupils. Conversely, higher school quality
could also decrease differences in performance because the family back-
ground and/or genetic influences are reduced in these schools.

There are opposing arguments on whether family background and
genetic influences are multiplied or compensated in higher-quality schools.
Social science literature suggests that family background influences could be
stronger in high-quality schools, for example, because high-SES children
benefit more from good learning opportunities as they enter school with
better academic preparation4. Alternatively, the stable, stimulating, and
resourceful learning environment in school could compensate for a less
favorable home environment5,6. In that case, especially low-SES children

may benefit from higher-quality schools. Similarly, the behavioral genetics
literature provides opposing models on whether advantageous environ-
ments such as those provided by high-quality schools increase or decrease
genetic influences. From the bioecological model, stronger genetic influ-
ences in higher-quality schools can be expected because the more resour-
ceful and stable environment in such schools could promote the realization
of genetic potential for greater achievement7,8. However, weaker genetic
influences can also be expected. Following the diathesis-stress model9 and
the ideaof compensation interaction10, the absence of stressors and themore
supportive learning environment in higher-quality schools could com-
pensate for the realization of genetic risks for lower performance.

Towhat extent schools increase or decrease environmental and genetic
influences on educational performance is important to know for reducing
educational inequality.Whether schools reduce educational inequality does
not only depend on the multiplicative or compensatory effect of schools. It
also depends onwhich sources of differences inperformance are seen as part
of educational inequality. Family background differences in educational
performance are commonly problematized and labeled as inequality of
educational opportunity, or social inequality in education11–13. Concerning
genetic differences, there are different standpoints on whether genetic dif-
ferences (or genetic inequality) in educational performance are problematic
and should therefore be reduced. On the one hand, genetic differences in
educational performance can be seen as an indicator of opportunity for
achievement14,15. If the realization of children’s innate talent is not restricted
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by social barriers, differences in educational performance would be to a
larger extent explained by genes14. This (implicitly) assumes that differences
due to good or bad luck in the genetic lottery are justified16,17. On the other
hand, one cannot control their genetic endowment any more than their
family background. Genetic differences could therefore, just as social dif-
ferences, be interpreted as an unjust source of inequality16,18,19. Moreover,
genetic differences in educational performance do not only reflect the rea-
lization of innate talent but also capture genetically influenced character-
istics that negatively affect performance, such as behavioral and health
problems20. If the genetic contribution to educational performance is larger
in high-quality schools because such genetic risks are more expressed in
these schools, most would agree that this is inconsistent with equality of
opportunity.

Thus, family background differences are generally seen as unfair and as
a form of educational inequality, and this source of inequality can be
dependent on the school environment. The school environment may also
affect the role of genetic differences in performance, but there are different
perspectives on whether genetic differences are seen as an unfair and pro-
blematic source of inequality as well. We investigate how the school
environment contributes to educational inequality and ask: ‘Towhat extent
does the school environment increase or decrease genetic and family
background influences on educational performance?’ We study this by
using a twin design, which provides latent overall measures capturing
genetic, shared (i.e., common, between-family) environmental, and non-
shared (i.e., unique, within-family) environmental variance in educational
performance21. We investigate how genetic and shared environmental
variance varies across schools of different quality, also known as gene-
environment interaction analysis.

While gene-environment interactions are predominantly focused on
the family environment, more recently, interactions with the school envir-
onment have been studied. Prior twin studies yielded mixed results con-
cerning whether more advantageous school environments increase or
decrease genetic and shared environmental differences22–25. Concerning the
interaction between schools and genetic influences in specific, recent studies
also used polygenic indices (PGIs). PGIs are composite measures for each
individual based on the correlation between genetic variants and an out-
come, and therefore provide an estimate of an individual’s genetic liability to
this outcome26. These studies investigated whether the association between
educational attainment PGI and educational outcomes (including
achievement, college completion, and dropping out of math, amongst
others) differed between schools27–29. Results tend to support compensation,
as those with a lower PGI benefittedmore from schools with higher school-
level achievement or SES.

While prior studies indicate that the school environment may
moderate genetic and shared environmental influences on educational
performance, it is unclear whether this can indeed be attributed to the
school environment or reflect processes in the family environment
instead. Children from high-SES parents more often attend high-
quality schools30,31. School effects may therefore be confounded with
family effects, and prior studies do not always take this sufficiently into
account. Moreover, it remains an open question which specific school
aspects play a role. In this study, we use a twin design to investigate
whether the school environment moderates genetic and shared envir-
onmental influences while relying on many indicators measuring
school quality. Additionally, we investigate to what extent the mod-
eration by school quality is a moderation related to SES.

We study 29,434 same-sex and opposite-sex twin pairs (birth cohorts
1994–2007), that we identified in administrative data from Statistics
Netherlands (CBS). These data cover thewhole population anddonot suffer
from the self-selection bias that can affect twin samples32,33. Additionally, the
number of observations provided by administrative data lead to ample
power to detect genetic and shared environmental influences and their
interactions with school quality. The administrative data contain children’s
scores on a national standardized achievement test (Cito test) administered
at the end of primary school around age 12. We enriched these data with

many school quality indicators, as derived from the Dutch Inspectorate of
Education.

The Netherlands provides an interesting context for investigating the
role of school quality on educational inequality. TheCito test is a high-stakes
testwithmajor importance for children’s educational careers. Togetherwith
a recommendation of the teacher, the test result determines which sec-
ondary school track childrenwill attend. Once enrolled in a particular track,
opportunities to switch to ahigher track are limited34. Educational inequality
in this test score, whether it is related to social background differences and/
or genetic differences, has thus large implications for future educational and
career opportunities.

There are different theoretical arguments on how genetic and family
background differences, and therewith educational inequality, depend on
school quality. Although there is no clear definition of school quality, there
seems to be a consensus that it entails at least two aspects: school resources
and school culture. School resources refer to aspects that can (potentially) be
bought either directly (e.g., educational materials) or more indirectly (e.g.,
educational time, teacher attention)35,36. School culture characteristics can-
not readily be bought and aremore difficult to change. These includenorms,
values, and expectations (e.g., academically oriented culture, high expecta-
tions), relationships (e.g., teacher-pupil relationships, cohesion), teaching
and learning practices (e.g., structured instruction, differentiation), and
larger organizational structures (e.g., educational leadership)35,37.

High-quality schools can be expected to both increase and decrease
genetic influences on educational performance. An increase can be expected
from the bioecological model7,8, according to which genetic potential for
developmental outcomes such as greater educational achievement is more
actualizedwith increased levels of proximal processes (i.e., enduring formsof
interaction in the immediate environment, e.g., parent-child interactions).
This model has generally been applied to the role of family environment in
explaining cognitive ability, which has become known as the Scarr-Rowe
hypothesis38,39. This hypothesis claims that in high-SES families, genetic
potential is more fully expressed. Environments such as those provided by
high-SES families can be seen as more advantaged and stable. They more
often comprise different resources (e.g., material resources, cultural capital)
and proximal processes that are more aligned with children’s genetic
potential and are therefore expected to enhance genetic expression8,40,41.
While the focus was originally on the realization of genetic potential for
cognitive abilities, this has been extended to educational outcomes. For both
outcomes, support for the Scarr-Rowe interaction has been mixed40,42–44.
Support has been found mostly in the U.S., whereas in other western
countries, no interactionora reversedpatternhasbeen found42.Thesemixed
findings have been related to differences in socioeconomic inequality and
welfare state arrangements, but also aspects of the study design including
operationalizations and the size and representativeness of the sample43,45,46.

Thebioecologicalmodel andScarr-Rowehypothesis couldbe applied to
the impact of schools on genetic influences on educational performance.
Similar to high-SES families, high-quality schools are more stable and
resourceful environments. In these schools, higher levels of positive proximal
processes (e.g., teacher-child interactions) can be expected, which implies
that teachers’ behavioral patterns are more responsive to children’s char-
acteristics and actions. This is seen as the principal mechanism through
whichgeneticpotential for effectivedevelopmental functioning is actualized8.
Available school resources (e.g., more experienced teachers, more teacher
attention) and school culture (e.g., monitoring students’ progress, differ-
entiation) may make it easier to discover children’s specific talents. Addi-
tionally, a high-quality school environment is characterized by aspects that
could lead to children developing their talents further, such as the availability
of challenging materials and the presence of high-achievement norms.

Alternatively, from the diathesis-stress model, it can be derived that
genetic influences decrease with increasing school quality. According to this
model, the realization of genetic risk for lower performance (e.g., learning or
behavioral problems) is more likely when there are more environmental
risks and stressors9,10. The school environment in low-quality schools can be
expected to have more environmental stressors, such as higher levels of
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classroom disorder and negative peer influences. Hence, the expression of
genetic risks is more likely in such environments but decreases when such
environmental stressors are less present as in high-quality schools. More-
over, high-quality schools have other positive features thatmay compensate
for the realization of genetic risk10. For example, in high-quality schools,
teachers may be more likely to notice specific risk factors for lower per-
formance and these schools may also be better able to provide adequate
support (e.g., remedial teaching).

Depending on the quality of the school, the influence of the family
environment canalsobe expected tobecomeeithermoreor less important. In
the sociological literature, several arguments are provided for why the
influence of family background might be stronger in higher-quality schools.
One is that children fromhigh-SES families have a cumulative advantage and
benefit more from a high-quality school environment because they enter
school better academically prepared4. Based on the idea that ‘skills beget
skills’, children’s skills gained early in life increase children’s capacity to
benefit from later instruction in school47,48. For example, in high-SES families,
children may develop more language skills because their parents tend to
engage children more in conversations and use a richer vocabulary41. They
may therefore understand instructional material better and reach higher
performance levels in school. Another argument is that there is greater cul-
tural correspondence between the home and school environment for high-
SES children.Themore ambitious and academically oriented culture inhigh-
quality schools coincideswith high-SES parents’ expectations and ambitions.
For low-SES students, such a culturemeans amismatch between their family
and classroom experiences which may lead to negative self-perceptions and
emotional distress, negatively affecting educational outcomes49.

Conversely, family background influences can also become less
important in high-quality schools. According to the bioecological model,
proximal processes do not only increase the realization of genetic potential,
but also reduce, or buffer against, (shared) environmental differences in
developmental outcomes8. Sociological literature providesmore insight into
how a higher quality school environment may reduce family background
differences in performance. Children from disadvantaged families tend to
grow up in a more unstable environment outside school, receive less par-
ental support, andhave access to fewer parental resources. The environment
in high-quality schools may be especially important for them5,6,50. High-
quality schools provide access to learning opportunities that overlap with
those in socioeconomically advantaged families. If learning opportunities in
families and schools substitute for each other, school resources typically
benefit students from a less resourceful family environmentmore than they
benefit high-SES students4,51. Also, school culture aspects (e.g., academic
climate, good student-teacher relationships) improve student achievement,
especially for children from more disadvantaged families52. These children
could have a ‘differential sensitivity’ to such aspects in their school envir-
onment because they experience them less in their families6. Differences in
educational performance attributable to family background may thus
become less pronounced in high-quality schools.

When investigating how genetic and family background differences
depend on school quality, it is important to consider socioeconomic
selection into schools. Children from high-SES parents more often
attend high-quality schools30,31. Consequently, higher-quality schools
are not only characterized by their more advantageous resources and
culture but also a high-SES composition. This composition may also
affect educational performance.Moreover, the school’s SES composition
may affect the influences of genes and the environment on educational
performance. Partly, school SES influences overlap with those of school
quality because they are correlated. Schools’ SES composition is asso-
ciated with school characteristics such as teaching and instruction
practices, and school organization and management processes53. For
example, high-SES schools may more easily attract good and experi-
enced teachers and have more rigorous curricula54,55. Since we explicitly
measure school quality and rely on many indicators, we likely capture
school-based influences related to school quality characteristics such as
teaching and instruction practices, and school organization. However,

school SES may also reflect other school-based mechanisms that are less
captured by school quality, such as peer interactions54. For instance,
high-SES students with higher aspirations, better study habits, and less
disruptive classroom behavior may have a positive influence on the
performance of other students56. Given such school-based mechanisms,
some previous studies proposed that a large proportion of students from
high-SES backgrounds is an indicator of school quality57,58. For this
reason, it is worthwhile to study school SES in addition to school quality.
Another important consequence of socioeconomic selection into school
is that the school environmentmay capture family SES influences if these
are not considered. High-SES parents tend to provide more stable and
resourceful environments, just as high-quality schools do. Hence, par-
ental SES may moderate genetic and shared environmental influences
similar to school quality. Not considering this would overestimate the
moderation by school quality.

Altogether, we explore whether school quality increases or decreases
genetic and family background differences in educational performance. To
provide more insight into the possible moderation of the school environ-
ment we also study if school SES increases or decreases genetic and family
background differences in educational performance and explain part of the
moderation effect of school quality. Lastly, we investigate if the moderation
effect of schools is explained by parental SES.

Results
Genetic and environmental influences on educational
performance
Before examining the ACE-moderation model, we first investigate
unmoderated genetic and environmental influences on educational per-
formance by decomposing the variance in educational performance in
genetic (A), shared environmental (C), and non-shared environmental (E)
variance. Since zygosity is unknown, we rely on comparing opposite-sex
(OS) twins, characterized by an average genetic relatedness of 0.5, with
same-sex twins from whom the exact genetic relatedness (i.e., rSSG) is
uncertain. Therefore, we use different values of rSSG (including 0.70, 0.75,
and 0.80). The total variance in educational performance is Veduc = 95.34.
While the total amount of variance does not depend on rSSG, the variance
decomposition differs. In our lower bound scenario (rSSG = 0.70, Model 1,
Table 1), genetic differences explain 90.9% of the variance in educational
performance (SVA = 86.65 / 95.34 = 909) and we find no shared environ-
mental variance. When we use rSSG = 0.75 (Model 2, Table 1), we find that
the variance in educational performance is to a lesser extent attributable to
genetic differences (73.0%) and more to shared environmental variance
(8.9%).When we further increase rSSG (Model 3, Table 1), genetic variance
becomes smaller and (non-)shared environmental variance larger. Alto-
gether, 61–91%of the variance in educational performance canbe attributed
to genetic variance, 0–15% to shared environmental variance, and 9–24% to
non-shared environmental variance.

Next, we sequentially include the main effects of school quality,
school SES, and parental SES on educational performance (Supple-
mentary Table 1). The estimated sizes of these associations do not
depend on rSSG. School quality is statistically significantly associated
with educational performance (b = 0.61, β = 0.06, p < 0.001). This is not
substantial; each standard deviation (S.D.) increase in school quality is
associated with a 0.61 point (0.06 S.D.) increase in the Cito-score.
Additionally, sequentially including school SES and parental SES
shows that parental SES has a much stronger association with educa-
tional performance (b = 2.89, β = 0.30, p < 0.001) and explains part of
the association between educational performance and school quality
and school SES. The school quality association with performance
reduces to 0.24 (β = 0.02, p < 0.001). There is a relatively weak positive
association between school SES and educational performance
(b = 0.92, β = 0.09, p < 0.001) once we control for parental SES (and
school quality). If there is shared environmental variance present, as is
the case for rSSG = 0.75 and rSSG = 0.80, this is (almost) entirely
explained by school quality, school SES, and parental SES.
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Genetic and environmental influences moderated by school
quality and school SES
Next, we test how school quality moderates genetic and environmental
variance while using a genetic correlation of rSSG = 0.70 (Model 1, Table 2).
We could have used 0.75 and 0.80 aswell, whichwe do in the next section as
robustness checks. We find that with increasing school quality, genetic
influence decreases statistically significantly, baSQ =−0.019, p = 0.009
(Fig. 1a and Table 2, Model 1). Shared environmental variance is absent
whenusing rSSG = 0.70 and thusdoesnotdependon school quality. Because
of the decreasing genetic variance, the total variance in educational
performance also decreases with increasing school quality. When this is
considered by standardizing the ACE components, we see that the relative
genetic influences barely decrease with increasing school quality (Fig. 1a).

Similar to our findings for school quality, our results show that school
SES decreases genetic influence and does not affect shared environmental
influence on educational performance (Fig. 1b and Table 2, Model 2).
Although we did not have expectations on the moderation of non-shared
environmental variance, we find that it statistically significantly decreases
with increasing school SES (Model 2, Table 2). When the decreasing total
variancewith increasing school SES is taken into account,wedonotfindany
moderations in the relative contribution of genetic and environmental
variances (Fig. 1b).

Simultaneous test of the moderating role of school quality
and SES
The average SES of children in a school may explain part of the mod-
eration effect of school quality. When we test the moderation by school

Table 2 | ACE model for cito with interaction effects of school quality (SQ) and school SES (NSSpairs = 18,384, NOSpairs = 11,050)

Parameter Model 1 Model 2 Model 3 Model 4
(SQ only) (School SES only) (SQ and school SES) (SQ, school SES, and

parental SES)

Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

Intercept 534.63*** (0.08) 534.65*** (0.07) 534.65*** (0.07) 534.67*** (0.06)

a 9.28*** (0.08) 8.90*** (0.06) 8.88*** (0.07) 8.22*** (0.07)

baSQ −0.19** (0.07) −0.05 (0.06) 0.00 (0.06)

baSchoolSES −0.52*** (0.05) −0.51*** (0.05) −0.31*** (0.06)

baParentalSES −0.62*** (0.06)

c 0.16 (1.31) 0.00 (0.00) 0.13 (0.25) 0.26 (0.19)

bcSQ 0.10 (1.05) 0.39 (0.50) −0.32 (0.24)

bcSchoolSES 0.00 (0.00) -0.12 (0.16) −0.84*** (0.23)

bcParentalSES 0.71*** (0.19)

e 2.98*** (0.13) 3.35*** (0.10) 3.37*** (0.11) 3.91*** (0.09)

beSQ 0.06 (0.13) 0.01 (0.10) −0.04 (0.09)

beSchoolSES −0.17* (0.08) −0.17* (0.08) −0.05 (0.09)

beParentalSES −0.22** (0.08)

School quality 0.61 (0.07) 0.24*** (0.06) 0.22*** (0.06)

School SES 2.23 (0.06) 2.20*** (0.06) 0.91*** (0.06)

Parental SES 2.94*** (0.05)

Freely estimated
parameters

13 10 17 21

Loglikelihood −217,429.91 −174,629.60 −216,384.47 −214,779.29

Scaling correction factor 2.23 0.98 1.90 1.77

AIC 434,885.82 349,279.20 432,802.93 429,600.58

*p < 0.05, **p < 0.01, ***p < 0.001 (two-tailed test). A genetic correlation of rSSG = 0.70 is used. Controlled for sex and year of birth. All continuous independent variables are z-standardized prior to the
analyses. Robust standard errors accounting for clustering at the school level are shown in parentheses. Parameters a, c, and e refer to unmoderated path coefficients capturing genetic, shared-
environmental, and non-shared environmental influences, respectively. The b coefficients refer to the moderation effects of a, c, and e, by school quality (SQ), school SES, and parental SES

Table 1 | ACE model for cito for different values of rSSG
(NSSpairs = 18,384, NOSpairs = 11,050)

Model 1
(rSSG = 0.70)

Model 2
(rSSG = 0.75)

Model 3
(rSSG = 0.80)

Parameter Estimate s.e. Estimate s.e. Estimate s.e.

Intercept 534.63*** (0.08) 534.63*** (0.08) 534.63*** (0.08)

a 9.31*** (0.06) 8.34*** (0.24) 7.62*** (0.22)

c 0.00 (0.04) 2.91*** (0.47) 3.78*** (0.32)

e 2.95*** (0.12) 4.16*** (0.16) 4.80*** (0.11)

VA 86.65*** (1.14) 69.61*** (3.96) 58.00*** (3.30)

VC 0.00 (0.00) 8.46** (2.74) 14.26*** (2.42)

VE 8.69*** (0.71) 17.28*** (1.32) 23.08*** (1.02)

Freely esti-
mated
parameters

6 6 6

Loglikelihood −190,307.99 −190,307.98 −190,307.98

Scaling correc-
tion factor

1.08 1.30 1.30

AIC 380,627.98 380,627.97 380,627.97

**p<0.01, ***p < 0.001 (two-tailed test).Controlled for sexandyearof birth.Robust standarderrors
accounting for clusteringat the school level areshown inparentheses.Parametersa,c, ande refer to
the unmoderated path coefficients capturing genetic, shared-environmental, and non-shared
environmental influences, respectively. Squaring these path coefficients gives the variance com-
ponents VA, VC, and VE.
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quality and school SES simultaneously in Model 3 (Table 2), the model
fits the data better than the model that only includes the moderation by
school quality. When the moderation effects of school SES are taken
into account, the genetic moderation by school quality is indeed
reduced and no longer statistically significant. School SES could capture
both school effects (e.g., peer group processes) and family effects.
Therefore, we additionally include parental SES as a moderator in
Model 4, which fits the data better thanModel 3. This final model shows
that the moderating role of school SES is partially attributable to par-
ental SES. The previously found moderation of genetic variance by
school quality is thus partly related to the selection of high-SES children
in high-SES schools. When this is considered, we find no evidence for
moderation effects of school quality anymore (Fig. 1c).

The final model shows that the moderating role of school SES is par-
tially attributable to parental SES, but not entirely. School-based processes
likely play a role too, as the geneticmoderation effect by school SES becomes
smaller in magnitude (a reduction of 40%) but a substantial part remains
and is statistically significant (see Table 2, Model 4). We also find a statis-
tically significant moderation of shared environmental variance by school
SES once parental SES is controlled for. However, we find the evidence for
decreasing shared environmental variance rather weak given the small
amount of shared environment variance that is present to beginwith. Lastly,
the decreasing non-shared environmental variance by school SES that we

found in Model 3 (Table 2), appears to be attributable to parental SES (see
Model 4, Table 2).

Robustness checks
First, we performed auxiliary analyses to test whether our findings were
robust against using different values of genetic relatedness of same-sex
twins. Conclusions based on our estimated genetic relatedness of
rSSG = 0.70 still hold when the alternative values 0.75 and 0.80 are used
(Fig. 2, see also Supplementary information Appendix A). We still find
no moderation of genetic and shared environmental variance by school
quality. In our main analyses, we found a significant moderation of
genetic variance by school quality when we did not control for school
SES and parental SES. In our robustness check, thismoderation effect by
school quality is not statistically significant. As can be seen in Fig. 2 (and
more detailed in Supplementary information Appendix A), the mod-
eration effects, as well as the variance components in general, are esti-
mated with less precision. Concerning the moderation by school SES,
we still find a decreasing genetic variance with increasing school SES.
When controlling for parental SES this negative moderation remains
statistically significant and substantial when rSSG = 0.75 is used (as was
the case for our main results using rSSG = 0.70), but not if rSSG = 0.80 is
used. Lastly, concerning our expectation that SES confounds the gene-
school quality moderation effect, we found empirical support for this

Fig. 1 | Unstandardized (top row) and standar-
dized (bottom row) ACE moderations. Genetic
(A), shared environmental (C), and non-shared
environmental (E) variances of educational perfor-
mance moderated by (a) school quality only, (b)
school SES only, and (c) school quality controlled for
the moderation of school SES and parental SES.
Including 95% CI. Based on a model using a genetic
correlation of rSSG = 0.70.
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when using rSSG = 0.70. For rSSG = 0.75 and 0.80, we do not find sta-
tistically significant moderation effects of school quality in the first
place, meaning there is no moderation effect that can be confounded by
school SES and parental SES (Supplementary Tables 2, 3).

Second, we investigated whether our gene-environment interaction is
drivenbySESdifferences in the estimatedMZ/DZratio amongSS twins.We
relied on the average estimated genetic relatedness of SS twins of rSSG = 0.70
(and, alternatively, values of 0.75 and 0.80). However, given the factors that
affect DZ twin pregnancies (e.g., IVF usage, maternal age, BMI, smoking),
rSSGmay differ between SES groups. If there are relativelymoreDZ twins in
higher-SES families than in lower-SES families, rSSG will be lower in high-
SES families than the assumed average of 0.70. Our observed gene-SES
interaction could then be the result of an underestimation of genetic var-
iance among twins from high-SES families (and an overestimation of
genetic variance among lower-SES families). Our gene-SES interaction does
not appear to be driven by SES differences in theMZ/DZ ratio. If anything,
the estimated proportion of DZ twins among SS twins is larger for low-SES
than for high-SES families. Our gene-SES interactionmay therefore even be
slightly underestimated.

Third, we investigated non-parametric gene-environment
interactions for school quality and school SES. The ACE-moderation
model including a continuous moderator assumes linear moderating
effects on the ACE components, while there may be threshold effects
(Purcell 2002). For example, it could be that only the most dis-
advantaged schools show increased genetic differences. Therefore, we
performed a multigroup (i.e., non-parametric) gene-environment
interaction for quantiles of school quality and school SES (see Sup-
plementary Figs. 1–4). The results largely mirror the main analyses
with continuous linear moderations. The only difference is that for
school quality (not controlled for school SES and parental SES) the
genetic variance is not declining linearly with increasing school
quality. There is more genetic variance in the lowest-quality schools
and less in the other four quantiles. Only the difference in genetic
variance between the first and fourth quantile is statistically significant
(Wald test = 5.78, df = 1, p = .016). For school SES, there is a clearer
linear decline in genetic variance although not all group differences
are statistically significant (see also the large confidence intervals in
Supplementary Fig. 3).

Lastly, we used different operationalizations for our school quality
variable (see Supplementary informationAppendixC). The influence of
certain more specific school quality aspects might be masked by using
one overall school qualitymeasure.We lookedmore specifically into the
moderating role of school quality by separating it into the school
resources and school climate dimensions (see Supplementary Table 10
for measurement details). We reach the same conclusion if we use these
dimensions instead of one overall school quality factor. School
resources and school culture are both positively associated with average
educational performance, with a similar strength as the overall school
quality factor (Supplementary Fig. 5). Similar to the main results, we
find that school resources and culture negatively moderate genetic
variance, but not when school SES and parental SES are controlled for
(Supplementary Table 4). We also investigated all nine underlying
school quality dimensions separately. When school SES is controlled
for, only three dimensions remain statistically significantly associated
with average performance (see Supplementary Fig. 6). These are gui-
dance of educational needs, monitoring and evaluating (special needs)
students, and learning climate. For these three dimensions, we per-
formed moderation analyses. None of the dimensions moderates
genetic variance. However, once we control for both school SES and
parental SES, the remaining shared environmental variance turned out
to be moderated by learning climate (see Supplementary Table 5 Model
2). We do not interpret this effect, because it is the only statistically
significant school quality moderation we found out of many tests, and
we did not correct p-values for multiple testing. Moreover, the effect is
not substantial.

Discussion
Inequality of educational opportunity is seen as a problematic phenomenon
in many societies, making researchers, policymakers, and educational
practitioners question how to reduce it. High-quality schoolsmay especially
have the potential to reduce educational inequality. We investigated this
using gene-environment interaction analyses applied to administrative data
on twins. Smaller shared environmental variance in higher-quality schools
is indicative of less inequality of opportunity in these schools. Family
background would then be less decisive for educational performance.
Whether smaller genetic variance is also indicative of less inequality, is less

Fig. 2 | Unstandardized (left panel) and standardized (right panel) ACE mod-
erations with alternative assumed genetic correlations of same-sex twins.Genetic
(A), shared environmental (C), and non-shared environmental (E) variances of
educational performance moderated by (a) school quality, (b) school SES, and (c)

school quality controlled for the moderation effect of school SES and parental SES.
Including 95% CI. Based on a model using a genetic correlation of rSSG = 0.75 (top
row) and rSSG = 0.80 (bottom row).
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straightforward. Genetic variance captures ‘positive’ and ‘negative’ poten-
tials and there are different perspectives towhat extent greater expression of
such potentials in higher quality schools is considered to be fair or not.

We do not find evidence that school quality decreases educational
inequality, neither concerning social inequality nor genetic inequality.
Initially, there seemed to be some indication that genetic variance is smaller
in higher-quality schools. However, the lower genetic variance in these
schools appears not to be related to school quality but to school SES and
parental SES instead. If genetic differences in performance are seen as unfair
and part of educational inequality, there is less inequality in high-SES
schools. We would have misattributed the decreasing genetic variance in
educational performance to higher-quality school environments instead of
higher-SES family and school environments (and overestimated the influ-
ence of school SES) if school quality, school SES, and parental SES were not
studied simultaneously.

These findings thus suggest that not school quality but instead SES
plays a role. The results suggest that it is both parental SES and school SES
that matter and that the underlying mechanisms thus reflect processes in
both the family and school context. The smaller genetic influence in higher-
SES environments is consistent with the diathesis-stressmodel9. Thismodel
suggests that the fewer environmental risks and themore positive factors in
higher-SES families and schools neutralize or compensate for the expression
of genetic risks toward poor educational performance (see also Shanahan
and Hofer 2005). Low-SES environments are generally considered less
favorable for educational performance and may thus enforce such influ-
ences of genetic risk. This implies that if children have genetic risks (e.g.,
related to learning or behavioral problems), this will have fewer negative
consequences for their educational performance if they have high-SES
parents and attendhigh-SES schools. For example, high-SESparentsmay be
more likely to provide adequate support. This is consistent with the socio-
logical compensatory advantage mechanism, according to which prior
negative outcomes (e.g., health and cognitive endowments at birth, previous
school results) are compensated by high-SES parents59. Since such negative
prior outcomes are genetically influenced, the compensatory advantage
mechanism could be expanded to include the compensation of dis-
advantageous genetic dispositions. Similarly, a larger share of high-SES
children in schoolmaycontribute to amore advantageous environment. For
example, high-SES pupils may influence the performance, aspirations, and
study habits of their peers and contribute to an environment that is more
conducive to learning56,60. This may be especially beneficial for pupils with
more genetic risks for lower performance.

The finding that both family SES and school SES moderate genetic
variance suggests that low-SES children have a double disadvantage. Their
genetic risks are less likely to be compensated in the family environment,
and these children are also more often exposed to a (low-SES) school
environment where compensation is less likely. Experiences in different
contexts, including the family and school, are thought to combine and
possibly interactwith eachother in shaping children’s educational outcomes
(see ref. 7).Hence, it couldbe that anadvantageous school environmentmay
be especially beneficial for low-SES children. To gain more insight into the
interrelated influences of families and schools, future research may incor-
porate interactions between the family and school to gain more insight into
their combined effects on educational performance.

The decreasing genetic variance is accompanied by a decrease in the
total variance in performance with increasing SES. It could be that pupils
differ less in their performance levels in higher SES environments because
genetic influences are compensated via the potential mechanisms that we
just discussed. However, there could also be less variance in performance in
high-SES environments because these environments aremore homogenous
in terms of children’s geneticmakeup and/or environmental characteristics.
In that case, focusing on the standardized results would be more appro-
priate. The standardized results do not show a gene-environment interac-
tion. Hence, an alternative explanation for the lower genetic variance in
high-SES schools is that selection into schools plays a role instead of a
substantive interplay between genes and the school environment.

Althoughwe had no expectations ofmoderation effects on non-shared
environmental variance in performance, we find that it decreases with
increasing SES. One interpretation of this findingmay be that similar to the
compensation of genetic risks, also non-shared environmental risks may be
compensated in high-SES environments. Non-shared environmental risks
include child-specific influences that negatively affect educational perfor-
mance (e.g., accidents, illness, negative peer influences). If one twin has the
risk of lower educational performancedue to such individual circumstances,
high-SES parents may be more likely to compensate for this59,61. Contrarily,
low-SES parents may not have the opportunity to compensate (e.g., due to
their lower levels of economic and cultural resources), hence, twinsmay end
up performing differently. This would then be reflected in the larger non-
shared environmental differences with lower SES. Since the non-shared
environment also includesmeasurement error, an alternative interpretation
is that there is less measurement error in the educational performance of
high-SES twins. More research is needed for conclusions on the potential
differential impact of the non-shared environment.

We did not find evidence for genetic and environmental influences
being dependent on school quality, and only small effects of school quality
on average educational performance. This could mean that the school
environment is not as important for (inequality in) educational perfor-
mance as thought. It may also be that there is less (systematic) variation in
school quality in theNetherlands than in other countries because of how the
educational context is organized. Private schools are rare and both public
schools and religious schools receive public financing, proportional to the
number of pupils. Schools attended by pupils from more disadvantaged
backgrounds receive additional funding62. This could result in fewer quality
differences between schools than in other countries where school funding is
more unequal. In other contexts, the effects of school quality on average
performancemay be stronger and the gene-school quality interactionmight
work differently.More comparative research could provide insight into this,
which may also provide a better understanding of the mixed findings of
prior studies investigating gene-school environment interactions. It could
also be that school quality matters, but that we do not sufficiently capture it
with our indicators. For example, maybe it is not so much between-school
qualitydifferences butwithin-school differences that play a role (e.g., teacher
quality, classroomprocesses).Whendifferences in educational performance
between twins that are in the same versus different classrooms are investi-
gated, the classroom environment indeed turned out to play a role in the
Netherlands63.

A potential limitation relates to the use of SS and OS twins. Although
we use high-quality administrative data, a limitation is the absence of
information on zygosity. This could also lead to biased estimates for genetic
and shared environmental variance. Since the true genetic relatedness
amongSS twins is unknown,wehad to rely onestimatedgenetic relatedness.
To check how sensitive our results are to the model assumptions, we used
different values for genetic relatedness among SS twins. We think our
approach led to valid conclusions. Previous studies on educational perfor-
mance for similar cohorts in the Netherlands, but based on a non-random
twin sample with zygosity, found estimates for genetic, shared environ-
mental, and non-shared environmental variance within the range of our
estimates (i.e., 61–81% genetic, 0–15% shared environmental, and 9–24%
non-shared environmental variance)63–65. Moreover, our conclusions
relating to the gene-environment interactions remain the same irrespective
of which value of genetic relatedness among SS twins is chosen.

The observed decrease in genetic differences and non-shared envir-
onmental differences in more advantageous environments is not entirely
surprising, as a prior twin study on educational performance in the Neth-
erlands found less unstandardized genetic variance (and less environmental
variance) in educational performance with increasing family SES44. We
show that this also holds for school SES. Also recent studies using polygenic
PGIs provide evidence in line with this compensation pattern27–29. These
findings can be used as a starting point for future research to investigate the
mechanisms underlying the negative gene-SES interaction. The (decreas-
ing) genetic differences in higher-SES environments as provided by the twin
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model, but also the educational attainment PGI, can be seen as a black box.
They do not provide enough information on whether the genetic influence
on educational performance occurs via characteristics that have a positive
effect (e.g., cognitive ability) or negative effect (e.g., deviant behavior, psy-
chiatric disorders). Future studies could identify mediators of the gene-SES
interaction by investigatingwhether the gene-SES interaction in educational
performance can be explained by gene-SES interactions in (non-)cognitive
characteristics66. Empirically distinguishing between positive genetic
potential and negative genetic riskwould provide amore informativeway to
investigate whether the environment enhances genetic potential (i.e., bio-
ecological model) or compensates genetic vulnerability (i.e., diathesis-stress
model, compensatory advantage). If more advantageous environments
compensate for genetic risks, it can be expected that this would be especially
pronounced for (the genetic componentof)more specific learningproblems
such as dyslexia and ADHD than (the genetic component of) general
educational performance or cognitive ability, for example. This could be
investigated by including such specific characteristics that have a negative
effect on educational performance in the twin design and/or using the PGIs
of these characteristics.

Both the twin design and usage of PGIs have advantages and
disadvantages67. Therefore, providing a definite conclusion on the interplay
between the school environment and genetic and shared environmental
influences requires combining different methods. For now, based on our
twin analyses, we conclude that school quality does not decrease (and nei-
ther increase) educational inequality. We find evidence for a gene-
environment interplay in educational performance in the Netherlands,
where genetic differences are smaller in more advantageous environments
consistent with the idea of compensation for genetic risks. This gene-
environment interplay in education turns out to be an SES composition
effect rather than a school quality effect. Therefore, the results of this study
suggest that reducingquality differences betweenschoolswould likelynot be
sufficient to reduce educational inequality.

If not only family background differences but also genetic differences
are seen as a source of inequality that should be compensated, other policies
may be more effective. Given the gene-school SES interaction observed in
this study, it may be more worthwhile to reduce school segregation. These
policies include, for example, changing school admission criteria and
influencing the school choice behavior of parents. Additionally, the way
schools are funded could be reformed. Currently, primary schools receive
additional funding if they have a larger share of pupils from disadvantaged
family backgrounds62. This could be extended to additional funding to
compensate for genetic risks. Since there are practical and ethical concerns
with directly measuring genetic risks, measured expressions of these risks
(e.g., low cognitive ability, dyslexia, ADHD) could be used as proxies. Such
policies may contribute to more equal chances to learn and perform well in
school for all children, including those with genetic risks towards lower
performance.

Methods
Data
We use linked microdata from Statistics Netherlands (CBS) covering the
whole population. We construct a dataset including twin families with
information on children’s educational performance, school environment,
and family SES. To construct twin families, we rely on basic demographic
information on children and their legal parents, using linked parent-child
data (KINDOUDERTAB, see ref. 68) combinedwith themunicipal personal
records database (GBAPERSOONTAB, see ref. 69). We identify families
based on children who share the same legal parents. After constructing
families, we identify twin pairs. Since the birth day is not available because of
privacy reasons, we base this on children who have the same birth month
and year. Based on the sex composition, we identify same-sex (SS) and
opposite-sex (OS) twin pairs. Multiple twin pairs in one family are analy-
tically complex. Therefore, we select one random twin pair in these cases.

We use theCito database (CITOTAB, see ref. 70) to obtain information
on educational performance. These data are available for 2006–2019 (birth

cohorts 1994–2007) at the time of this study. Primary schools can permit
Cito to share the data with theCBS, who anonymized the data and assigned
identification numbers to link the data at the individual and school level.
Data sources on parental SES that we use to construct school SES are the
highest education database (Hoogsteopltab, see ref. 71) for the year 2018 and
personal income for the period 2003–2018 (IPI for 2003–2015 and INPA-
TAB for 2011–2018, see ref. 72). Data on educational attainment are largely
based on diverse registrations of individuals who completed their education
at an educational institution funded by the government. There is no (reli-
able) register data available for privately funded education (which is rela-
tively rare in the Netherlands), education abroad, and long-term corporate
training. To add information on this, the CBS used data from the Labor
Force Surveywhich is collected on a sampling basis. Incomedata is based on
administrative information, mostly provided by the tax authorities.

We supplement children and parent data from CBS with official
information on the school environment obtained from the Dutch Inspec-
torate of Education and the Dutch Education Executive Agency. Inspecto-
rate of Education data include many indicators that are used to assess the
quality of schools by the inspectorate and are generally available from 1999
onward. Education Executive Agency data include information on general
school characteristics such as the number of students and teachers. These
data are (mostly) available from 2011 onward. School data can be linked to
the CBS data via a school identifier (BRIN). This research was approved by
the Ethics Committee of the Faculty of Social and Behavioral Sciences,
Utrecht University (FETC20-216). Given the usage of administrative data,
informed consent is not applicable.

Selections and selectivity
Figure 3 shows the sample selection.Weonly study twins frombirth cohorts
1994–2007, due to data availability of our dependent variable. Only twin
pairs for whom at least one twin has information on educational perfor-
mance are included.One reason for themissingness is that some schools did
not permit to share the results withCBS. Another reason is that schools can
choose to administer another test. Most schools use the Cito test. Until
recently, around 80% of the schools administered this test and these schools
did not differ from the total school population regarding region, school size,
urbanization, and percentage of students from low-educated families73. For
the most recent years, the percentage of schools administering the Cito test

At least one twin has cito data available
Npairs = 30,415

No cito data available
- Npairs = 16,570

Twins a�end same school
Npairs = 29,668

A�end different schools
- Npairs = 563

Twins iden�fied in administra�ve data, 
birth cohorts 1994 – 2007

Npairs = 46,985

School unknown
- Npairs = 184

School data available
Npairs = 29,472

No school data available
- Npairs = 196

Analy�cal sample 
Npairs = 29,434

NSS = 18,384, NOS = 11,050 

Family SES data available
Npairs = 29,434

No family SES data available
- Npairs = 38

Fig. 3 | Selection of the analytical sample. SS same-sex twin pairs, OS opposite-sex
twin pairs.
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decreased (63.8% in 2017/2018, 55.9% in 2018/2019) and became a bitmore
selective. Schools in more urbanized areas and larger schools more often
administered the Cito test73,74. Excluding these years did not substantially
change our results.

We only include twins who went to the same primary schools. Most
twins (in our data 98%) go to the same school. Those who attend different
schools form a selective group (e.g., one twin attends a school for special
needs). For 6415 twinpairs, at least oneof the twinshadmissing information
on the school identifier. In most of these pairs (6234 pairs), there was a co-
twin with non-missing information. In these cases, we assume that both
twins attended the same school.We exclude the twin pairs where both twins
had missing information on school data. We also exclude twin pairs with
missing information on parental SES. This leads to our analytical sample of
Npairs = 29,434.

Measurements
Wemeasure our dependent variable, educational performance, by students’
scores on the Cito test. We use the most recent score in case of multiple
observations, which may occur if children repeat the grade when the test is
taken. The Cito test is a nationwide standardized educational achievement
test taken at the end of primary education around age 12. It consists of
multiple-choice items on Dutch language, mathematics, study skills, and
world orientation (e.g., geography, biology, and history). The domains are
combined intoa standard score. Because the subdomainworldorientation is
not mandatory, this is not included in the standard score. The standard
score is calculated based on the correctly answered questions with a formula
taking into account the difficulty of the test for that year, to make the scores
comparable over the years. It is aimed to have questions of a difficulty level
between 0.40 and 0.90 with an average of around 0.70, where the difficulty
level refers to the proportion of pupils who answered the item correctly73.
Another property of the Cito score is that the number of correct answers is
transformed into a scale from 501–550, with a national average of 535 and a
standard deviation of 10. If the scores are below 501 or above 550, they are
rounded to the minimum or maximum73. There is more censoring at the
upper end than at the lower end of the scale. These properties of the scaling
result in a somewhat negatively skewed distribution, although the skewness
value of−0.6 doesnot suggest severe skewness.Also, the level of censoring is
relatively low, with around 4% of twins obtaining the maximum score of
550. However, censoring occurs more among high-SES children (and
thereby also more frequently in high-SES and high-quality schools). High-
SES children more often obtain the maximum score, while obtaining the
lowest score is uncommon. This pattern is also found in similar studies (see,
e.g., refs. 44,75) and has the consequence that gene-environment interactions
may be (partly) due to a ceiling effect.We expect this to be a limited problem
in our study. Both the Cito score and the (uncensored) raw test score show
decreasing variancewith increasingparental SES (seeSupplementaryFig. 7).
Also, a prior study investigating gene-family SES interactions in Cito scores
shows that correcting for censoring did not change the results44. Hence, it is
unlikely that the decreasing variance with increasing parental SES (and the
associated measures school SES and school quality) is solely driven by the
censoring of the Cito scale.

For our moderator school quality, we construct a factor score based on
data from the Inspectorate of Education. The Inspectorate data consist of
many official indicators that are used to assess the quality of schools. These
are generally available for the period 2000–2011, and sometimes up to 2019.
Initially, we also includeddata froma seconddata source, namely, data from
the Education Executive Agency. However, in the end, the indicators
derived from these data (e.g.,financing, number of pupils and staff)were not
included in our measurement model due to low correlations with the other
indicators or low factor scores (see Supplementary information Appendix
E). The inspectorate data are not collected for scientific research purposes,
but to assess whether schools meet a certain quality standard. The inspec-
torate usually visited schools once every four years, and the set of indicators
that were used differed over the years. Although this provides a rich source
of information, these data are not directly suited for research and require

extensive data handling. The structure of the Inspectorate data with the
resulting missing data makes it impossible to measure school quality per
year or even a couple of years. Therefore, for each indicator, we take the
average of all available years. Items are mostly measured on a three-point
scale (insufficient, sufficient, good) or a four-point scale (bad, insufficient,
sufficient, good). Sometimes, also a two-point scale is used (insufficient,
sufficient; no, yes).

We construct factor scores based on the standardized items using
factor analyses with Full Information Maximum Likelihood (FIML) esti-
mation inMplus.We conduct two Exploratory Factor Analyses (EFA): one
for all the items related to school resources leading to two dimensions, and
one for school climate leading to seven dimensions. Altogether, this leads to
nine dimensions of school quality: (1) range of educational activities, (2)
(implementation of) school curriculum, (3) guidance of educational needs,
(4) parental involvement, (5) monitoring and evaluating (special needs)
students, (6) learning climate, (7) social climate, (8) safety, (9) quality
assurance (see Supplementary Tables 6, 7). Based on these dimensions, we
construct one overall school quality factor in a third (confirmatory) factor
analysis. The dimensions of social climate, parental involvement, and safety
have a low loading on this overall factor (Supplementary Table 8) and/or a
low correlation with schools’ average Cito score (Supplementary Table 9).
As an alternative operationalization, we exclude these dimensions and
construct a factor score based on the remaining six dimensions. This does
not lead to substantially different results and therefore we keep all the
dimensions in. Given the numerous latent variables and items, it is not
possible to integrate the full measurementmodel with our analytical model.
Therefore, we save the factor scores and include these in our analytical
model as a single variable while imposing a measurement error correction.
More information on this correction – as well as further details on the
procedure, items, and factor analyses – are provided in the Supplementary
information (Appendix E).

Parental SES ismeasured by a factor score based on parental education
and income. For parental education, we use the father’s and mother’s
highest attained level of education, which is coded according to the Inter-
national StandardClassification of Education (ISCED) 2011.We rely on the
most recent data file from 2018. For income, we use the father’s and
mother’s percentile scores of personal yearly income for the year before the
Cito test. Personal income includes the gross income from labor, own
company, income insurance benefits, and social security benefits (excluding
child benefits and child-related budget). Premiums for income insurance
have been deducted. For the percentile score, personal income is divided
into 100 equal groups of people with income in private households. We
construct a factor score for SES based on standardized items using CFA in
Mplus (see Supplementary information Appendix F). FIML is used to
handle missing data, which is especially present for parental education
(Supplementary Table 11). Data on parental income is also sometimes
missing (for the father’s and mother’s income in 5% and 12% of the cases,
respectively). We have income data on fathers and mothers who no longer
form a household. Hence, missing values are not caused by a divorce or
separation but the result of a combination of unknown causes. These
potentially include a deceased parent, a migrated parent, a parent without
income, or a data registration problem. Given the unknown causes and
relatively small amount of missing, using FIML estimation in the parental
SES measurement model is a suitable solution.

School SES is an aggregate of parental SES.We use the average parental
SES of all children in the school who took the Cito test in the year that the
twins took this test.

We control for year of birth and sex (0 = female, 1 =male) in allmodels.
Descriptive statistics of all variables are presented in Table 3.

Twin method
In the classical twin design, structural equation modeling (SEM) is used to
decompose the variance in a characteristic into three latent components.
First, there is a component capturing additive genetic variance (A). This
component partly reflects genetically influenced traits that positively
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influence educational performance, including cognitive ability but also non-
cognitive traits such as self-efficacy and grit76. It also captures genetic var-
iance related to traits that negatively influence performance, for example,
ADHD, depression, and antisocial behavior20,77. Second, there is a common
or shared environmental variance (C) component, which includes all
environmental aspectsmaking twinsmore alike such as influences of family
resources, parenting practices, educational expectations, and the broader
environmental context that differs between families40. We use the C-com-
ponent as a comprehensive measure of family background influences,
reflecting social inequality in educational performance. Last, there is unique,
non-shared, environmental variance (E), capturing aspects that make twins
dissimilar. These include, for example, subjective experiences, differential
treatments, luck, and measurement error21. Latent components A, C, and E
are set to a variance of 1. Path coefficients a, c, and e represent the effects of
the latent factors on educational performance. The variance is equal to the
square of the path coefficient; hence the ACE model can be written math-
ematically as

Veduc ¼ a2 þ c2 þ e2 ¼ VA þ VC þ VE ð1Þ

whereVeduc is the total variance of our phenotype educational performance.
We extend this model by including a continuous moderator (M)78. In our
case, our moderator school quality affects the average educational perfor-
mance as shown by μþ bmM. It could also moderate, for example, a to
become aþ baM (see Fig. 4). The total variance in this moderation model
changes to

VeducjM ¼ aþ baM
� �2 þ cþ bcM

� �2 þ eþ beM
� �2 ð2Þ

Parameters in this model are usually identified because zygosity is
available. Identical (i.e.,monozygotic;MZ) and fraternal (i.e., dizygotic;DZ)
twins differ in genetic resemblance:whereMZ twins are genetically identical
at conception, DZ twins share on average half of their segregating genes.
Hence, the genetic correlation (A1-A2) can be constrained to 1 forMZ twins
and 0.5 for DZ twins. It is assumed that MZ and DZ twins share their
environment to the same extent, meaning that shared environmental cor-
relation (C1-C2) can be constrained to 1 for both MZ and DZ twins.
Accordingly, the MZ covariance is Covmz ¼ VA þ VC and for DZ twins
this is CovDz ¼ 0:5VA þ VC:

Constraining the shared environmental variance to be equal
reflects the Equal Environment Assumption (EEA). Violation of the

EEA could overestimate A and underestimate C, but only if differential
treatment is related to the outcome under study. Several studies showed
that the EEA is unproblematic for a wide range of outcomes79, including
school performance specifically80,81. Additional assumptions are no
assortative mating, generalizability of twins to the general population,
minimal gene-environment correlation, and absence of non-additive
genetic effects. Violations of these assumptions could bias A and C but
do so in different directions82. These consequences of violations
(upward or downward bias of A and C) are reflected in the difference in
genetic relatedness between twin types. We perform the analyses with
different genetic correlations to test to what extent our results are
sensitive to the assumptions.

Twin model with unknown zygosity
We do not have information on zygosity but instead rely on data from
18,384 same-sex (SS) and 11,050 opposite-sex (OS) twin pairs. OS twins
are alwaysDZ, hence their genetic correlation (A1-A2) is equal to 0.5. SS
twins are a mixture of MZ and DZ twins. The true value for the average
genetic correlation of SS twins (i.e., rSSG) is unknown, and there are
different ways in the literature to deal with this32,83,84. A common way is
usingWeinberg’s differential rule to estimate the proportion of MZ and
DZ twins within SS twin pairs85. According to this rule, the probability
of male births equals the probability of female births, and therefore
amongDZ twins the number of SS twins equals the number of OS twins.
The total number of DZ twins is thus twice the number of OS twins. The
proportion of MZ twins within SS pairs in our data can be estimated by
pMZSS = (NSS – NOS) / NSS = (18,384–11,050) / 18,384 = 0.40. For DZ
twins within SS pairs this is pDZSS = 1 – 0.40 = 0.60. This leads to an
average genetic relatedness among SS twins of
rSSG = (1*0.40)+ (0.5*0.60) = 0.70. Another common approach,
which is based on the assumption that among SS twins half will be MZ
and half will be DZ, is to use rSSG = 0.75 (i.e., the average genetic
relatedness of MZ and DZ twins)84.

While theMZ twin rate is relatively stable over time andMZ twinning
is thought to be the result of a randomevent, this is not the case forDZ twins.
DZ twinbirths are related to individual characteristics (DZ twinpregnancies
are more common when the mother is older, taller, has a higher BMI, and
smokes, among others) and the usage of assisted reproductive technology
(ART) such as in vitro fertilization (IVF)86. There are also indications that
the usage of ART is related to MZ twin pregnancies, but the underlying
causes are unknown86,87. In the Netherlands, the average maternal age and
use of ART increased over the past decades, although the IVF policy has
become more conservative (increasingly only one embryo is being

Cito
twin 1

E2C1A1 C2 A2

SS: rSSG / OS: .5 

Cito
twin 2

E1

SS: 1 / OS: 1 

1 1 1 1 1 1

M
School quality

+ ++ ++ +

Fig. 4 | ACE moderation model. Latent variables represent genetic (A), shared-
environmental (C), and non-shared environmental (E) components of educational
achievement, with corresponding path coefficients (a, c, e). Measured variableM
refers to themoderator. Genetic covariance for same-sex (SS) twin pairs is estimated
by rSSG ¼ 1 NSS�NOS

NSS
þ 0:5 NOS

NSS
= 0.70 and is 0.50 for opposite-sex (OS) twin pairs.We

also use 0.75 and 0.80 as alternative values for rSSG.

Table3 |Descriptive statistics for same-sex (SS) andopposite-
sex (OS) twins

SS twins OS twins

Variable N Mean S.D. N Mean S.D.

Twin specific

Cito twin-1 16,530 535.17 9.77 9909 535.08 9.82

Cito twin-2 16,456 535.32 9.68 9909 535.13 9.73

Male twin-1 18,384 0.49 11,050 0.50

Male twin-2 18,384 0.49 11,050 0.50

Twin pair

School
quality

18,384 0.10 0.46 11,050 0.10 0.45

School SES 18,384 0.03 0.34 11,050 0.03 0.34

Parental
SES

18,384 0.06 0.77 11,050 0.04 0.78

Year of birth 18,384 2000.12 3.73 11,050 2000.19 3.68

All continuous independent variables are z-standardized prior to the analyses. Minimum and
maximum values are not provided because of the confidentiality guidelines of Statistics
Netherlands.

https://doi.org/10.1038/s41539-024-00225-x Article

npj Science of Learning |            (2024) 9:14 10



transferred)86. Assuming a fifty-fifty mixture of MZ and DZ twins among
the SS pairs is likely not realistic for the population that we study. Relying on
the estimated genetic relatedness using Weinberg’s differential rule over-
comes this problem. Indeed, whenwe calculate theMZ/DZ ratio among SS
twinswefinda larger share ofDZ twins amongSS twins (i.e., a ratio of 40/60,
leading to the estimated genetic relatedness of rSSG = 0.70).

Relying on a twin model with unknown zygosity has been criticized88.
One concern is that the design is less powerful than using information on
zygosity. This is less applicable to our study given the use of population data.
Another concern is that the method relies on the assumption that the
correlationof SS twinpairs only differs from that ofOS twinpairs because SS
twins are on average genetically more similar, not for other non-genetic
reasons32. This assumption is violated if SSDZ twins aremore similar to one
another than OS DZ twins because the first are from the same sex and the
latter are not. One could test this by comparing intraclass correlation
coefficients (ICCs) of SS and OS pairs with known zygosity. This has been
done for reading and mathematics achievement using data from the
Netherlands Twin Register45. Comparing the similarity in educational
achievement for SS and OS pairs and MZ and DZ pairs with different sex
compositions demonstrated that the assumption holds45. Another way to
test this is by comparing the ICCs of SS andOS non-twin sibling pairs. This
shows that SS siblings are slightly more similar (average ICC for males and
females = 0.44) than OS siblings (ICC = 0.42), suggesting small sex influ-
ences (Supplementary Fig. 8).

Although the difference is only 0.02, it could still lead to a non-
negligible upward bias in estimates of genetic variance and a downward bias
in shared environmental variance. To give an intuition for the possible size
of thebias, if oneuses the ICCofOSDZtwins (0.45), thedescriptive estimate
of heritability would be 0.80, which can be calculated with the formula
(ICCSS –ICCOS) / (rSSG – rOSG) = (0.61–0.45) / (0.70–0.50). If we assume
that the sex-effect for twins is the same as for non-twin siblings, the ICC for
SS DZ twins would be 0.45+ 0.02 = 0.47. Based on this ICC, heritability
wouldbe 0.70.One can correct this bias byusing a larger value for rSSG.Note
that theoretically, one would adjust the shared environmental correlation of
OS twins downwards to consider that their environments are less similar
because they are of different sexes. However, genetic and shared environ-
mental relatedness account for the samepattern in the data (cf. Spinath et al.
2004), so it makes sense to only adjust one at a time. Practically, increasing
rSSG is similar to decreasing the shared environmental correlation of OS
twins. We, therefore, perform our analyses using three values of rSSG (0.70,
0.75, 0.80). As we will show, our conclusions are robust to the different
values.

Analytical strategy
We fit a series ofACEmodels inMplus. We have data on 29,434 twin pairs
nested in 5843 schools. To account for this nested structure, we adjust the
standard errors for clustering at the school level. In allmodels, the influences
of sex and birth year are controlled for by including them as covariates. We
z-standardize all continuous independent variables prior to the analyses.
Before fitting the twin models, we test for equal means and variances
between SS and OS twins. The difference in the mean of educational per-
formance (Wald test = 0.83, df = 1, p = 0.362) and variance in educational
performance (Wald test = 0.12, df = 1, p = 0.733) are not statistically sig-
nificant, indicating that equality of means and variances can be assumed.

Wefirst examine theACEmodel and include themain effects of school
quality, school SES, and parental SES on educational performance in a
stepwise fashion. It should be noted that these school and family measures
are always shared between twins and thus can only explain shared envir-
onmental variance in the ACEmodel, even though these measures include
genetic and non-shared environmental variability89. Hence, their associa-
tions with educational performance should not be interpreted as causal, as
they can be genetically confounded90. Next, we allow the ACE components
to be moderated by school quality and school SES to test whether genetic
and shared environmental variance in educational performance increases or
decreases with increasing school quality and school SES. Subsequently, we

test themoderation by school quality and school SES simultaneously, to see
whether school SES explains part of themoderation effect of school quality.
Lastly, we control for the moderation by parental SES to further scrutinize
whether moderation by the school environment measures reflects school-
based processes or are instead driven by what happens in the family
environment.Weperformseveral robustness checks to assess towhat extent
our results are dependent onourmodel assumptions andoperationalization
of school quality.

The few behavioral genetics studies examining whether the school
environment moderates genetic and shared environmental variance gen-
erally looked at absolute variance components23–25, although standardized
components were also used22. For standardized components, each variance
component ismade proportional to the total variance. For example, relative
genetic contribution (i.e., heritability) is obtained by SVA ¼ VA

Veduc
. An

advantage of standardized components is that it considers that the total
variance may differ between contexts while the effect of genes and the
environment do not differ. For example, in certain schools childrenmay be
more genetically similar or more similar concerning their (non-)shared
environmental background than in other schools64. An advantage of using
unstandardized, absolute variance components is that genetic and shared
environmental variances can be contingent on school quality independent
of each other. Solely focusing on standardized components will conceal
underlying processes. As both standardized and unstandardized variance
components have pros and cons, we report both.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All results are based on own calculations using non-public microdata from
Statistics Netherlands. Under certain conditions, these microdata are
accessible for statistical and scientific research. For further information, see
https://www.cbs.nl/en-gb/onze-diensten/customised-services-microdata/
microdata-conducting-your-own-research or e-mail microdata@cbs.nl.
Summary data of the variables used in this study can be found here: https://
osf.io/xsgdt/.

Code availability
Code for replication can be found here: https://osf.io/xsgdt/.
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