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Development of performance and learning rate evaluation
models in robot-assisted surgery using electroencephalography
and eye-tracking
Somayeh B. Shafiei 1✉, Saeed Shadpour2, Farzan Sasangohar 3, James L. Mohler 4, Kristopher Attwood5 and Zhe Jing5

The existing performance evaluation methods in robot-assisted surgery (RAS) are mainly subjective, costly, and affected by
shortcomings such as the inconsistency of results and dependency on the raters’ opinions. The aim of this study was to develop
models for an objective evaluation of performance and rate of learning RAS skills while practicing surgical simulator tasks. The
electroencephalogram (EEG) and eye-tracking data were recorded from 26 subjects while performing Tubes, Suture Sponge, and
Dots and Needles tasks. Performance scores were generated by the simulator program. The functional brain networks were
extracted using EEG data and coherence analysis. Then these networks, along with community detection analysis, facilitated the
extraction of average search information and average temporal flexibility features at 21 Brodmann areas (BA) and four band
frequencies. Twelve eye-tracking features were extracted and used to develop linear random intercept models for performance
evaluation and multivariate linear regression models for the evaluation of the learning rate. Results showed that subject-wise
standardization of features improved the R2 of the models. Average pupil diameter and rate of saccade were associated with
performance in the Tubes task (multivariate analysis; p-value= 0.01 and p-value= 0.04, respectively). Entropy of pupil diameter was
associated with performance in Dots and Needles task (multivariate analysis; p-value= 0.01). Average temporal flexibility and
search information in several BAs and band frequencies were associated with performance and rate of learning. The models may be
used to objectify performance and learning rate evaluation in RAS once validated with a broader sample size and tasks.
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INTRODUCTION
The benefits of robot-assisted surgery (RAS), and more specifically,
the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA),
have increased its popularity in surgical fields, especially surgical
oncology, urology, and gynecology1. These benefits include, but
are not limited to, smaller incisions, less pain, lower infection risk,
and a shorter hospital stay1,2. Compared to conventional surgery,
RAS presents more challenges for trainees, which include
adjusting to a video view of anatomical structures rather than a
direct view3, a lack of haptic feedback4, complex hand-eye
coordination, the need for bimanual tool dexterity, and active
foot coordination5. The establishment of a validated and
standardized training protocol for RAS surgical trainees is crucial
to ensure efficient and consistent training, patient safety, and
high-quality outcomes.
The objective of this study is to develop linear models for

evaluating performance and rate of learning RAS skills using features
extracted from electroencephalogram (EEG) and eye-tracking data.
These data were recorded from 26 subjects engaged in repeated RAS
simulator tasks until successful completion (defined as a score of 70
out of 100). The analysis of the RAS skill acquisition did not adhere to
a fixed timeframe, as the number of attempts varied among subjects.

Available skill evaluation methods in RAS
Operative time (OT) is one of the measures for evaluating surgical
learning progress6. While OT can indicate a surgeon’s proficiency

and familiarity with an operation, utilizing this variable as a
standalone criterion for performance evaluation may be mislead-
ing since this evaluation metric does not account for surgical
outcomes7. Additional factors have been suggested to evaluate
surgical performance, including intraoperative blood loss, length
of hospital stay, functional outcomes8,9, and procedure-specific
outcomes such as urinary incontinence and positive surgical
margins following radical prostatectomy10. A more robust
approach to assessing learning progress uses multidimensional
analysis, which considers a variety of surgical performance
markers11. Global Evaluative Assessment of Robotic Skills (GEARS)
has been proposed as a tool to assess the RAS skills of trainees12.
Robotic-Objective Structured Assessment of Technical Skills (R-
OSATS) is an additional rating scale, evaluating key aspects such as
respect for tissues, dexterity, fluency, knowledge, and accuracy13.
Both GEARS and R-OSATS represent holistic assessment methods
that provide a non-procedure-specific evaluation of trainees’
competencies, retrospectively covering all aspects of a task.
Lovegrove et al. have developed a modular training and

assessment method, utilizing Healthcare Failure Mode and Effect
Analysis14. In this approach, radical prostatectomy is segmented
into seventeen distinct stages and sub-processes. Each sub-phase
is then individually scored by experts. Competency in each stage
is defined as acquiring a score of at least 4 out of 5 in all sub-
processes consistently. However, modular assessment methods,
while detailed, tend to be costly and less practical in live surgical
settings. In addition, their results can be inconsistent and heavily
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dependent on raters’ subjective opinions, which may introduce
bias. Despite the existence of some surgical performance tools like
the Robotic Anastomosis Competency Evaluation for ureterovesi-
cal anastomosis (RACE)15, such methods are often task-specific
and fail to encompass the entire surgical procedure16.
Computerized virtual reality simulations offer surgical trainees a

safe environment to familiarize themselves with the robotic
console and enhance their psychomotor skills without compro-
mising the safety of patients17,18. These simulators have been
shown to reduce the learning curve for surgical trainees19, leading
to their widespread adoption in most training programs20. Yet, the
development of objective and generalizable methods for evaluat-
ing performance and learning rates, essential for monitoring
surgeons’ progress during training, continues to be a significant
research gap. An ‘objective’ assessment technique not only
evaluates performance but also aims to eliminate inconsistencies
in evaluation. Currently, such a technique has not been fully
developed within existing surgical practice protocols. In contrast,
fields like aviation have significantly benefited from standardized,
quality-assured training benchmarks. Pilots must demonstrate
proficiency in numerous performance areas before being licensed
to operate passenger planes21. However, this level of standar-
dized, objective method has yet to be implemented in RAS
surgical training.

Proposed objective skill evaluation methods in RAS
Several studies have proposed objective surgical performance
evaluation methods utilizing physiological data such as electro-
encephalogram (EEG)22,23, functional near-infrared spectroscopy
(fNIRS)24,25, eye movement26,27, hands kinematics, and analysis of
surgical videos28–30. While existing literature has utilized EEG for
skill assessment, its focus has predominantly been on classifying
experts and novices through EEG spectral analysis31, without
considering the dynamic changes in EEG over time and across
different brain areas. However, EEG has found application in
performance evaluation in other fields, such as piloting and
driving32,33. Eye-tracking, on the other hand, has been primarily
used for workload evaluation27 and investigating the allocation of
attentional resources34,35. Despite these uses, there remains a
noticeable gap in the use of both EEG and eye-tracking for
performance evaluation specifically in RAS training.

The potential advantages of utilizing EEG and eye-tracking in
RAS performance evaluation
The EEG’s high temporal resolution offers a dynamic perspective
on cognitive processes during surgical tasks, going beyond what is
possible with video processing of external movements. EEG
directly measures neural mechanisms that are fundamental in skill
learning and task execution, including attention levels, cognitive
load, and decision-making processes. These aspects are vital for
understanding surgical training and performance. Furthermore,
EEG is capable of recording cortical activity, which is closely linked
to learning processes. This cortical activity can change through
practice and learning, reflecting neuroplasticity—the brain’s ability
to reorganize itself by forming new neural connections in
response to learning and experience36. EEG and eye-tracking
can provide a multifaceted view of the surgical learning curve,
capturing dimensions not visible in video data. EEG, for instance,
can identify specific moments where a surgeon may experience a
peak in cognitive load, which can be pivotal for modifying
individual training programs.

The potential limitations of utilizing EEG and eye-tracking in
RAS performance evaluation
Collecting high-density EEG data, involving numerous channels
(116 in this study), poses greater challenges than other methods

like video analysis or hand movement tracking. The complexity
arises from the technical demands of setting up many electrodes,
potential signal losses due to electrode dropout, and the extensive
pre-processing needed to ensure signal integrity. In contrast,
video or motion tracking systems are generally more user-friendly,
with fewer issues related to data loss. Furthermore, the practical
application of EEG and other sensor-based methods is significantly
limited by the difficulty in usage and potential disruptions caused
by the equipment, a challenge not typically encountered with
video-based methods. While video and motion tracking excel in
providing spatial and temporal information about a surgeon’s
techniques, high-density EEG offers unique insights into the
cognitive processes behind surgical performance. Thus, despite its
challenges, EEG remains an invaluable tool for a comprehensive
performance assessment, encompassing both cognitive and
physical aspects of surgery. Eye-tracking and EEG, with their
distinct advantages, do not replace but rather complement video
processing techniques. Together, they offer a more holistic
understanding of the surgical learning curve.

Potential use of machine learning approaches for surgical skill
assessment
Information retrieved from hand movement kinematics, videos,
EEG, and eye-tracking data has been used to develop deep
convolutional neural networks, gradient boosting, and random
forest models for surgical performance and skill evaluation37–40.
The results from these approaches were promising. Developed
machine learning algorithms, trained by physiological data, to
identify predictors of performance have the potential to enable
personalized learning and eventually automated performance
feedback41.
This paper provides an exploratory analysis on the role of multi-

source spatiotemporal signal processing in advancing automated
surgical performance and learning rate evaluation.

RESULTS
Twenty-six subjects, having differing amounts of RAS practice,
completed the Tubes (61 attempts), Suture Sponge (66 attempts),
and Dots and Needles (66 attempts) tasks, achieving average
performance scores of 71.47, 73.04, and 71.72, respectively. Linear
random intercept models were developed for performance
evaluation, while multivariate linear models were developed for
learning rate evaluation. Age was not a significant predictor in
these final models.

Tubes task
Table 1 represents the results of the linear random intercept
regression model analysis for evaluating the performance of the
Tubes task. A one standard deviation increase in the average pupil
diameter of the subject’s nondominant eye (standardized for each
subject) was associated with an 8.13-point decrease in their
performance score. This suggests that larger pupil sizes in the
nondominant eye are linked to worse performance. In contrast, a
one-standard deviation increase in the average temporal flexibility
in Brodmann area 18 (BA 18) at beta band frequencies was
associated with a 0.52-point performance improvement, suggest-
ing that higher neural flexibility in this brain region enhances
performance. In addition, a one standard deviation increase in rate
of saccade was associated with a 5.87-point decrease in
performance, indicating that more frequent saccades, compared
to the individual’s average, are linked to lower performance
scores.
Table 2 illustrates the outcomes of the linear regression model

analysis for the learning rate in the Tubes task. A one-standard
deviation increase in the average temporal flexibility in BA 18 at
theta-band frequencies was associated with a 0.59-point decrease
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in the learning rate, suggesting that larger temporal flexibility in
BA 18 at theta-band frequencies is linked to poorer learning rates.
Similarly, a one-standard deviation increases in the temporal
flexibility in BA 46 at alpha-band frequencies corresponded to a
0.87-point decrease in learning rate, indicating that greater neural
flexibility in this area of the brain is associated with a lower
learning rate. Furthermore, each one-unit increase in initial
performance score was associated with a 0.35-point decrease in
learning rate, implying that subjects with higher initial scores tend
to exhibit lower learning rates.

Suture Sponge task
Table 3 presents the results from the linear random intercept
regression model for performance evaluation in the Suture
Sponge task. A one-standard deviation increase in the average
temporal flexibility in BA 10 at beta-band frequencies was
associated with a 0.6-point improvement in the performance
score for the suture sponge task, suggesting that enhanced neural
flexibility in this area of the brain is associated with better
performance. Likewise, a one-standard deviation increases in the
average search information in BA 45 at theta-band frequencies
corresponded to a 0.6-point increase in performance score.
Table 4 displays the findings from the linear regression model

analysis for the learning rate in the Suture Sponge task. A one-
standard deviation increase in the average search information in
BA 45 at theta-band frequencies was associated with a 1.08-point
decrease in the learning rate, suggesting that higher search
information in this area and frequency band correlates with a
lower learning rate. Similarly, a one-standard deviation increases
in the average temporal flexibility in BA 45 at theta-band
frequencies corresponded to a 0.31-point decrease in learning
rate, indicating that increased neural flexibility in this area is

associated with a reduced learning rate. Conversely, a one-
standard deviation increase in the average search information in
BA 19 at gamma-band frequencies was associated with a 1.19-
point increase in the learning rate.

Dots and Needles task
Table 5 presents the outcomes from the linear random intercept
regression model analysis for performance in the Dots and
Needles task. A one-standard deviation increase in the average
search information in BA 37 at gamma-band frequencies was
associated with a 1.35-point decrease in the performance score for
this task. In addition, a one-standard deviation increase in the
entropy of the nondominant eye’s pupil diameter was associated
with a 4.68-point decrease in performance score.
Table 6 showcases the results from the linear regression model

analysis for the learning rate in the Dots and Needles task. A one-
standard deviation increase in the average search information in
BA 45 at beta-band frequencies was associated with a 1.92-point
increase in the learning rate value for this task. Similarly, a one-
standard deviation increases in the average search information in
BA 40 at alpha-band frequencies corresponded to a 1.45-point
increase in learning rate. In addition, a one-standard deviation
increase in the average temporal flexibility in BA 41 at theta-band
frequencies was associated with a 0.41-point increase in learning
rate.
We created boxplots to illustrate the differences between

predicted and actual performance scores (Fig. 1). The analysis
reveals that both the mean and median differences are close to
zero. Moreover, for most samples, the absolute difference
between actual and predicted performance scores was less than
10. These findings indicate that our performance evaluation
models for the three tasks are reasonably accurate.

Table 2. Results of a multivariate linear regression model for learning rate evaluation at the Tubes task with subject-wise standardized eye-tracking
features.

Predictors Estimate Standard error p-value

Average temporal flexibility in BA 18 at theta-band frequencies at the first attempt −0.59 0.26 0.03

Average temporal flexibility in BA 46 at alpha-band frequencies at the first attempt −0.87 0.21 7 × 10−4

Performance at the first attempt −0.35 0.086 5 × 10−4

Number of samples = 26; R2= 0.64; MAE: 4.89; RMSE: 5.73.

Table 3. Results of a linear random intercept model for performance evaluation at the Suture Sponge task with subject-wise standardized eye-
tracking features.

Predictors Estimate Standard error p-value

Average temporal flexibility in BA 10 at beta-band frequencies 0.60 0.17 0.001

Average search information in BA 45 at theta-band frequencies 0.60 0.18 0.002

Number of samples = 66; subject was a significant random effect (p-value= 0.004); pseudo R2= 0.75; MAE: 5.43; RMSE: 6.83.

Table 1. Results of a linear random intercept regression model for performance evaluation at the Tubes task with subject-wise standardized eye-
tracking features.

Predictors Estimate Standard error p-value

Nondominant eye’s average pupil diameter −8.13 2.88 0.01

Average temporal flexibility in BA 18 at beta band frequencies 0.52 0.21 0.01

Rate of saccade −5.87 2.74 0.04

Number of samples = 61; subject was a significant random effect (p-value= 0.02); pseudo R2= 0.71; MAE: 6.79; RMSE: 8.79.
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Effect of subject-wise standardization of eye-tracking features.
Supplementary Information details the outcomes of the linear
random intercept regression models for performance evaluation
and the linear regression analysis for learning rate evaluation,
conducted without subject-wise standardization of features
(Supplementary Information). The results indicate that subject-
wise standardization of eye-tracking features marginally enhanced
the R2 values for both performance (0.17 increase for the Tubes
task, 0.04 increase for the Dots and Needles task) and learning rate
evaluations (0.09 increase for the Dots and Needles task).

Relationship between hours of experience with RAS and performance.
Pearson correlation analysis was conducted to examine the
relationship between subjects’ hours of RAS practice and their
performance. The results revealed no significant correlation
between RAS practice hours and performance in the Tubes task
(Pearson correlation; p-value= 0.20), Suture Sponge task (Pearson
correlation; p-value= 0.07), and Dots and Needles task (Pearson
correlation; p-value= 0.85).

Relationship between performance and mental workload. The
Pearson correlation between performance and mental workload
was not significant for the Tubes task (Pearson correlation;
p-value= 0.37), Suture Sponge task (Pearson correlation;
p-value= 0.79), and Dots and Needles task (Pearson correlation;
p-value= 0.97).

DISCUSSION
Tubes
Our findings indicate a negative association between the average
pupil diameter of the nondominant eye and performance in the

Tubes task, as shown in Table 1. This result aligns with the
literature42,43, supporting the notion that pupillometry, the
measurement of pupil diameter, is a reliable marker of mental
workload and performance42–44. Pupil dilation has been shown to
be associated with higher workloads and lower performance
scores42.
To successfully complete the Tubes task, subjects must

consciously track targets, drive needles through them, visually
anticipate upcoming targets, enhance hand-eye coordination, and
drive the needle through the yellow side of the target. The
significant correlation between performance and rate of saccade
identified in this study (Table 1) is consistent with these required
skills. Saccades are known to be essential for attention45,46, and
both consciousness (perceptual awareness required for engaging
with the Tubes task) and attention are critical for making timely
and accurate decisions in this task.
Average temporal network flexibility in Brodmann area 18 (BA

18) at beta-band frequencies showed a positive association with
performance in the Tubes task (Table 1). Functional MRI studies
have indicated that BA 18 plays a role in basic visual functions,
such as attention and pattern detection, and in processing visuo-
spatial information47,48. In addition, brain oscillations in the beta-
band frequencies are associated with logical and conscious
thinking49. The selection of this feature as a performance predictor
in our study may show the importance of attention and visuo-
spatial information processing in the Tubes task. Therefore,
greater flexibility in BA 18 at beta-band frequencies may enhance
attention and adaptation to new visual stimuli, leading to quicker
decision-making and ultimately improved performance in the
Tubes task.
Performance at the first attempt was identified as a predictor of

learning rate in the Tubes task, possibly due to the high standard
deviation (SD) of performance scores in this task (SD= 16.3).

Table 4. Results of a linear regression model for learning rate evaluation at the Suture Sponge task with subject-wise standardized eye-tracking
features.

Predictors Estimate Standard error p-value

Average search information in BA 45 at theta-band frequencies at the first attempt −1.08 0.25 3 × 10−4

Average temporal flexibility in BA 45 at theta-band frequencies at the first attempt −0.31 0.08 8 × 10−4

Average search information in BA 19 at gamma-band frequencies at the first attempt 1.19 0.44 0.01

Number of samples = 26; R2= 0.71; MAE: 5.71; RMSE: 7.27.

Table 5. Results of a linear random intercept regression model for performance evaluation at the Dots and Needles task with subject-wise
standardized eye-tracking features.

Predictors Estimate Standard error p-value

Average search information in BA 37 at gamma-band frequencies −1.35 0.39 0.0001

Shannon entropy of nondominant eye’s pupil diameter −4.68 1.82 0.01

Number of samples = 66; subject was a significant random effect (p-value= 0.005); pseudo R2= 0.75; MAE: 6.44; RMSE: 8.03.

Table 6. Results of a linear regression model for learning rate evaluation at Dots and Needles with subject-wise standardized eye-tracking features.

Predictors Estimate Standard error p-value

Average search information in BA 45 at beta-band frequencies at the first attempt 1.92 0.48 0.0006

Average search information in BA 40 at alpha-band frequencies at the first attempt 1.45 0.37 0.0009

Average temporal flexibility in BA 41 at theta-band frequencies at the first attempt 0.41 0.16 0.021

Number of samples = 26; R2= 0.69; MAE: 5.69; RMSE: 7.15.
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Suture Sponge task
To successfully complete the Suture Sponge task, subjects need to
skillfully control needles and navigate them through a deformable
object. Since the object is deformable and its interior is invisible,
subjects often need to correct their hand motions for accurate
needle insertion and extraction, while also choosing appropriate
movements based on the needle and target positions. The
association between selected EEG features and performance in
this task (Table 3) aligns with these requirements. Functional MRI
studies have shown that Brodmann area 10 (BA 10) is involved in
various memory functions, executive control, error processing, and
decision-making50–54, while BA 45 is associated with reasoning
processes and working memory51,55. As a result, increased
flexibility in BA10 at beta-band frequencies and enhanced search
information in BA 45 at theta-band frequencies may be associated
more efficient memory retrieval, error processing, and decision-
making, thereby leading to better performance in the Suture
Sponge task.
Our findings showed that BA 45 functioning plays a key role not

only in performance evaluation but also in the learning rate
evaluation of the suture sponge task (Tables 3 and 4). Its search
information and flexibility at theta-band frequencies were
associated with the learning rate (Table 4), aligning with literature
that underscores BA 45’s involvement in reasoning processes and
working memory51,55. In addition, gamma-band frequencies are
associated with perception, cognitive processes, attention, work-
ing memory, and information integration56,57. BA 19, known for its
role in spatial working memory, visual memory recognition, and
visuo-spatial information processing48,58,59, also showed a con-
nection with learning rate through its search information in
gamma-band frequencies (Table 4), representing the skills
necessary for the successful completion of the Suture Sponge task.

Dots and Needles task
Our results showed that entropy of the nondominant eye’s pupil
diameter is negatively associated with performance (Table 5).
Since entropy of eye’s pupil diameter has been proposed in prior
studies as a measure of visual scanning efficiency60, this
association may indicate that fewer resources are available to
perform the task when the entropy is higher. Hence, this finding
may be interpreted as suggesting that lower cost of retrieving
information from the visual system may be associated with a
better performance61.
The EEG features selected for performance evaluation in the

‘Dots and Needles’ task (Table 5) align well with the task’s
requirements. This task requires subjects to (1) develop hand-eye
coordination skills for precise needle placement and manipulation
through soft objects, and (2) precisely detect target positions and
execute needle insertion and extraction. Functional MRI studies
have shown that BA 37 plays a crucial role in complex visual
motion processing62, structural judgment of familiar objects63, and
visual memory processes59. The observed association between
EEG features and performance in ‘Dots and Needles’ suggests that
higher search information levels may reflect an increased need for
visual and cognitive information processing in BA 37, which could
potentially reduce performance.
The observed associations in Table 6—between learning rate

and search information in BA 45 and BA 40, as well as between
learning rate and temporal flexibility in BA 41—align with the
required skills for the ‘Dots and Needles’ task. Functional MRI
studies indicate that BA 40 plays a role in various activities,
including visually guided grasping, visuomotor transformation/
motor planning, response to visual motion, and working
memory64–68, and BA 41 is linked to working memory69.

Fig. 1 Representation of differences between predicted and actual performance scores in Tube, Suture Sponge, and Dots and
Needles tasks. This box plot utilizes whiskers to represent the maximum and minimum observations within 1.5 times the interquartile range
(IQR), rather than mean ± standard deviation. This method was chosen as it more accurately reflects the distribution and variability of our
prediction, particularly in the presence of outliers.
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Effect of subject-wise standardization of eye-tracking features
Comparing the performance and learning rate evaluation models
with subject-wise standardization (Tables 1 to 6) against those
without such standardization (Supplementary Information),
reveals that subject-wise standardization reduces the impact of
individual variances among subjects. As a result, the standardized
features more accurately reflect skill differences as opposed to
variations in subjects’ individual characteristics.

Relationship between practice hours and performance
This study found no significant correlation between subjects’
hours of RAS experience and task performance, which could be
attributed to the quality of practice rather than its quantity.
Effective performance improvement likely depends on proper
execution of RAS tasks. Moreover, it has been shown that
extended breaks between practice sessions might disrupt func-
tional brain networks, affecting performance70. It’s also worth
noting that inefficient practice, despite increasing the total
practice hours, may not necessarily lead to performance
enhancement.

Relationship between performance and mental workload
Our study revealed no significant correlation between perfor-
mance and mental workload. Mental workload represents the
balance between a person’s cognitive capacity and the demands a
task imposes on them71,72. Acquiring new skills typically involves
enhancing both performance and mental workload manage-
ment22,73,74. Previous research indicates that during skill acquisi-
tion, mental workload may continue to decrease even after
achieving a passing performance score75. Therefore, the absence
of a significant correlation in our study might imply that some
subjects were still refining their RAS skills beyond achieving
passing scores, indicative of ongoing improvements in their
mental workload management.

Practical implications of the findings
The findings establish a basis for an objective evaluation of the
performance and learning rate of RAS trainees. The developed
models, once validated for a broader population and surgical
tasks, could be used in surgical residency programs to improve the
RAS skill acquisition process in three possible ways: (1) They
provide objective, unbiased assessments of RAS trainees’ perfor-
mance without needing an expert RAS surgeon’s presence during
practice sessions. This approach reduces training costs and offers
immediate performance feedback, allowing trainees to correct
mistakes more efficiently and shorten the learning process.
Consequently, training programs can admit more RAS trainees
and expedite their graduation, streamlining the overall training
procedure. In addition, this model enables training of more RAS
surgeons annually, increasing the number of patients who can
benefit from RAS technology. Hospitals will also benefit, as RAS
typically involves shorter hospital stays and fewer surgical
complications compared to traditional surgery methods76,77; (2)
The learning rate evaluation models, based on data from the first
attempt, enable RAS training programs to predict specific trainees’
learning rates. This information allows programs to either select
better RAS learners or plan effective strategies to enhance
learning for those who progress more slowly; (3) Such perfor-
mance and learning rate evaluation methodologies could be used
for a broader range of surgical tasks, particularly those that are
similar to actual surgical operations.

Limitations of the study
Several limitations may impact the generalizability of the findings
of this study. First, the moderate R2 values of the learning rate

evaluation models (0.64, 0.71, and 0.69 for the Tubes, Suture
Sponge, and Dots and Needles, respectively) might be attributed
to limited sample sizes. Second, as the study was conducted
within a single U.S. health system, its findings may not be
applicable to other institutions, specialties, or countries. Further
validation of the models is needed, incorporating data from a
more diverse group of subjects across various hospitals and
specialties, and involving different surgical tasks. Third, exploring
potential nonlinear relationships between learning rate and the
features requires more attempts per subject and analysis using
nonlinear regression models. Lastly, the inherent challenges
associated with the use of EEG and other sensor-based
techniques, coupled with the potential disruptions caused by
the equipment, limit their practical application.

METHODS
This study was conducted in accordance with relevant guidelines
and regulations and was approved by the Roswell Park
Comprehensive Cancer Center (RPCCC)’s Institutional Review
Board (IRB; I-241913). The IRB issued a waiver of documentation
of written consent, and the subjects were given a research study
information sheet and provided verbal consent.

Subjects
The experiments involved a group of 26 subjects, and the
demographics and relevant experiences of all subjects are detailed
in Table 7. The ‘Hours of RAS Experience’ column reflects each
subject’s experience hours. The subjects themselves provided this
information. Each subject was required to perform every task at
least twice, aiming for a minimum score of 70 out of 100 to qualify
as a successful attempt. If the required score was not achieved
within the first two attempts, they continued to try until meeting
the benchmark.

Skill level of subjects
This manuscript does not aim to classify skill levels based solely on
hours of experience, recognizing that proficiency can vary
significantly across different tasks. Such categorization would
require specific assessments beyond the scope of this study. For
general categorization purposes, RAS surgeons in Table 7 are
considered RAS experts and typically act as primary surgeons.
Surgical fellows are typically estimated to be competent, whereas
residents are often viewed as beginners. In our categorization,
oncologists, researchers, students, and scientists are generally
labeled as novices. It’s important to note that thoracic surgeons
and head and neck surgeons, despite their expertise in other
surgical areas, are classified as novices or beginners in RAS for this
study. These categories are broad and should not be taken as a
substitute for detailed skill assessment.

Recruitment method
Subjects were invited to the study via email or verbal invitation.
Subjects included surgeons, fellows, residents, pre-medical
students, and/or scientists at Roswell Park Cancer Institute.

Data recording set up
The da Vinci® Skills Simulator™ (developed in collaboration with
Mimic® Technologies, Inc., Seattle, WA, USA) has two instruments
attached to mechanical arms and a camera arm. The subject
operates the arms while sitting at a computer console (Fig. 2). The
Tubes, Suture Sponge, and Dots and Needles tasks were
completed by subjects using the da Vinci® Skills Simulator™. A
124-channel EEG headset from AntNeuro® was used to record EEG
data at a frequency of 500 Hz, using Cz as the reference channel.
Simultaneously, Tobii® eyeglasses were utilized to record eye-
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tracking data at a frequency of 50 Hz, as illustrated in Fig. 2. Due to
the poor quality of signals recorded from the F8, POz, AF4, AF8, F6,
FC3, M1, and M2 channels, data from these channels were
excluded from the study. The analysis was conducted on the
signals from the remaining 116 channels.

Tasks and the purpose of each task
Subjects were instructed to watch a training video before
performing the task. The Tubes, Suture Sponge, and Dots and
Needles tasks with their highest level of complexity were included
(Fig. 2). Subjects always conducted the tasks in the same order.

Tubes task. Subjects practiced tissue manipulation and needle
driving skills that will be encountered as part of a urethral
anastomosis (i.e., a challenging portion of a radical prostatectomy
operation). Both simulator instruments were used to manipulate
two vessels to facilitate needle driving. Subjects were instructed to
insert the needle through the yellow side of the target and then

guide it out from the black side. The task was to continue driving
the needle tip through the yellow target until it changed to green.

Suture Sponge task. Subjects were trained to enhance their
dexterity and precision in manipulating a needle through a
deformable object. This involved controlling the needle during its
transfer between instruments, as well as during insertion and
extraction through various pairs of targets. These targets were
placed on the edge of a sponge, with random variations in their
positions and sizes.

Dots and Needles task. Subjects were taught to perform
challenging needle throws through a soft, flexible object. The
task required them to insert and accurately guide a needle
through several pairs of targets, each varying in spatial distance
and position. Upon the first target changing to green, the
subjects had to skillfully rotate their wrist to drive the needle tip
through the second yellow target, continuing until it too
turned green.

Table 7. Demographics of subjects and number of task attempts.

Subject Age Gender/
Sexa

Dominant
handb

Dominant eyeb Specialty, position Hours of RAS
practice

Number of attempts

Tubes Suture
Sponge

Dots and
Needles

1 32 M R R Urology, fellow 500 2 2 2

2 36 M R L Urology, fellow 100 2 2 2

3 22 F R R No specialty, pre-medical
student

0 2 2 2

4 26 M R R No specialty, pre-medical
student

0 3 2 2

5 33 M R R Gynecology, fellow 120 2 2 5

6 35 M R R Urology, fellow 100 2 2 2

7 33 M R R Gynecology, resident 10 2 2 2

8 61 M R R Thoracic, surgeon 30 2 2 2

9 44 M R L Gynecology, RAS surgeon 500 3 2 2

10 24 F R L No specialty, pre-medical
student

0 3 4 4

11 34 F R L Gynecology, fellow 80 2 2 2

12 44 M R R Urology, RAS surgeon More than 1000 2 2 2

13 67 M R R Urology, RAS surgeon More than 1000 3 2 2

14 23 F R L No specialty, pre-medical
student

0 2 3 2

15 47 M R R Urology, RAS surgeon More than 1000 2 2 2

16 22 F R R No specialty, pre-medical
student

0 2 2 2

17 36 F R R No specialty, Scientist 0 4 9 2

18 23 F R R No specialty, pre-medical
student

0 2 2 2

19 28 M R R No specialty, pre-medical
student

0 2 3 5

20 32 M R R Gynecology, resident 15 2 3 3

21 20 M R L No specialty, pre-medical
student

0 4 2 2

22 34 M R R No specialty, researcher 0 2 2 2

23 32 F R R Gynecology, fellow 40 2 2 2

24 42 M L L Head and neck, surgeon 55 2 2 2

25 54 M R R Oncology, oncologist 0 2 3 7

26 39 M R L Urology, fellow 0 3 3 2

aIn this study, all participants’ gender identities aligned with their biological sex. Male (M), Female (F).
bRight (R), left (L).

S.B. Shafiei et al.

7

Published in partnership with The University of Queensland npj Science of Learning (2024)     3 



Attempts
Each subject performed every task a minimum of two times. If
they did not attain a passing score of 70 out of 100 on at least one
of these two attempts, they continued repeating the task until the
passing score was achieved.

Mental workload
At the end of each attempt, subjects completed the Surgery Task
Load Index (SURG-TLX) questionnaire to assess their mental
workload. The SURG-TLX is a tool comprising six domains that
measure perceived workload78. These domains are mental
demands: the level of mental effort required during task
completion; physical demands: the level of physical effort required
during task completion; temporal demands: the level of time
pressure felt in completing the task; task complexity: the degree of
difficulty of the task; situational stress: the level of stress or anxiety
experienced while completing the task; and distractions: the
degree of distraction from the surrounding environment. Each
domain is scored on a scale from 1 to 20, where 1 indicates the
lowest and 20 indicates the highest level. The overall mental
workload score was calculated by summing the scores from all six
domains.

Performance scores
After the subject completed each attempt of the tasks, the
simulator generated a single score between 0 and 100 based on
their performance, where 0 indicated no acceptable performance
and 100 represented performance that satisfied all necessary
standards. To determine the performance score, the simulator
program uses the following metrics: the time required to
complete the exercise (measured in seconds); economy of motion:
the total distance traveled by all instruments (measured in
centimeters); instrument collisions: the total number of
instrument-on-instrument collisions; excessive instrument force:

the total time an excessive force was applied to the instrument
(measured in seconds); instruments out of view: the total distance
traveled by instruments outside of the user’s field of view
(measured in centimeters); master workspace range: the radius
of the user’s working volume on master grips (measured in
centimeters); drops; and missed targets.

Learning rate
The learning rate was defined as the change in performance score
per additional attempt. The learning rate was calculated for
subjects performing each task as the slope of a linear regression
fitted on the performance scores across attempts.

EEG Pre-processing
Signals from 116 EEG channels underwent artifact decontamina-
tion through blind source separation and topographical principal
component analysis within the Advanced Source Analysis (ASA)
framework. The framework has been developed by ANT Neuro
Inspiring Technology Inc., Netherlands. In this study, the EEG
artifact decontamination was carried out in five distinct steps: (1)
The EEG data were re-referenced to the ‘common average
reference,’ which involves averaging the signals from all channels
used in the study79. (2) A 60 Hz notch filter was applied to
eliminate line noise. (3) The data were then processed with a
band-pass filter, ranging from 0.2 to 250 Hz, with a steepness of
24 dB/octave. (4) Facial and muscle activity-related artifacts were
detected and removed using ASA, followed by a visual inspection
of individual EEG data segments for any remaining artifacts79. (5)
Finally, the Spatial Laplacian technique, known for emphasizing
sources at small spatial scales, was utilized to reduce the effects of
volume conduction on coherence calculations80.
After decontaminating the EEG data, they were utilized to

extract search information and temporal network flexibility
features in theta (4–8 Hz), alpha (8–12 Hz), beta (13–35 Hz), and

Fig. 2 Representation of a subject completing three tasks on the da Vinci simulator while wearing an EEG headset and eye-tracking
glasses. This figure was developed by the ATLAS illustrator Shared Resource at RPCCC, using the Adobe Illustrator software.
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gamma (35–65 Hz) frequency bands, spanning 21 Brodmann
Areas (BA).

Distribution of EEG channels across Brodmann Areas
Each EEG channel was assigned to a specific BA based on its
approximate position over the area. The correspondence between
EEG channels and BAs was determined using Brodmann’s
Interactive Atlas (http://www.fmriconsulting.com/brodmann/
Interact.html) and the Brain Master software (http://
www.brainm.com/software/pubs/dg/BA_10-20_ROI_Talairach/).
This assignment process categorized the 116 EEG channels into
the 21 BAs, as detailed in Table 8.

Traditional names for numbered Brodmann’s areas (BAs)
BAs 1 and 2 represent the primary somatosensory cortex; BA 5 is
known as the pre-parietal (somatosensory association) cortex; BA
6 encompasses the premotor and supplementary motor cortices;
BA 7 is identified as the superior parietal (somatosensory
association) cortex; BA 8 is intermediate frontal; BAs 9 and 10
correspond to the dorsolateral prefrontal cortex; BA 18 is the
secondary visual cortex; BA 19 is the associative visual cortex; BA
20 is the inferior temporal cortex; BA 21 is middle temporal cortex;
BA 37 is known as occipitotemporal; BA 39 is angular (i.e., an area
in the parietal lobe); BA 40 is supramarginal (i.e., a portion of the
parietal lobe); BAs 41 and 42 are the anterior and posterior
transverse temporal areas, respectively; BA 44, also known as
opercular (i.e., refers to the frontal, temporal, or parietal
operculum, which together cover the insula); BA 45, the triangular
area, is a part of Broca’s area on the left hemisphere; BA 46 is the
middle frontal area; and BA 47 is referred to as orbital (i.e., an area
of the prefrontal cortex).

Extraction of search information feature using EEG data
Search information is the amount of information (measured in
bits) required to pass the shortest, and presumably the most
efficient path between two nodes of a network81–83. The search
information feature was extracted using the adjacency matrix,
commonly known as the functional brain network, of each EEG
recording81,82 and the Brain Connectivity Toolbox (https://
sites.google.com/site/bctnet/). The adjacency matrix is a network
that mathematically illustrates the functional connections
between the various brain areas involved in information proces-
sing84. The entries in the adjacency matrix represent the average
magnitude coherence (MC) across specific frequency bands.
Magnitude coherence is a measure of the statistical similarity
between two time series, in this case, the EEG signals from
different channels. The MC values are calculated for each pair of
EEG channels i and j (Γ= (Γij) ∈ℜNXN, with i and j ranging from 1 to

N, where N is the number of EEG channels) and are assessed over
designated frequency bands. These values were obtained using
coherence analysis in this study85. Finally, 84 search information
features were generated by averaging the extracted feature for
channels within each of the 21 BAs, across four band frequencies
(Fig. 3).

Extraction of temporal network flexibility feature using
EEG data
The temporal network flexibility (f) of each network node is
proportional to the number of times the node changed its
network community assignment over time86. A network commu-
nity is described as a subset of network nodes with denser
connections between themselves compared to connections with
other nodes in the network87. Temporal network flexibility has
been proposed as a functional brain network feature that changes
with learning88, surprise, and fatigue86. This feature has also been
proposed for evaluating the mental workload of surgeons
conducting surgical tasks89.
To calculate the temporal network flexibility feature, an

adjacency matrix (i.e., functional brain network) was extracted
for every one-second window of EEG data recording. Then, the
modularity metric associated with each adjacency matrix was
extracted using the “community Louvain” function of the Brain
Connectivity Toolbox. This metric measures how well nodes are
assigned to communities. To detect network communities,
modularity was maximized using a Louvain-like locally “greedy”
algorithm90,91. This process was repeated 100 times using a
consensus iterative algorithm to identify a single consistent
representative partition from all partition sets based on statistical
testing in comparison to the ‘Newman-Girvan (NG)’ null net-
work91,92. The output of modularity maximization is the commu-
nity assignment of EEG channels for each 1-second window EEG.
The community assignment of each EEG channel is the commu-
nity that the EEG channel was assigned to (e.g., if three
communities were detected for an adjacency matrix, the
community assignment of each node is an integer from one to
three). The community assignments of EEG channels across
1-second windows were used as elements of the partition matrix
A∈ℜNXT. The elements of the partition matrix Ai;t 2 1:::gf g
displayed the communities (g) to which brain area i (EEG channels;
1 to N, where N= 116) was assigned at time t (second; t= 1 to T,
where T denotes recording duration).
Finally, the partition matrix was used in the flexibility function of

the Network Community Toolbox (http://commdetect.weebly.com/)93

to calculate the temporal network flexibility of each channel as Eq. 1.

f i ¼ 1� 1
T � 1

XT�1

t¼1

δ Ai;t;Ai;tþ1
� �

(1)

Table 8. List of EEG channels roughly above each Brodmann Area.

BA Channels BA Channels BA Channels

1 C4, CCP4h 2 C3, CP3, CCP3h, CPP3h 5 Cz, CP1, CP2, C1, C2, CCP1h, CCP2h, CPP1h,
CPP2h

6 FC1, FC2, FCz, FC4, FCC3h, FCC4h, FCC2h,
FCC1h

7 Pz, P1, P2 8 F4, F3, Fz, F1, F2, AFF1, AFF2, FFC3, FFC4, FFC1,
FFC2

9 AF3, AFz 10 AFp3h, AFp4h, FPz, FP3, FP4, FP1, FP2 18 O1, O2, I1, I2, OI1h, OI2h, POO9h, POO10h

19 PPO2, PPO1, POO3h, POO4h, PO3, PO4, PO7,
PO8

20 FT9, FT10, PO9, P9, FTT9h, FTT10h,
PPO9h

21 TP7, TP8, TPP10h, TTP8h, TPP7h, TPP8h, T8,
TPP9h

37 PO10, P10, PPO10h, P7, P8 39 P3, P4, P5, P6, PPO5h, PPO6h 40 CP5, CP6, CP4, CPP5h, CPP6h

41 C6, CCP6h 42 CCP5h, TTP7h, T7, C5 44 FC6, FC5, FCC6h

45 FFT8h, FFT7h 46 AFF5h, AFF6h, AF7, F5, FFC5h, FFC6h,
FCC5h

47 FTT7h, FTT8h, F7, FT7, FT8
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where, f i is the temporal network flexibility of channel i, defined as
the number of times that brain area i changed its community
assignment across successive 1-s time windows. High values of f i
indicate frequent changes in community assignments (high
temporal flexibility), while low values suggest stable assignments
(low temporal flexibility)86,93. In Eq. 1, ‘A’ is the partition matrix,
and ‘T’ is the recording duration. The δðAi;t;Ai;tþ1Þ represents a
binary function used to determine whether the community
assignment of brain area i changes between two successive time
windows t and t + 1. The function δ takes the value 1 if there is a
change in the community assignment of brain area i from one
time window to the next. If there is no change in community
assignment, δ takes the value 0. Finally, the average of the
extracted temporal network flexibility for channels within each BA

was calculated at four band frequencies, resulting in a total of 84
temporal network flexibility features, corresponding to 21 BAs and
four frequency bands (Fig. 2).

Extraction of eye-tracking features
Tobii Pro Lab © was used to process eye-tracking data. A moving
average filter with a window size of three points was applied to
reduce noise in eye-tracking data. A velocity-threshold identifica-
tion fixation filter with a threshold of 30 degrees per second was
used to identify fixation and saccadic points. Features extracted
from eye-tracking data were defined in Table 9 and Fig. 4. Extracted
eye-tracking features were then standardized for each subject
(i.e., subject-wise standardization). Subject-wise standardization: for

Fig. 3 Feature extraction from EEG data across brain areas and frequency bands. (a) Data recording set up. (b) EEG data analysis. (c)
Extraction of EEG features from 21 individual Brodmann Areas (BAs) across four frequency bands. (d) The feature extraction process results in a
comprehensive set of 168 distinct EEG features. Part (a) of this figure was developed by the ATLAS illustrator Shared Resource at RPCCC, using
the Adobe Illustrator software.
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each subject, the mean (µ) and standard deviation (σ) of each eye-
tracking feature (X), within the task, are calculated, and then the
mean value is extracted from each eye-tracking feature, and the
result is divided by the standard deviation value ((X − µ)/σ)94.

Statistical analysis for performance evaluation
Extracted features—comprising 84 search information features, 84
temporal network flexibility features, and 12 eye-tracking features
—were used as independent variables to develop random
intercept models for evaluating performance. The random

intercept model accounts for the within-subject variability. The
goal was to find the features that are associated with performance
among different subjects. Seven-fold cross-validation was used to
reduce individual effects in detecting important features (i.e.,
predictors). Forward feature selection was used to identify the
possible predictors. Variables selected at least twice during cross-
validation were considered as possible predictors. These potential
predictors were then used to develop the final linear random
intercept models for performance evaluation. To quantify the
variation in the output variable explained by the independent
variables in the model, Efron’s pseudo-R-square was computed.

Table 9. Definition of eye-tracking features.

Eye-tracking feature Definition Number of
extracted
features

(1) Rate of fixation Number of eye-tracking time points that fell below the threshold of 30 degrees per second divided by the
number of total time points of the recording

1

(2) Rate of saccade Number of eye-tracking time points with an angular velocity higher than the threshold of 30 degrees per
second, divided by the number of total time points of the recording

1

(3) Average pupil
diameter

Average pupil diameter of each eye throughout a recording 2

(4) Shannon entropy
of pupil diameter

Shannon entropy: the average rate at which information is produced by a stochastic source of data. For a
signal X(t), the Shannon entropy S(X) is calculated as

S Xð Þ ¼ �PN
i¼1

p xið Þlog2 p xið Þð Þ
where p(xi) is the probability of obtaining the value xi. This feature was calculated for both eyes.

2

(5) Rate of changes in
the eye’s gaze
direction

Calculation: The total number of time points at which the direction of the eye changes is divided by the
total number of time points. This feature was calculated for both eyes and both directions (horizontal and
vertical).

4

(6) Total length of eye
pupil trajectory

For pupil trajectory in three dimensions [XðiÞ; YðiÞ; ZðiÞ] with N points, the total length can be calculated
as:

L ¼ PN�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXði þ 1Þ � XðiÞÞ2 þ ðYði þ 1Þ � YðiÞÞ2 þ ðZði þ 1Þ � ZðiÞÞ2

q

This formula calculates the Euclidean distance (straight-line distance) between each pair of successive
points and sums these distances to get the total length of the trajectory. The square root of the sum of the
squared differences in each coordinate gives the distance between two points in 3D space. This feature
was calculated individually for the dominant and nondominant eyes, resulting in two distinct features of
this type.

2

Fig. 4 Feature extraction from eye-tracking data. Eyeglasses parts of this figure were developed by the ATLAS illustrator Shared Resource at
RPCCC, using the Adobe Illustrator software.
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Mean Absolute Error (MAE), and Root Mean Square Error (RMSE)
metrics were computed to assess the performance evaluation
models’ performance.

Statistical analysis for learning rate evaluation
In our analysis, all features extracted from EEG and eye-tracking
data were considered continuous variables. Linear regression was
used to analyze the learning rate, a suitable method given that
each subject exhibits a unique learning rate for each task. Eye-
tracking and EEG features from the first attempt, along with
baseline performance scores and age, were used as potential
factors in a multivariate linear regression analysis to identify the
most significant factors (i.e., features). Subjects with high initial
performance scores typically exhibit lower learning rates. For
example, a subject scoring 95 out of 100 is less likely to achieve a
steep learning rate compared to one who scores 60. Therefore, we
use the first-attempt performance score as a baseline in analyzing
learning rates. We considered the initial performance score as a
baseline to adjust for individual variances among subjects. Forward
feature selection was used to identify the predictors of learning
rate. The identified features were used to develop the learning rate
evaluation model. To assess how well the independent variables
explain the variance in the dependent variable (learning rate), the
R2 metric was calculated. MAE, and RMSE metrics were calculated
to assess the learning rate evaluation models’ performance.

Regression models’ terms. In the regression models, the term
‘estimate’ reflects the variation in the outcome variable (e.g.,
performance score) for a one-standard deviation shift in the
predictor variable. The standard error of an estimate indicates the
standard deviation of its sampling distribution.

Relationship between hours of experience with RAS and
performance
We employed Pearson correlation analysis to investigate the
relationship between hours of experience with RAS and
performance.

Relationship between performance and mental workload
It has been frequently reported that performance and mental
workload mutually influence each other95. We employed Pearson
correlation analysis to investigate the relationship between the
two factors in this study.
All tests were two-sided with a level of significance set at 0.05.

Statistical analyses were conducted using SAS® (version 9.4, SAS
Institute Inc., Cary, NC, USA).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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