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Harmonic memory signals in the human
cerebral cortex induced by semantic
relatedness of words

Check for updates

Yasuki Noguchi 1

Whenwememorizemultiple words simultaneously, semantic relatedness among thosewords assists
memory. For example, the information about “apple”, “banana,” and “orange”will be connected via a
common concept of “fruits” and become easy to retain and recall. Neural mechanisms underlying this
semantic integration in verbal working memory remain unclear. Here I used electroencephalography
(EEG) and investigated neural signals when healthy human participants memorized five nouns
semantically related (Sem trial) or not (NonSem trial). The regularity of oscillatory signals (8–30 Hz)
during the retention period was found to be lower in NonSem than Sem trials, indicating that
memorizing words unrelated to each other induced a non-harmonic (irregular) waveform in the
temporal cortex. These results suggest that (i) semantic features of a word are retained as a set of
neural oscillations at specific frequencies and (ii) memorizing words sharing a common semantic
feature produces harmonic brain responses through a resonance or integration (sharing) of the
oscillatory signals.

Verbal working memory (vWM) plays a critical role in various
human behaviors such as reading, conversation, and inference,
although its neural underpinnings remain controversial1–3. A hall-
mark of vWM is that its load can greatly change depending on a
relationship among memory items4. For example, when multiple
words in a memory list are semantically associated (“apple”,
“banana”, and “orange”, etc.), the encoding and retention of those
words is facilitated because they are integrated into a coherent
concept (fruits) in the brain. In a typical experiment, this integration
is evidenced by the high accuracy of a recognition task in which
participants judge whether a probe word (e.g., “dog”, normally pre-
sented at the end of a trial) matches any of the memory words or not.
In contrast to this adaptive aspect5, integrating memory items also
has a negative effect, sometimes inducing an erroneous response in
the recognition task6–8. If the probe is a lure word that is semantically
related to memory items but has never appeared in the list (e.g.,
“pear”), typical participants falsely remember having seen the lure
(called the “false memory” or “semantic interference”).

Many studies have investigated brain activity underlying the semantic
integration and interference in memory9–12. Approaches of functional
magnetic resonance imaging (fMRI) and transcranial stimulation revealed
critical brain regions such as the anterior temporal cortex13,14, prefrontal

cortex6, and cerebellum15. However, it remained unclear how the semantic
information is bound together as neural (electrical) signals in the human
brain. Based on a close relationship between WM and oscillatory brain
activities16–21, here I use electroencephalography (EEG) and test a hypothesis
that a semantic integration in WM is represented as a harmony of neural
rhythms (Fig. 1). In this model, semantic features of eachmemory word are
maintained as a set of neural oscillations at specific frequencies. Retention of
words sharing a common feature induces a resonanceor integrationof those
oscillatory signals, generating a dominant frequency (or frequencies) in a
power spectrum (Fig. 1a). This would produce a regular (more harmonic)
neuralwaveformwith a limited set of frequencies, forming a strongmemory
representation resistant to degradation by neural noises (irregular
waveforms).

As shown in Fig. 2a, participants in the present study attended to either
the left or right visual field and memorized five words sequentially pre-
sented. Neural activity during a retention period after the 5th word (delay 5
or D5) was compared between when the five words were semantically
associated (Sem trial) or not (NonSem trial). If an across-word integration
takes place as a neural harmony in the brain, this would be observed as a
higher regularity ofEEGwaveforms in Sem thanNonSem trials. Specifically,
EEG signals in Sem trials would be characterized by a smaller number of
local peaks on a power spectrum density (PSD, upper right of Fig. 1a). In
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contrast, the PSD in NonSem trials would comprise a larger number of
different frequencies (like a white noise), leading to an irregular EEG
waveform where fast and slow oscillations are mixed together (Fig. 1b).

Results
Behavioral data (Experiment 1)
The basic structures of trials are displayed in Fig. 2a. Each trial startedwith a
cue stimulus (an arrow) to direct the attention of participants. Participants
(34 native speakers of Japanese) viewed two Japanese words (nouns), one in
the left and another in the right visual fields, presented simultaneously for
200ms (memory-word screen). A total of five screens (ten words) were
sequentially presented with an inter-screen interval (delay) of 800ms. After
the last (5th) delay of 1300ms, the trial ended with a probe wordmarked by
a red rectangle. Participants memorized five words in the cued hemifield
(memory words or MWs) and performed an old/new judgment on the
probe word, pressing one button if the probe matched any of the five MWs
(“old” response) but another if not (“new” response). They were also asked
to ignore any words in an uncued hemifield.

An effect of semantic integration was measured by a comparison of
Sem and NonSem trials (Fig. 2a, b). In Sem trials, five MWs in the cued
hemifield were semantically related (e.g., “night”, “coal”, “shadow”, “dark”,
and “crow”), while they were not in NonSem condition (e.g., “night”,
“apple”, “cheese”, “civility”, and “wife”). A combination of cued hemifield
(left/right) and semantic relatedness (Sem/NonSem) produced four types of
trials randomly intermixed in an experimental session.Trialswith a leftward
cue and semantically related MWs were called SemL, while those with a
rightward cue and unrelated MWs were called NonSemR.

In SemL and SemR, one of fiveMWswas shown as a probe in 20 out of
60 trials (old-probe trial, e.g., “night” in the above case). A probe word not

included in MWs was shown in another 20 trials (new-probe trial, e.g.,
“foot”). In the other 20 trials, I showed a probe that was semantically related
to the MWs but had never appeared (lure probe, e.g., “ink”). In NonSemL
and NonSemR, 30 trials had an old probe, and the other 30 trials had a
new probe.

Behavioral data were analyzed using the signal detection theory. I
computed the d-prime (d’) based on a hit rate in which participants
answered “old” to an old probe and a false-alarm (FA) rate in which they
answered “old” to a new probe. If semantic relatedness across MWs facili-
tated the old/new judgment, this would be observed as higher d’ in Semthan
NonSemconditions. Semantic integration, however, is also known to exert a
negative influence when the probe is related to memory words (false
memory). I examined this point by comparing the FA rates between the
lures and new (unseen) probes of the Sem condition. False memory would
be indexed by a higher FA rate to lures than that to new probes.

Figure 2c shows the d’ of the old/new judgment task. I observed the d’
significantly higher in SemL (3.48 ± 0.08, mean ± SE across participants)
than NonSemL (3.03 ± 0.15) trials (t(33) = 3.34, p = 0.002, Cohen’s
d = 0.63), showing that semantic relatedness among MWs facilitated a
retention of those words when they were presented in left visual field (right
hemisphere). No significant difference, in contrast, was seen (t(33) = 1.05,
p = 0.30, d = 0.20) when participants memorized words in the right visual
field (SemR: d’ = 3.56 ± 0.07, NonSemR: d’ = 3.45 ± 0.11).

Figure 2ddisplays FA rates for new (unseen) probes and lure probes. In
SemL, the FA rates to lures (4.56 ± 0.93%) were significantly higher
(t(33) = 4.04, p = 0.0003, d = 0.70) than those to new words (1.18 ± 0.70%),
showing a falsememory arising from a semantic integration. Similar results
were observed in SemR (lures: 4.26 ± 0.97%, new words: 0.29 ± 0.29%,
t(33) = 4.34, p = 0.0001, d = 0.95)

Taken together, those data indicated that participants integrated
semantic information of MWs irrespective of whether they were presented
in the left or right visual field. A left-hemispheric dominance of vWM22,23,
however, might obscure a difference in d’ between SemR and NonSemR
(ceiling effect).

EEG data
Neural activity was recorded from 32 points over the scalp. Figure 3a shows
time-frequency power spectra over the left temporal cortex in SemR aver-
aged acrossparticipants. Prominent powerchanges during thefive retention
periods (D1–D5) were observed in alpha-to-beta band (8–30Hz). These
data were consistent with mounting evidence from previous studies
showing an involvement of alpha24, beta21,25, and alpha-to-beta26–29 rhythms
in semantic processing and WM. I thus mainly focused on EEG signals in
the alpha-to-beta band (8–30Hz) below.

Three different measures of oscillatory signals were analyzed; ampli-
tude, speed, and regularity. Changes in the amplitude were measured as an
envelopeof thefilteredwaveform(dottedblue line inFig. 3b). The speedand
regularity of oscillatory signals were quantified by the mean and standard
deviation (SD) of the inter-peak interval (IPI)30, respectively (Fig. 3c).
Comparisons between Sem and NonSem trials during D5 are shown in t-
maps depicted over the 2D layout of 32 sensors (Fig. 4). Since a paired t-test
(Sem vs. NonSem) was repeated for 32 sensor positions, a problem of
multiple comparisons was resolved by controlling false discovery rate
(FDR). Although amplitudes of EEG waveforms at 8–30Hz tended to be
smaller in Sem than NonSem trials, no significant difference was observed
after the FDR-correction (Fig. 4a). The t-map of mean IPI, a measure for
oscillation speed, showed significant differences (Sem <NonSem) over
frontal and temporal regions (orange rectangles in Fig. 4b). Although these
data suggested an acceleration of brain rhythm related to a semantic inte-
gration, the change in mean IPI was limited to when participants memor-
ized items in right visual field (SemR vs. NonSemR, right panel).

Finally, the SD of IPIs, a measure for irregularity of EEG waveforms,
showed significant reductions in Sem compared to NonSem trials (Fig. 4c)
bothwhenmemory itemswere presented in left and right visualfields. Clear
differences were found over the posterior temporal cortex contralateral to a

Fig. 1 | Scheme. For simplicity, here I assume that each semantic feature (e.g.,
sleep) of a word (e.g., night) is recalled as neural oscillation at a specific fre-
quency. aMemorizing two words (e.g., night and coal) with a common feature
(dark) induces a resonance or sharing of the oscillatory signal across the words,
generating a regular EEG waveform characterized by a smaller number of fre-
quencies in a power spectrum (right panels). bMemorizing words without a com-
mon semantic feature induces no resonance or sharing of the oscillatory signal,
producing an irregular EEG waveform composed of a larger number of frequencies
(like white noise).
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cued hemifield. A comparison of SemL vs. NonSemL indicated significant
differences at electrode T6 (t(33) =−3.69, p = 0.0008, d =−0.09) and PO4
(t(33) =−2.95, p = 0.006, d =−0.09), while a comparison of SemR vs.
NonSemR indicated significant differences at T5 (t(33) =−4.54,
p = 0.00007, d =−0.15) and CP5 (t(33) =−4.92, p = 0.00002, d =−0.14).
These results of IPI-SDwere unchangedwhen I drew F-maps of ANCOVA
(Fig. 4d) in which the difference in amplitudes (Fig. 4a) was included as a
covariate. Semantic relatedness of MWs thus was associated with increased
regularity (decrease in IPI-SD)ofoscillatory signals. Indeed, the reduction in
IPI-SD between Sem and NonSemwas significantly correlated with the FA
rates to lure probes (Supplementary Fig. 1), suggesting a close relationshipof
IPI-SD with a false memory (semantic integration).

Changes in periodic and aperiodic components
Recent EEG studies have focused on a difference in periodic and aperiodic
components of neural oscillatory signals on power spectrum density (PSD).
A typical example is the FOOOF technique31 in which an aperiodic 1/f
component was modeled and separated from periodic signals. I thus tested
the validity of IPI analysis with the PSD-based approach. Using the fast

Fourier transformation (FFT), a raw EEGwaveform during D5 in each trial
was converted into a PSD (Fig. 5a). An aperiodic (1/f) component was then
estimated by fitting an exponential curve to the PSD at 8–30Hz. Two
parameters of the fitted curve, offset and exponent, were averaged across
trials and compared between Sem and NonSem trials. I also computed two
measures for a periodic component; central frequency and number of local
peaks on the PSD. The central frequency represents the speed of oscillation
of alpha-to-beta rhythm, while the number of peaks indexed its irregularity
(see Fig. 1 and Methods for details).

Results are shown in Fig. 5b–e. An increase in central frequency was
observed over the left posterior temporal cortex when participants retained
MWs in the right visual field (SemR >NonSemR, T5 in the right panel of
Fig. 5b: t(33) = 2.35,p = 0.025,d = 0.08). Significant decreases in thenumber
of peaks (Sem<NonSem) were seen over the posterior temporal cortex
contralateral to a cued hemifield (Fig. 5c, T6 in the left panel: t(33) =−2.53,
p = 0.016, d =−0.50, T5 in the right panel: t(33) =−2.49, p = 0.018,
d =−0.49). These resultswere overall consistentwith themean (Fig. 4b) and
SD (Fig. 4c) of IPIs, respectively. On the other hand, no difference between
Sem and NonSem was found in the aperiodic measures (offset and

Fig. 2 | Experiment 1. a Each trial consisted of five
screens (1 s/screen, containing two words for each),
followed by a probe word marked with a red rec-
tangle. Participants memorized 5 words in a visual
field indicated by an arrow cue (memory words or
MWs). They pressed one button if the probe mat-
ched any of the five MWs (“old” response) and
pressed another if not (“new” response). Neural
activity during a retention period after the 5th word
(D5) was compared between when the MWs were
semantically associated (Sem trial, upper panels) or
not (NonSem trial, lower panels). b Semantic relat-
edness among five MWs in Sem (left) and NonSem
(middle) trials. The relatedness between two words
was computed as a correlation between semantic
vectors (1 × 300) of those words. Semantic correla-
tions betweenMWs and two types of probe words in
Sem trials (unrelated new words and lure words, see
Methods) are also shown in the right panels. c The
d-prime (d’) computed from hit and false-alarm
(FA) rates in the old/new judgment task. Partici-
pants showed better performance (higher d’) in Sem
than NonSem trials only when they memorized
MWs in the left visual field (Retain-Left conditions,
SemL and NonSemL). d False memory. Higher FA
rates to lure probes than new (unseen) probes were
observed both in SemL and SemR trials. Blue and red
dots show individual data and an across-participant
average, respectively. Error bars denote standard
errors. ** p < 0.01, *** p < 0.001.
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exponent, Fig. 5d and Fig. 5e) at the posterior temporal electrodes (T5 and
T6, p > 0.23 for all). Semantic relatedness across the five MWs therefore
induced changes in the periodic, rather than aperiodic, component of EEG
signals.

Time-related changes in the regularity of oscillatory signals
More detailed information about SDs of IPIs is provided in Fig. 6. First, a
comparison between Retain-Left trials (SemL and NonSemL) and Retain-
Right trials (SemR andNonSemR) showed positive and negative t-values in
the left and right occipito-temporal cortex, respectively (Fig. 6a). Positive t-
values in the left cortex ranged from 2.93 (p = 0.006 at T5) to 3.87
(p = 0.0005 at PO3), while negative t-values in the right cortex ranged from
−2.11 (p = 0.043 at PO4) to−2.82 (p = 0.008 at T6). Attentive processing of
words in the left/right hemifield therefore induced a reduction of IPI-SD
(increase in regularity) over the right/left hemisphere.

This neural signature of information processing (high regularity),
however, diminished over time. One can see a gradual increase in IPI-SD
from D1 (300–1000ms) to D5 (4300–5500ms), presumably reflecting an
accumulatingmemory load. Figure 6b shows t-maps of IPI-SD between D1
and D5. In NonSem trials (lower panels), time-related increase in SD
(D5 >D1, shown in red) was prominent in the posterior regions con-
tralateral to a memory field (t(33) = 2.63, p = 0.013, d = 0.15 at T6 in
NonSemL and t(33) = 4.13, p = 0.0002, d = 0.22 at T5 in NonSemR). These
increases in SD were mitigated in Sem trials (upper panels, t(33) = 0.75,
p = 0.46, d = 0.05 at T6 in SemL and t(33) = 0.67, p = 0.51, d = 0.04 at T5 in
SemR), indicating that semantic integration ofMWs inhibited a generation
of irregular oscillatory waveforms in the posterior regions.

Experiment 2
Results in Experiment 1 showed a higher regularity of EEG waveforms in
Sem than NonSem conditions. This suggested that semantically related
words induced similar patterns of neural oscillations that were easy to
integrate when co-stored in vWM (Fig. 1a). I examined this point more
directly in Experiment 2. Specifically, the same set of 300 words as
Experiment 1 was presented individually (one by one) in Experiment 2. A
semantic-correlation matrix for each pair of words (300 × 300) was com-
pared with another correlation matrix (300 × 300) for neural oscillatory
responses (IPIs) to those words. If those two matrices are highly similar to
each other, this would show a link between semantic information and
oscillatory responses, explaining the high-regularity signals in Sem trials of
Experiment 1.

Eachparticipant inExperiment 2performed two tasks (Fig. 7). Thefirst
task involved a memory of five words sequentially presented (Fig. 7a). This
was identical to the vWM task in Experiment 1, except that there was no
attentional direction by the cue (aMWscreen in Experiment 2 had only one
word in its center). In the second (main) task, the same set of 300 words as
Experiment 1was presented one by one (Fig. 7b). Participants performedan
animacy judgment task on each word, pressing one key to animate and
another to non-animate objects.

Results of the memory task
Means and SEs of d’ in thememory task in Experiment 2were 3.56 ± 0.09 in
Sem and 3.74 ± 0.12 in NonSem trials. No significant difference was
observed (t(26) = 2.01, p = 0.055, d = 0.32). The FA rate to lure probes
(5.56 ± 1.72%) was significantly higher (t(26) = 2.51, p = 0.019, d = 0.55)
than that to new probes (1.85 ± 0.66%). These behavioral results were
similar to those in the Retain-Right trials in Experiment 1. The t-maps of
IPI-SDare shown inFig. 8a.Oscillatory signals duringD5weremore regular
in Sem thanNonSem trials (left panel. Themost distinct difference over the
left temporal region was seen at electrode CP5 (t(26) = 3.33, p = 0.003,
d = 0.15).The time-related increase in IPI-SD(fromD1 toD5)was inhibited
in Semtrials (middle panel. t(26) = 1.21, p = 0.24, d = 0.06 atCP5) but not in
NonSem trials (right panel. t(26) = 2.25, p = 0.033, d = 0.15 at CP5). Those
data replicated Experiment 1.

Results of the animacy judgment task
EEG data in the animacy judgment task were used for the representational
similarity analysis or RSA32–34. First, I made a representational dissimilarity
matrix (RDM) reflecting a semantic distance for each pair of the 300 words
(Fig. 7c), using the word vectors on fastText library (https://fasttext.cc/).
Next, I made another RDMbased on a correlation of IPIs (neural RDM). A
histogramof alpha-to-beta IPIs at 300–1000mswas depicted for eachword.
Each cell (dissimilarity index orDI) of the neural RDMwas defined as 1− r,
where rwas a correlation of IPIhistogramsbetween twowords.As shown in
Fig. 7d, a higher correlationwould be observedwhen twohistograms exhibit
overlapping changes in the speed of neural oscillations. Finally, a correlation
between semanticRDMandneuralRDMwas computedat eachEEGsensor
(representational similarity index or RSI). A high RSI indicates that
semantically associated words produced similar distributions of IPIs. The

Fig. 3 | Measurements and analyses of electroencephalography (EEG) data.
a Two-dimensional layout of 32 EEG sensors. Time-frequency power spectra
(decibel power changes fromapre-cue period,−800 to−500 ms) at two sensors over
the left temporal cortex (T3 and T5) are also shown. Prominent power changes
throughout the five retention periods (D1–D5) are seen in alpha-to-beta band
(8–30 Hz), indicated by a white rectangle. b Three measures of oscillatory signals. I
first extracted waveforms at the alpha-to-beta band with a band-pass filter. Changes
in amplitude were measured as an envelope of the filtered waveform (blue). Speed
and regularity of the oscillatory signals were quantified as a mean and standard
deviation (SD) of inter-peak intervals (IPIs), the time lengths between contiguous
peaks of the filtered waveform. c Evaluation of oscillation regularity. Pooling all IPIs
within a retention period (e.g., D5, 4300–5500 ms) generates a distribution of their
occurrences as a function of IPI lengths (right panels). The higher regularity of
oscillatory signals is indexed by a smaller variance or SD of the IPI distribution.

https://doi.org/10.1038/s41539-024-00221-1 Article

npj Science of Learning |             (2024) 9:6 4

https://fasttext.cc/


statistical significanceof thoseRSIwas evaluated througha comparisonwith
random data.

The mean and SE of accuracy in the animacy judgment task was
99.28 ± 0.28%. A rarity map of RSI between the semantic and neural RDMs
is shown in the left panel of Fig. 8b. Significant RSIs were found in the
frontal, parietal, and temporal regions, especially in the left hemisphere. Six
electrodes with significant p-values after the FDR corrections were as fol-
lows; CP5 (p = 0.009), C3 (p = 0.007), CP1 (p = 0.008), Cz (p = 0.005), FC6
(p = 0.003), T6 (p = 0.004). In Supplementary Fig. 2, I provided results of
RSA separately conducted for 34 words representing animate objects and
266words representing non-animate objects. TheRSI over the left temporal
regions was significant in all analyses. These data showed that semantically
associatedwords induced similar sets of IPIs, whichwere consistentwith the
high regularity of oscillatory signals when co-stored in vWM (Fig. 8a). In
contrast, no significant RSI was observed when the semantic RDM was
compared with the neural RDM made from the correlation of amplitude
changes (envelopes of 8–30Hz waveforms at 300–1000ms) between two
words (uncorrected p > 0.106 for all, right panel of Fig. 8b). Semantic
information was thus represented in IPIs, not in amplitude, of oscillatory
signals.

As a control, I performed another RSA using an RDM reflecting visual
(not semantic) similarities of the300words (Fig. 8c, seeMethods fordetails).
Non-significant RSI in this analysis (uncorrected p > 0.046 for all, right
panel) indicated that visual factors hadno effect on thedistributionof alpha-
to-beta IPIs at 300–1000ms.

Discussion
In the present study, I compared neural oscillatory signals when human
participants retained the information of five words semantically related
(Sem trial) or not (NonSem trial). Results revealed a reduced SD (increased
regularity) of IPIs in SemthanNonSemconditions over the temporal cortex
contralateral to memory items (Exp.1). The reduction of mean IPIs (an
acceleration of brain rhythm) was also observed when memory items were
presented in the right visual field (left hemisphere). In Experiment 2, I
presented the same set of words individually in a non-memory (animacy
judgment) task, finding that semantically related words induced similar
distributions of IPIs. These results suggested that memorizing words with a
common semantic feature would induce a resonance (or sharing) of the

Fig. 4 | Effects of semantic relatedness on the three oscillatory measures. a t-map
of oscillation amplitude (Fig. 3b, blue line). Mean amplitudes over 4300–5500 ms
(delay 5) were compared between Sem and NonSem trials at each EEG sensor.
Resultant t-values (negative: Sem <NonSem) were color-coded over the layout of
32 sensors. b t-map on mean IPIs c t-map on SDs of IPIs. White circles denote
sensors showing a significant (p < 0.05, uncorrected) difference, while orange rec-
tangles denote a significant difference after a correction of multiple comparisons.
Memorizing 5words semantically associated induced a reduction in SD of IPIs (EEG
waveforms with higher regularity) over the temporal region contralateral to a cued
hemifield (e.g., right temporal cortex in SemL). d F-map of IPI-SD. To exclude an
effect of oscillation amplitude (panel a) as a possible confound, I performed
ANCOVA (Sem vs. NonSem) with the difference in amplitudes included as a cov-
ariate. The reductions of IPI-SD (Sem <NonSem, indicated by positive F-values)
were kept significant in the temporal regions.

Fig. 5 |Analysis based onpower spectrumdensity (PSD). aProcedures. A rawEEG
waveform was converted to PSD. An aperiodic component of the PSD (dotted line)
wasmodeled with an exponential function and separated fromperiodic components
such as local peaks on the PSD. b t-maps of central frequency (a measure of oscil-
lation speed) computed from the PSD at 8–30 Hz. A significant increase (SemR >
NonSemR) was observed at the left temporal electrode (T5), which was consistent
with mean IPI (Fig. 4b). c t-maps of a number of local peaks (a measure of irregu-
larity). Significant decreases (Sem < NonSem) were observed at temporal regions
contralateral to a cued hemifield, consistent with IPI-SD (Fig. 4c). d t-maps of an
offset of the aperiodic component e t-map of an exponent of the aperiodic
component.
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oscillatory signals across the words, resulting in increased regularity of EEG
waveforms during the retention period (Fig. 1).

In bothExperiments 1 and 2, key regions for semantic integrationwere
found over the posterior temporal lobe. This is consistent with recent evi-
dence. For example, Volfart et al. (2021) reported neural activity in the
posterior temporal cortex related to a semantic categorization (e.g., dis-
criminating animals from city names) of visually presentedwords35. In light
of previous literature, a source region for present datamight be the posterior
middle temporal gyrus (pMTG)36,37. In order to integrate the information of
five words, the brain had to access semantic knowledge of each word and
connect the words under a common concept. The pMTG is thought to play
a critical role in such a process involving an immediate recall and re-
structuring of semantic networks38.

Several previous studies have investigated the effect of across-word (or
across-object) relationships on oscillatory signals in the human brain27.

They, however, mainly analyzed changes in oscillatory powers, such as an
alpha-power decrease during the retention of semantically related words39

and a beta-power decrease induced by the sentence superiority effect40.
Consistent with those data, I found decreases in the power of alpha-to-beta
rhythm in Sem compared to NonSem trials (Fig. 4a). Replicating those
previous findings, I further showed that semantic relatedness of words also
modulated temporal measures (speed and regularity) of brain rhythms.

Previous studies have proposed cross-frequency couplings as a neural
model of multi-unit memory. A typical example is the phase-amplitude
coupling between theta and gamma rhythms41–43. In this model, individual
memory items are represented by oscillatory signals in a gamma range.
Information of multiple items is retained by sequentially activating their
representations (gammaactivities) on a theta cycle.Although thismodel has
been supported by compelling evidence44–50, it does not mention explicitly
how the information of items is integrated into the buffer of WM. Indeed,
this line of studies has focused on how the brain segregates (not integrates)
information of semantically related concepts, e.g., by reactivating them in
distant phases of theta cycle51,52. The present data would make up for this
point by suggesting a new model of semantic integration through the
sharing of oscillatory signals acrossmemory items (Fig. 1). One possibility is
that the brain retains the information of multiple items by two different
mechanisms. Themechanismof theta-gamma coupling encodes a sequence
of individual items by keeping their independence, while the alpha-to-beta
rhythm represents the semantic relatedness of those items and enables an
efficient encoding such as chunking.

On the other hand, the present study has several limitations described
below. First, the model in Fig. 1 might be oversimplified, given that neural
underpinnings of semantic information have been mostly unclear and
controversial53. Although I illustrated in Fig. 1 that each featurewas retained
as the oscillation of a specific frequency, the present results are also con-
sistent with more complex models, for example, in which a single feature is
recalled as combined signals of multiple frequencies. Second, the present
data should be interpreted cautiously in light of a separation between vWM
andmental lexicon (long-termmemory).Although changes in IPImeasures
in Experiment 1were related to semantic integration across words in vWM,
the present study did not investigate directly the semantic knowledge (long-
term memory) stored in the mental lexicon. Further studies are needed to
analyze relationships between neural oscillatory signals and long-term
(semantic) memory. Indeed, previous studies showed a separation of brain
regions storing semantic knowledge from regions for vWM. The anterior
temporal lobe is known as the semantic “hub” in which various conceptual
knowledge is encoded as the long-term memory38,54. In contrast, posterior
regions such as the pMTG were related to control of WM contents55,
typically activated by a semantic integration across words. As discussed
above, the present results (reduction of IPI-SD) were mainly seen over the
posterior regions (Fig. 4) and thus would reflect the WM process.

In conclusion, the present data provided insight into how verbal
information was integrated as neural (electric) signals in the healthy human
brain. Semantic chunking is known to be a key method to enhance one’s
memory capacity. The current data might be also useful to develop a new
method to prevent age-related degradation of vWM56.

Methods
Participants
Thirty-four healthy subjects (native speakers of Japanese) participated in
Experiment 1 (17 females, age range: 18–42). This sample size (34) was
determined by apower analysis usingG*Power 357. The type I error rate and
statistical power were set at 0.05 and 0.80, respectively. Effect size was
assumed to be middle (0.5)58 because I found no previous study having the
same goal as the present one. Data of one subject (female) were excluded
fromanalysis due to excessive noise inEEGwaveforms and thus replaced by
data of an additional participant (female). Laterality quotients (LQs) mea-
sured by the Edinburgh Handedness Inventory59 showed that all partici-
pants were right-handed (mean: 84.76, range: 11.11–100) but two (−11.11
and−17.65). Thirty healthy subjects participated in Experiment 2. Data of

Fig. 6 | Changes in oscillation regularity over five delays (D1–D5). a t-map of IPI-
SD (averaged across the 5 delays) between Retain-Left trials (SemL and NonSemL)
and Retain-Right (SemR andNonSemR) trials. The same t-map for alpha amplitude
(Retain-Left vs. Retain-Right) is also provided to confirm the attention-related alpha
suppression reported in previous literature. Attentive processing of words in a left/
right hemifield induces a decrease in SD (increase in regularity) over the right/left
hemisphere. One can see, however, a gradual increase in SD from D1 to D5, which
presumably reflects an accumulating memory load over time. b t-map of IPI-SD
between D5 (4300–5500 ms) and D1 (300–1000 ms). In NonSem trials (lower
panels), the time-related increase in SD (D5 > D1, shown in red) was prominent in
the frontal cortex and posterior regions contralateral to a cued hemifield. This
increase in SD was inhibited by semantic relatedness across MWs (Sem trials, upper
panels), especially in the posterior regions. Black dots denote sensors showing a
significant (p < 0.05, uncorrected) difference, while orange rectangles denote a sig-
nificant difference after a correction of multiple comparisons.
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three participants were excluded from analyses because of a technical pro-
blem (loss of EEG data, N = 1) and excessive noise (N = 2), resulting in 27
participants in a final dataset (11 females, mean LQ: 80.28). All participants
had normal or corrected-to-normal visual acuity. After the nature of the
study had been explained, I received informed consent from each partici-
pant. All experiments were conducted in accordance with regulations and
guidelines approved by the ethics committee of Kobe University,
Hyogo, Japan.

Task (Experiment 1)
All visual stimuliwere generatedwith theMatlabPsychophysicsToolbox60,61

and presented on a CRT monitor (refresh rate: 60Hz). Each trial started
with a black fixation point (0.18 × 0.18 deg) over a gray background for

800ms. This was followed by a cue stimulus (an arrow pointing leftward or
rightward, length: 1.34 deg, duration: 33ms) over a central field to direct the
attention of participants (Fig. 2a). After another fixation period (467ms),
participants viewed two Japanese words (nouns), one in left and another in
right visual fields, presented simultaneously for 200ms (memory-word
screen). Those words consisted of 1–5 white Japanese letters (Kana and
Kanji characters) vertically arranged. The size of each letter was 1 (H) × 1
(V) deg, and the center-to-center distance between the fixation point and
word was 1.25 deg. A total of five screens (ten words) were sequentially
presentedwith an inter-screen interval (delay) of 800ms.After the last (5th)
delay of 1300ms, the trial ended with a probe word (marked by a red
rectangle, always shown in the cued visual field). Participants were asked to
memorize five words in the cued hemifield (memory words or MWs) and

Fig. 7 | Experiment 2. aMemory task. Basic struc-
tures were the same as Experiment 1, except that
each MW screen had only one word in its center.
b Animacy judgment task. The same set of 300
words as the memory task was presented individu-
ally. Participants pressed one key to a word repre-
senting an animate object and pressed another to a
non-animate object. c Representational similarity
analysis (RSA). Using semantic vectors, I con-
structed a representational dissimilarity matrix
(RDM, 300 × 300) showing a semantic distance
(1 – r) for each pair of words (semantic RDM). I also
made a neural RDM (300 × 300) based on a corre-
lation of IPI histograms in response to each word in
the animacy-judgment task. A high RSI (repre-
sentational similarity index, a correlation between
the semantic and neural RDMs) indicates that
semantically associated words induce similar dis-
tributions of IPIs at that EEG sensor. d The corre-
lation of IPI histograms between two words. EEG
waveforms in alpha-to-beta band (8–30 Hz) pro-
duced about 15 IPIs in a time window of analysis
(300–1000 ms after a word onset). A higher corre-
lation would be observed when two histograms
exhibit overlapping changes in the speed of neural
oscillations.
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performed an old/new judgment on the probe word. They pressed one
button if the probe matched any of the five words they retained (“old”
response) but pressed another if not (“new” response). They were also
instructed to ignore five words presented in an uncued hemifield. The ten
words shown in one trial were different from each other (i.e., no word
appeared both in cued and uncued hemifields in the same trial). No time
limitation was imposed for this old/new judgment.

An effect of semantic integration on EEGwaveformswasmeasured by
a comparison of SemandNonSem trials. In Sem trials,fiveMWs in the cued
hemifield were semantically related (e.g., “piano”, “band”, “melody”,
“concert”, and “jazz”), while they were not in NonSem condition (e.g.,
“curtain”, “jazz”, “rose”, “pencil”, and “kitchen”). Importantly, words in
both conditions were taken from the same list of 300 words so that total
visual inputs across all trials were balanced between Sem and NonSem. A
combination of cued hemifield (left/right) and semantic relatedness (Sem/
NonSem)produced four types of trials. Trialswith a leftward cue and related
MWs were called as SemL, while those with a rightward cue and unrelated
MWswere called asNonSemR. An experimental session contained 60 trials
inwhich those four types of trials (15 for each)were intermixed in a random
order. The whole experiment consisted of four sessions.

Each of the four conditions (SemL, SemR, NonSemL, and NonSemR)
had 60 trials in total. In SemL and SemR, one of five MWs was shown as a

probe in 20 out of the 60 trials (old-probe trial, e.g., “jazz” in the above case).
Serial positions (1 - 5) of the probe word were balanced (four trials for each
position) to confirm the primacy and recency effects. A probe word not
included in MWs was shown in another 20 trials (new-probe trial, e.g.,
“steak”). The new probe was either taken from five words in the uncued
hemifield in the same trial (unattended new probe, 10 trials) or totally new
(unseen new probe, 10 trials). In the other 20 trials, I showed a probe that
was semantically related to the MWs but had never appeared (lure probe,
e.g., “rhythm”). InNonSemL andNonSemR, 30 trials had an old probe, and
the other 30 trials had a new probe (unattended new probe in 20 trials and
unseen new probe in 10 trials).

Analysis of behavioral data
Behavioral data were analyzed using the signal detection theory. For each of
the four conditions, I computed a hit rate in which participants answered
“old” to an old probe and a false-alarm (FA) rate in which they answered
“old” to a new probe. Ameasure of sensitivity (d’) was computed62 using the
equation

d’ ¼ zðhit rateÞ � zðFA rateÞ

where z denotes the inverse cumulative normal function. If semantic
relatedness across MWs facilitated the old/new judgment, this would be
observed as higher d’ in Sem than NonSem conditions.

Semantic integration, however, is also known to exert a negative
influence when the probe is related to memory words (false memory). I
examined this point by comparing the FA rates between the lures and new
(unseen) probes of the Sem condition. In the case of the lure probe, the FA
rate was defined as a percentage of trials in which participants answered
“old” to a lure probe. Since each condition had 20 trials with lure probes, an
individual FA rate ranged from 0 to 100% in a step of 5%. False memory
would be indexed by a higher FA rate to lures than that to new probes.

Stimuli (words)
MWs in each trial were taken from a list of 300 Japanese nouns prepared for
the present study. Most words in this list were made by translating English
words in the Deese–Roediger–McDermott (DRM) list63 into Japanese,
although somewords were arranged with procedures ofMiyaji and Yama64.
A list of five MWs in the Sem trial was determined based on the DRM list
(e.g., “piano”, “band”, “melody”, “concert”, and “jazz”), while a list in
NonSem trial was made by choosing five words unrelated to each other.
Each word was used twice per condition to generate 240 trials in total.
Specifically, a givenwordwas showneight times throughout the experiment;
twice in SemL (at cued hemifield in one trial and at uncued hemifield in
another trial), twice in SemR, twice in NonSemL, and twice in NonSemR.

The validity of those lists was checked by computing semantic corre-
lations among fiveMWs. I obtained a semantic vector (1 × 300) for each of
the 300 words from the fastText library (https://fasttext.cc/). Semantic
relatedness between two MWs was measured as a correlation coefficient of
those vectors. As shown in Fig. 2b, semantic correlations among five MWs
(averaged across all trials) were 0.39 – 0.42 in Sem and 0.18–0.22 in Non-
Sem. I also confirmed that correlations between MWs and lure probes
(0.41–0.45) were higher than those between MWs and new probes
(0.19–0.20).

Other linguistic factors, such as phonological variations, were also
controlled. I measured a within-trial variation of phonological factors by
analyzing the Japanesemora of eachword65. For each trial, a total number of
moras used overfiveMWswas computed, with amora shared bymore than
twoMWscounted as one (phonological variation).No significant difference
was observed (t(238) = 0.42, p = 0.67, Cohen’s d = 0.05) betweenSem (12.87
moras) and NonSem trials (12.98 moras).

EEG measurements
Neural activity was recorded with the ActiveTwo system by Biosemi
(Amsterdam, Netherlands). I measured EEG signals at 32 points over the

Fig. 8 | Results of Experiment 2. a Memory task. The SD of IPIs during D5 was
found to be lower in Sem than NonSem trials (left panel). Semantic associations
across fiveMWs in Sem trials mitigated a time-related increase in SD (D1 < D5) over
the left temporal regions (right panels). Those results replicated Experiment 1. b A
raritymap of RSI in animacy judgment task. The rarity (p-value) of RSI in actual data
was estimated through a random permutation of semantic RDM for 1000 times (see
text for details). Significant RSIs (corrected for multiple comparisons, orange rec-
tangles) were observed when a neural RDM was made from the correlation of IPI
histograms (left), indicating that semantically-associated words induced similar sets
of IPIs. No significant RSI was observed when neural RDM was made from the
correlation of amplitude changes (not IPIs) between two words (right). cControl. A
newRDMbased on visual similarity between twowords (visual RDM, left panel) was
compared with neural RDM in Fig. 7c. No significant RSI was observed in the rarity
map (left panel), indicating that correlations of IPI histogramwere notmodulated by
visual factors.
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scalp; FP1, FP2,AF3,AF4, F7, F3, Fz, F4,F8, FC5, FC1, FC2, FC6,T7,C3,Cz,
C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, O1, Oz, and O2
(Fig. 3a). Datawere recordedwith a sampling rate at 2,048Hz and an analog
low-pass filter of 417Hz. Offsets of all electrodes were kept from −20 to
20mV. Preprocessing of EEG data was performed with the Brainstorm
toolbox66 forMatlab. Ifirst removedafixed-frequency noise from the power
line (60, 120, and 180Hz) using a notch filter. A band-pass filter of
0.1–200Hz was also applied to eliminate low- and high-frequency noises.
For the data of six participants, a band-pass filter of 0.5–200Hz was used
because their data containedmuch low-frequencynoise, presumably caused
by bodymovements. Results when the filter of 0.5–200Hzwas applied to all
34 participants are shown in Supplementary Fig. 3. All data were then
referenced with an average potential over the 32 electrodes. I segmented
EEG waveforms into each trial (epoch range:−1300 to 7000ms relative to
the onset of the 1st MW screen) and classified them into the 4 conditions.
Waveforms with a max-min amplitude larger than 150 μV at -700 to
5500ms were excluded from analyses. The numbers of trials that remained
after the rejection (mean ± SD) were 44.15 ± 12.79 (SemL), 42.97 ± 13.03
(SemR), 44.59 ± 12.01 (NonSemL), and 43.85 ± 12.47 (NonSemR). A two-
wayANOVAof Sem/NonSem×L/R indicated nomain effect or interaction
(F(1,33) < 2.77, p > 0.10, η2 < 0.078 for all).

Time-frequency power analysis
I first performed a time-frequency analysis to get an overview of power
changes in oscillatory signals (Fig. 3a). Following the decomposition pro-
cedures with complex Morlet wavelets, the segmented EEG waveform was
converted into a power spectrum of time (-1300 to 7000ms, resolution:
512Hz) × frequency (1 to 100Hz, resolution: 1 Hz). The central frequency
and time resolution (at full width at half maximum) of the Morlet wavelet
were set at 1 Hzand3 s, respectively.The spectrumwas thenaveragedacross
all trials in each condition. Finally, I performed a baseline correction67,
converting all data (−1300 to 7000m) into decibel change from a pre-cue
period (-800 to -500 ms).

Inter-peak interval (IPI) analysis
I then analyzed three different measures of oscillatory signals (Fig. 3b);
amplitude, speed, and regularity. The speed and regularity are oscillatory
measures used in recent studies on WM31,68–70. Using the Hilbert transfor-
mation, I measured changes in amplitude as an envelope of the filtered
waveform in a frequencybandof interest (dotted blue line inFig. 3b).On the
other hand, the speed and regularity of oscillatory signals were quantified by
the inter-peak interval (IPI) analysis30. Using a Matlab function (find-
peaks.m), I first identified all peaks on the filtered EEG waveform of each
trial. The IPIs were measured as time lengths between contiguous peaks. A
mean lengthof IPIs pooledover a givenperiod (e.g., 4300–5500ms in caseof
delay 5) and across all trials indexes a speed of neural oscillations because
slow/fast oscillatory signals produce longer/shorter IPIs. The regularity of
neuralwaveforms, in contrast, wasmeasured as a standarddeviation (SD)of
the pooled IPIs. As shown in Fig. 3c, irregular neural oscillations are char-
acterized by a larger variance of IPIs, because such waveforms produce IPIs
distant from the mean.

Statistical procedures
An effect of semantic relatedness across MWs on neural activity was
investigated by a comparison of Sem and NonSem trials. Of particular
interest was the data in delay 5 (D5), where a memory load became max-
imum. Avoiding visually-evoked potentials in response to the 5th MW
screen (4000–4200ms), I compared the threemeasures of oscillatory signals
at 4300–5500ms between Sem and NonSem (Fig. 4). This analysis window
starting from 300ms after the 5thMW screen was consistent with previous
EEG studies on WM71,72 and semantic integration73,74. Since a paired t-test
(within-subject comparison, two-sided) was repeated for 32 sensor posi-
tions, the problem of multiple comparisons was resolved by controlling the
false discovery rate (FDR). I adjusted a statistical threshold based on the
Benjamini–Hochberg correction75 with the q-value set at 0.05. Sensors

showing a significant difference after this correction were marked with
orange rectangles in Fig. 4 and Fig. 6.

Analysis of power-spectrum density (PSD)
An increasing number of studies focused on a difference in periodic and
aperiodic components of neural oscillatory signals31,76. A typical approach is
the FOOOF (fitting oscillations and one over f) in which an aperiodic 1/f
component of power spectrum density (PSD) is separated from periodic
components through the fitting with an exponential curve31. I applied this
FOOOF analysis to the present data in order to validate the results of the IPI
analysis.

First, an EEG waveform at 4300–5500ms in each trial was converted
into PSDwith the fast Fourier transformation (FFT, Fig. 5a). Using the code
of FOOOF available online (https://fooof-tools.github.io/fooof/), I then
estimated an aperiodic component of the PSD at 8–30Hz and separate it
from a periodic component. Default settings were used for this estimation
(peak_width_limits = [0.5, 12], max_n_peaks = ‘Inf’, min_peak_height =
0.0, peak_threshold = 2.0, aperiodic_mode = ‘fixed’). Based on the results of
FFT and FOOOF, I computed four PSD-basedmeasures; central frequency,
number of local peaks onPSD, offset of aperiodic component, and exponent
of aperiodic component. They were averaged across all trials and compared
between Sem and NonSem trials (Fig. 5b–e)

The central frequency was the weighted mean of
frequencies × powers69,77,78 and indexed a speed of neural oscillation. The
number of peaks at 8–30Hz was a measure of periodic signals representing
neural irregularity. If the semantic integration was associated with a har-
monic oscillatory signal, a smaller number of peaks would be observed in
Sem than in NonSem trials (Fig. 1). On the other hand, if the results of IPI
analysis (Fig. 4) reflected changes in an aperiodic, rather than periodic,
component of EEG signals, a difference in the offset or exponent would be
observed between Sem and NonSem trials.

Experiment 2
Results in Experiment 1 showed a higher regularity of EEG waveforms in
Sem than NonSem conditions. This suggested that semantically related
words induced similar patterns of neural oscillations that were easy to
integrate when co-stored in vWM (Fig. 1a). I examined this point more
directly in Experiment 2. Specifically, the same set of 300 words as
Experiment 1 was presented individually (one by one) in Experiment 2. A
semantic-correlation matrix for each pair of words (300 × 300) was com-
pared with another correlation matrix (300 × 300) for neural oscillatory
responses to those words. If those two matrices are highly similar to each
other, this would show a link between semantic information and oscillatory
responses, explaining the high-regularity signals in Sem trials of
Experiment 1.

Eachparticipant inExperiment 2performed two tasks (Fig. 7). Thefirst
task involved a memory of five words sequentially presented (Fig. 7a). This
was identical to the vWM task in Experiment 1, except that there was no
attentional direction by the cue (aMWscreen in Experiment 2 had only one
word in its center). Participants underwent 2 sessions of 60 trials in which
Sem and NonSem trials were intermixed in a random order. There were
three types of probes in the Semcondition (20 trialswith oldprobes, 20 trials
with new probes, and 20 trials with lure probes) but two types of probes in
the NonSem condition (30 trials with old probes and 30 trials with new
probes). In the second (main) task, the same set of 300words as Experiment
1 was presented one by one (Fig. 7b). Participants performed an animacy
judgment task on each word, pressing one key to animate and another to
non-animate objects (150 trials × 2 sessions). An experiment started with
the animacy judgment task, followed by the memory task. Other details
(measurements of EEG data and analyses of behavioral data) were identical
to Experiment 1.

Representational similarity analysis
EEG data in the animacy judgment task were used for the representational
similarity analysis or RSA32–34. First, I made a representational dissimilarity
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matrix (RDM) reflecting a semantic distance for each pair of 300words (Fig.
7c). Each cell in this semantic RDM (dissimilarity index or DI) was defined
as 1− r, where r was a correlation between semantic vectors of two words
(obtained from the fastText library, https://fasttext.cc/). Next, I made
another RDM based on a correlation of IPIs (neural RDM). A histogram of
alpha-to-beta IPIs at 300–1000ms was depicted for each word, with its
vector defined as

VA ¼ ½X1X2 . . .X2048�

whereVAdenotes an IPI vector of thewordA, andX1–X2048 showsnumbers
of IPIs at bin1 (0.488ms) tobin2048 (1000ms). EachDI in theneuralRDM
was 1- r, where r was a correlation between IPI histogram vectors of two
words (e.g., VA vs. VB). As shown in Fig. 7d, a higher correlation would be
observed when two histograms exhibit overlapping changes in speed of
neural oscillations

Finally, a correlation between semantic and neural RDMs was com-
puted at each EEG sensor (representational similarity index or RSI). Since
bottom-leftDIswere identical to top-rightDIs in eachRDM, I compared the
bottom-left halves of the semantic and neural RDMs, excluding diagonal
components (0). A high RSI indicates that semantically associated words
produced similar distributions of IPIs. The statistical significance of those
RSIwas evaluated through a comparisonwith randomdata. Bypermutating
the word labels of semantic RDM randomly for 1000 times, I generated a
distribution of RSIs under a hypothesis of null effect. The rarity (p-value) of
RSI in actual data was estimated as its percentile in this null distribution. A
problem of multiple comparisons over the 32 sensors was resolved by the
FDR-controlling approach in Experiment 1.

As a control, I tested whether distributions of alpha-to-beta IPIs were
modulated by visual (not semantic) factors of word stimuli. A new RDM
reflecting visual dissimilarities of word pairs was made for this analysis
(visual RDM, Fig. 8c). The 300 words in the present study consisted of two
types of Japanese letters: Kana (phonograms) and Kanji (ideograms,
imported from China). The Kanji letters are characterized by higher spatial
frequency and complexity thanKana letters79. I thus classified the 300words
into three categories; (i) Kana words, (ii) Kanji words, and (iii) mixtures of
Kana and Kanji. The DI in the visual RDM was set at 1 when two words
belonged to the same category and at 3 when one was a Kana word, and the
other was a Kanji word. ADI of 2 was given to a word pair of a Kana–Kanji
mixture andaKana/Kanjiword.A raritymapofRSIs between thevisual and
neural RDMs was then computed and shown as the right panel in Fig. 8c.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at https://doi.
org/10.7910/DVN/R2DBYS.

Code availability
Matlab codes written for this study are available from the corresponding
author (Y.N.) upon request for academic purposes
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